The invention relates to wireless communication and, more particularly, to techniques for demodulation of wireless signals transmitted in a wireless communication system.
Wireless communication involves transmission of encoded information on a modulated radio frequency (RF) carrier signal. A wireless receiver includes an RF antenna that receives a wireless signal, and a demodulator that converts the RF signal to a baseband. In a multi-carrier wireless communication system, such as an orthogonal frequency division multiplexing (OFDM) system, transmitted signals are susceptible to multi-path scattering and reflection, which can cause interference between information transmitted on different symbols. For this reason, the receiver typically includes a channel estimator that measures fluctuation of the channel response. The receiver uses the measured channel response to adjust the incoming signals, and compensate for channel effects that could cause interference.
The receiver demodulates the communication signal using an oscillator that operates independently of the transmitter carrier frequency. The receiver periodically samples the received analog carrier signal, and extracts a communication signal using digital signal processing techniques. Differences between the carrier frequency and the demodulation frequency of the receiver may contribute phase rotation to the frequency domain signal. This frequency error produces a phase shift that increases as time progresses, and can be accompanied by additive phase noise. Accordingly, the receiver also may perform phase error estimation and correction to improve decoding accuracy.
Encoding techniques such as quadrature amplitude modulation (QAM) involve mapping of a finite number of bits to each transmitted symbol to encode information in the wireless signal. To decode the information, the receiver demaps the symbols, typically using a soft demapping algorithm. A soft decision for a given bit can be obtained using a log likelihood ratio. The soft decisions are used to calculate branch metrics for a convolutional decoder such as a Viterbi decoder.
Equalization, soft demapping and phase error estimation represent some of the features that contribute to the size, complexity and cost of a wireless receiver. Such features ordinarily are necessary in a wireless communication system, however, to ensure effective communication of desired information.
The invention is directed to wireless communication techniques that enable equalization, soft demapping and phase error estimation functions to be performed jointly based on multiple observations of a transmitted symbol in wireless communication systems employing receive diversity. Multiple observations of a transmitted symbol are obtained from multiple antenna paths in a wireless receiver. The invention enables the equalization, soft demapping and phase error estimation functions to be integrated within shared hardware, rather than distributed among separate hardware blocks. In this manner, the invention can reduce the size, complexity and cost of a wireless receiver.
The invention may be applied, for example, to a multi-carrier (MC) wireless communication system, such as an OFDM system. In an OFDM system, a number of QAM symbols are transmitted in parallel in the time-domain via inverse Fourier transformation. The invention may enable equalization, soft demapping and phase error estimation functions to be performed jointly for multiple observations of a transmitted symbol transmitted in an OFDM wireless communication system employing receive diversity. The multiple observations of a transmitted symbol are the outputs of Fourier transformers that are applied to the multiple antenna paths in the OFDM wireless receiver. In the OFDM example, symbol observations can be obtained from fast Fourier transform (FFT) outputs.
In one embodiment, the invention provides a method comprising receiving wireless signals via one or more antennas, demodulating the wireless signals to produce observations of a transmitted symbol, weighting each of the observations with a complex conjugate of an estimated channel response for the corresponding antenna, combining the weighted observations to form a combined observation, and generating one or more soft decision bits indicative of the transmitted symbol for the combined observation according to soft demapping rules based on a subset of the transmitted symbol constellation.
In another embodiment, the invention provides a method comprising receiving wireless signals via one or more antennas, demodulating the wireless signals to produce observations of a transmitted symbol, weighting each of the observations with a complex conjugate of an estimated channel response for the corresponding antenna, combining the weighted observations to form a combined observation, generating one or more soft decision bits indicative of the transmitted symbol for the combined observation according to soft demapping rules based on a subset of the transmitted symbol constellation, and estimating the phase error using the soft decision bits.
In another embodiment, the invention provides a wireless receiver comprising one or more antennas that receive wireless signals, a demodulator that demodulates the wireless signals to produce observations of a transmitted symbol, an equalizer that weights each of the observations with a complex conjugate of an estimated channel response for the corresponding antenna, a soft demapper unit that combines the weighted observations to form a combined observation, and generates one or more soft decision bits indicative of the transmitted symbol for the combined observation according to soft demapping rules based on a subset of the transmitted symbol constellation.
In another embodiment, the invention provides a wireless receiver comprising one or more antennas that receive wireless signals, a demodulator that demodulates the wireless signals to produce observations of a transmitted symbol, an equalizer that weights each of the observations with a complex conjugate of an estimated channel response for the corresponding antenna, a soft demapper unit that combines the weighted observations to form a combined observation, and generates one or more soft decision bits indicative of the transmitted symbol for the combined observation according to soft demapping rules based on a subset of the transmitted symbol constellation, and an estimator the phase error using the soft decision bits.
In a further embodiment, the invention provides a method comprising receiving orthogonal frequency division multiplexing (OFDM) wireless signals via multiple antennas, demodulating the wireless signals to produce observations of a quadrature amplitude modulation (QAM) symbol, combining the observations to form a combined observation, and generating one or more soft decision bits indicative of the QAM symbol for the combined observation according to piecewise linear soft demapping rules.
In another embodiment, the invention provides a method comprising receiving orthogonal frequency division multiplexing (OFDM) wireless signals via multiple antennas, demodulating the wireless signals to produce observations of a quadrature amplitude modulation (QAM) symbol, combining the observations to form a combined observation, and generating one or more soft decision bits indicative of the QAM symbol for the combined observation according to piecewise linear soft demapping rules, and estimating the phase error using the soft decision bits.
In an added embodiment, the invention provides a receiver comprising multiple antennas that receive orthogonal frequency division multiplexing (OFDM) wireless signals via multiple antennas, a demodulator that demodulates the wireless signals to produce observations of a quadrature amplitude modulation (QAM) symbol, a soft demapper unit that combines the observations to form a combined observation, and generates one or more soft decision bits indicative of the QAM symbol for the combined observation according to piecewise linear soft demapping rules.
In an added embodiment, the invention provides a receiver comprising multiple antennas that receive orthogonal frequency division multiplexing (OFDM) wireless signals via multiple antennas, a demodulator that demodulates the wireless signals to produce observations of a quadrature amplitude modulation (QAM) symbol, a soft demapper unit that combines the observations to form a combined observation, and generates one or more soft decision bits indicative of the QAM symbol for the combined observation according to piecewise linear soft demapping rules, and an estimator that estimates the phase error using the soft decision bits.
In another embodiment, the invention provides a method comprising applying a soft decision function to generate soft decision bits for a combined transmitted symbol observation produced from wireless signals received via multiple receive paths, wherein the soft decision function defines soft demapping rules based on a subset of the transmitted symbol constellation.
In a further embodiment, the invention provides receiver comprising a soft demapper unit that applies a soft decision function to generate soft decision bits for a combined QAM symbol produced from wireless signals received via multiple receive paths, wherein the soft decision function defines soft demapping rules based on a subset of the transmitted symbol constellation.
The invention may provide one or more advantages. The equalization, soft demapping and phase error estimation functions can be performed jointly within shared hardware. Accordingly, the invention promotes reduced size, complexity and cost of hardware components in a multi-carrier wireless receiver such as an OFDM wireless receiver. In addition, the invention promotes increased efficiency and accuracy in the demodulation of transmitted symbols in a wireless communication system. For example, the use of multiple receive paths permits increased signal-to-noise ratio in the detection of the transmitted symbol.
Additional details of various embodiments are set forth in the accompanying drawings and the description below. Other features, objects and advantages will become apparent from the description and drawings, and from the claims.
As shown in
RF antennas 18 receive RF signals over one or more receive paths. In one embodiment, RF antennas 18 receive RF signals over multiple receive paths. Antenna 18A provides a first receive path 18A, and antenna 18B provides a second receive path. More than two antennas 18 may be provided in some embodiments for enhanced receive diversity. One of antennas 18, or a different antenna 19, may be used for transmission of RF signals within network 10. Radio 20 may include circuitry for upconverting transmitted signals to RF, and downconverting RF signals to baseband. In this sense, radio 20 may integrate both transmit and receive circuitry within a single transceiver component. In some cases, however, transmit and receive circuitry may be formed by separate transmitter and receiver components. For purposes of illustration, discussion herein will be generally limited to the receiver and demodulation aspects of radio 20 and modem 22.
Modem 22 encodes information in a baseband signal for upconversion to the RF band by radio 20 and transmission via a transmit antenna. Similarly, and more pertinent to the invention, modem 22 decodes information from RF signals received via antennas 18 and downconverted to baseband by radio 20. As will be described, the RF signals received by multiple antennas 18A, 18B may be demodulated to produce observations of QAM symbols. The observations are combined to form a combined observation for processing by a soft demapping unit within modem 22 to produce the QAM symbol. Media access controller 24 interacts with host processor 26 to facilitate communication between modem 22 and a host wireless communication device 16, e.g., a computer, PDA or the like. Hence, host processor 26 may be a CPU within a computer or some other device. Radio 20, modem 22 and media access controller 24 may be integrated on a common integrated circuit chip, or realized by discrete components.
Wireless communication network 10 (
Consider an OFDM wireless communication device 16, as shown in
Also, let aj denote the jth symbol in the applicable QAM constellation. A finite number of bits, e.g., b1b2 . . . bM, are mapped to each QAM symbol. The soft decision associated with bl, 1≦l≦M, can be obtained from the log likelihood ratio:
where R=[r1 r2 . . . rL]′ is the vector of observation samples corresponding to L multiple receive antennas and the summation in the numerator or denominator, as applicable, is taken over all QAM symbols that share the common bit bl=1 (bl=0). It is now shown that a reduced-complexity soft decision detector can be obtained by using only a subset of the symbol constellation in (1). As an example, assuming that the symbols are equally likely, the log likelihood can be rewritten as:
Assuming additive Gaussian noise, the expression can be rewritten as:
The noise covariance matrix C is diagonal as the observations are assumed to be statistically independent. The variance
is the noise variance associated with the observation ri. The expression (5) can be rewritten as:
Letting ui and Hi denote the unequalized FFT output sample and the channel response associated with the ith antenna, respectively, expression (6) can be rewritten as:
In expression (7), uiHi has been substituted for ri. In this manner, each observation is weighted with the complex-conjugate of the channel response Hi for the corresponding antenna. Hence, by incorporation of the channel response Hi, equalization can be performed jointly with the soft-demapping function, as discussed in further detail below. Finally, the soft decision can be defined as the scaled log likelihood:
Note that, in expressions (7) and (8), computation of the log likelihood to generate a soft decision is based on the unequalized observation sample ui. The frequency equalization, which is essentially an act of dividing ui by the channel response Hi for the pertinent frequency bin, is implicit in expression (7) above. In this sense, expressions (7) and (8) represent a joint equalization and soft-demapping operation. In other words, equalization and soft-demapping can be performed jointly, rather than independently, using a common set of demapping functions that implicate equalization. Advantageously, this feature may enable the sharing of hardware and processing overhead, thereby reducing size, complexity and cost within the wireless receiver components of wireless communication device 16.
The branch metric in the soft Viterbi algorithm used for decoding can be obtained by simply summing the M consecutive soft decisions, after appropriate deinterleaving, as represented by the expression:
where b′1 represents deinterleaved bits. Note that arbitrary scaling of the log likelihood ratio does not affect the Viterbi decoding operation as long as the scaling is consistent over the entire bit sequence. This particular scaling of the log likelihood expression (8) may be chosen because it tends to simplify the final expression. In addition, the log likelihood (8) without the scaling may improve the dynamic range utilization in the finite precision implementation.
Coded bits are mapped to the real and imaginary components of a QAM symbol independently. For example, for 64-QAM, the first three bits (b1,b2,b3) determine the real part of the QAM symbol and the remaining three bits (b4,b5,b6) determine the imaginary part of the QAM symbol. With this type of Gray-coded QAM, the boundary lines that separate the QAM symbols associated with bl=1 from those associated with bl=0, i.e., the inter-bit decision boundaries, are either horizontal or vertical, for any l. It can be further shown that when these decision boundaries are horizontal, the “nearest” symbols amin1 and amin0, for purposes of expressions (3) and (4) above, share a common real (horizontal) component, and differ only in their imaginary components. Likewise, when the boundaries are vertical, amin1 and amin0 share the same imaginary (vertical) component.
Advantageously, the soft demapping technique may be based on a subset of the transmitted symbol constellation for reduced complexity. It can be seen that in expression (8) above, advantageously, the soft decision Λ(bl) is given as a piece-wise linear function of either
Thus, the soft-demapping technique may apply piecewise linear functions based on the real and imaginary components of the combined observation and on the combined energy of the channel responses. For a given bit bl, the absolute value of the slope of the function Λ(bl) can change as a function of
A further complexity-reducing approximation can be made to expression (8) by confining amin1 and amin0 to be near the boundary lines. When the “nearest” symbols amin1 and amin0 are chosen only from the symbols closest to the nearest boundary line, the absolute value of the slope in Λ(bl) remains fixed for a given bit bl, further reducing implementation complexity. Thus, the soft demapping rules may be based on minimum distance symbols amin1 and amin0 associated with pertinent bit values in the transmitted symbol.
For an illustrative example, consider 16-QAM coding and two receive antennas, as shown in the example of
and ignoring the approximation, expression (8) can be rewritten as:
Λ(b1)=dI. (11)
This soft decision rule is illustrated for b1 in
The boundary line for b3 is formed as the horizontal line through the origin. The nearest symbols around the boundary are amin1=+j and amin0=−j, ignoring the common real component. Substituting these values in expression (8) and letting:
the following is obtained:
Λ(b3)=dQ. (15)
Following similar steps, it is possible to obtain:
A similar soft decision rule can be applied for a single antenna case with an equalized signal. For reduced complexity, the minimum distance symbols can be further confined to be within a predetermined distance of an inter-symbol decision boundary. If the nearest symbols are not confined close to the boundary, a somewhat more complicated but slightly improved soft decision rule for the first bit can be obtained as follows:
where amin1=+3 and amin0=−1 for the second region, and amin1=−3 and amin0=+1 for the third region. Similarly, for the third bit b3, a soft decision rue can be obtained as follows:
where the nearest symbols are set as amin1=+3j and amin0=−j for the second region and amin1=−3j and amin0=j for the third region. Following the same steps, the soft decisions for 64-QAM can be obtained as shown in
For BPSK in the example of
Λ(b1)=dI. (19)
Within soft demapper unit 28, multipliers 36A, 36B equalize demodulated signals u1,k and u2,k with channel gain coefficients H*1,k and H*2,k, respectively. A signal combiner 38 combines the equalized signals produced by multipliers 36A, 36B. Element 40 extracts the real component of the combined signal and applies rules as described above to produce a soft decision Λ(b1). The soft decision Λ(b1) is applied to a de-interleaver 32, which produces a de-interleaved soft decision that can be used to compute branch metrics for use in a Viterbi convolutional decoder 34. Notably, there is no need for separate hardware for equalization and weighting by channel signal-to-noise ratio (SNR). Instead, equalization is integrated with the hardware used to perform the soft-demapping function. Accordingly, the OFDM demodulator (FFTs 34A, 34B), de-interleaver 30, and Viterbi decoder 32 are shown together in
Λ(b1)=dI (20)
Λ(b2)=dQ. (21)
Λ(b1)=dI (22)
Λ(b3)=dQ (24)
Λ(b1)=dI (26)
Λ(b4)=dQ (29)
Λ(b1)=dI, (32)
Λ(b2)=−|Λ(b1)|+8P, (33)
Λ(b3)=−|Λ(b2)|+4P, (34)
Λ(b4)=−|Λ(b3)|+2P, (35)
Λ(b5)=dQ, (36)
Λ(b6)=−|Λ(b5)|+8P, (37)
Λ(b7)=−|Λ(b6)|+4P, (38)
Λ(b8)=−|Λ(b7)|+2P. (39)
Λ(b1)=dI, (40)
Λ(b2)=−|Λ(b1)|+16P, (41)
Λ(b3)=−|Λ(b2)|+8P, (42)
Λ(b4)=−|Λ(b3)|+4P, (43)
Λ(b5)=−|Λ(b4)|+2P, (44)
Λ(b6)=dQ, (45)
Λ(b7)=−|Λ(b6)|+16P, (46)
Λ(b8)=−|Λ(b7)|+8P, (47)
Λ(b9)=−|Λ(b8)|+4P, (48)
Λ(b10)=−|Λ(b9)|+2P. (49)
A phase error estimator for a wireless communication device incorporating a receive diversity arrangement as described herein will now be discussed. An OFDM receiver typically uses a single clock source to derive all necessary clocks for carrier recovery and sampling of a received signal. Similarly, clocks for an OFDM transmitter are typically derived from a single clock source. In this case, the phase errors existing both in the carrier and the sampler will not change over the diversity paths. Including the carrier and sampling phase errors, the demodulated signal (observation sample) ui,n at the output of the FFT unit in an OFDM system can be represented by:
where Sn, −N/2≦n≦N/2, is the transmitted symbol through the nth sub-carrier, Hi,n, 1≦i≦L, is the channel response of the nth sub-carrier and the ith diversity path, j=√{square root over (−1)}, Δφc is the carrier phase error, Δφs is the sampler phase error, and
is the phase rotated noise sample. Note that in expression (50), only one symbol is considered. The phase errors Δφc and Δφs remain the same in different receive diversity paths.
Multiplying both sides of expression (50) by
and summing the results over the diversity paths results in
where
In accordance with the invention, the phase error estimator can share hardware used for the soft demapper unit of the Viterbi algorithm. From expression (51), the phase error can be estimated as:
The estimates of the channel response and transmitted symbol based on the received signal can be used for Hi,n and Sn, respectively, if these are not known to the receiver. The phase error is typically so small that the angle in (52) can be approximated by the division of the imaginary part of the argument by the real part as:
Each component of the phase errors can be estimated by averaging expression (53) throughout the sub-carriers as represented below:
The above averaging (summation) of the phase errors associated with an individual sub-carrier can be made selective in order to save hardware or reduce the latency involved in the phase error calculation. In particular, if there are known transmitted symbols such as pilot tones, the phase errors of these tones can be used in the calculation of the phase errors.
The phase error estimation in expression (55) does not need to consider the channel SNR associated with the sub-carrier and diversity path. Assuming the channel noise is additive white Gaussian, the SNR of the sub-carrier n of the ith diversity path is proportional to |Hi,n|2. The combined SNR over the diversity paths is also proportional to
The performance of the phase error estimator represented in expressions (54) and (55) can be improved by weighting individual phase error estimates by the combined SNR as represented below:
where
Because pairs of sub-carrier phase errors are used to estimate the individual carrier and sampler phase error components, the weighting can be applied piece-wise as follows:
The phase error is small under normal operating conditions. In this case, the imaginary part of
is much smaller than the real part. The phase error estimate proportional to the actual phase error can be obtained by the expression:
In effect, the carrier phase error Δφc can be estimated by removing the sampling phase error component and averaging the residual subcarrier phase errors. The phase shift magnitude of the subcarrier ‘n’ due to the sampling phase error is the same amount as for the complementary subcarrier ‘−n,’ i.e., the complementary subcarrier. However, the signs of the phase shift for the complementary pair of subcarriers ‘n’ and ‘−n’ are opposite. By adding the two subcarrier phase errors corresponding to the complementary subcarriers ‘n’ and ‘−n’, the phase shift due to the sampling phase error can be removed.
Also, the sampling phase error Δφs can be estimated by removing the carrier phase error component and averaging the residual subcarrier phase errors. The phase shift due to the carrier phase error is the same throughout the subcarriers. By taking the difference of any two subcarrier phase errors, the phase shift due to the carrier phase error can be removed. To obtain the largest residual phase error after taking the difference, the two subcarriers taken for the difference should be separated by the greatest extent. For the subcarriers indexed in the range of [−N/2, N/2], the complementary pairs of subcarriers can be formed as (−N/2, 1), (−N/2+1,2), . . . , (−1, N/2), where each pair has the index difference of N/2+1.
In the above phase error estimation expressions (56), (57), (58), (59), (60), and (61), the weighting factors can be quantized to reduce hardware complexity. For example, the weighting factors
for varying n can be quantized to values nearest to the power of 2 value. The estimation expressions (54) and (55) can also be modified to:
The performance of the phase error detector can be improved further by incorporating the power of the transmitted signal Sn in the averaging process. To examine the noise effect on the accuracy of the phase error estimate for varying transmitted signal power, assume that the channel responses and noises are the same for two observed signals, ui,n and ui,m, the phase error is zero, and that only the transmitted signals are different. In particular, Hi,n=Hi,m, N′i,n=N′i,m, Δφs=Δφc=0, and Sn≠Sm. Then, for |Sn|>|Sm|, the following relationship between the calculated phase errors always holds for the two subcarriers:
angle(ui,n)−angle(Hi,n)−angle(Sn)≦angle(ui,m)−angle(Hi,m)−angle(Sm). (64)
Assuming that Hi,n=Hi,m, expression (64) reduces to:
angle(ui,n)−angle(Sn)≦angle(ui,m)−angle(Sm). (65)
Without the loss of the generality, we can assume that angle(Sn)=angle(Sm). Then, expression (65) reduces to:
angle(ui,n)≦angle(ui,m). (66)
Since the magnitude of Sn·Hi,n for the first signal is larger than that of Sm·Hi,m for the second signal, for the same noise
the above relationship (66) always holds. In conclusion, the smaller the transmitted signal power is, the more susceptible the phase estimate is to the noise.
To improve the phase error estimate under the noisy channel condition, those transmitted signals with small power can be removed from the phase error calculation. This can simply be implemented by setting the estimated transmitted signal Sn to zero if it has a small power. As an example, for the 256 QAM case, if the estimated transmitted signal Sn is one of {(i,j)|iε{±1,±3} and jε{±1,±3}}, then the estimate is set to Sn=0. Similarly, for the 64 QAM case, the estimated transmitted signal Sn is set to 0 if it is one of {(1,1), (1,−1), (−1,1), (−1,−1)}. The angle operator should output a zero angle for the zero input for both the real part and the imaginary part. With these settings, both 64 QAM and 256 QAM coding do not use 6.25% of the signal constellation points in the phase error calculation.
According to the IEEE 802.11a standard, four pilot tones are modulated by BPSK. The pilot tones are not affected by the implementation described herein. For IEEE 802.11a applications, even in the extreme situation where none of the transmitted signals are used in the phase error calculation due to small power levels, there are at least four pilot tones used for the phase error calculation. Furthermore, the probability of transmitting all of the signals with small power levels is very low.
The sampler takes a plurality of samples of the respective time-domain signals R1,j,k and R2,j,k during a sampling window 56, 58, respectively. Sampling window 56, 58 remains “open” for a discrete period of time, during which a fixed number of samples of the received time-domain signal can be taken at a particular sampling rate. The duration between samples is the “sampling period,” and the sum of all sampling periods equals the duration of respective sampling window 56, 58. The lengths of the sampling periods are controlled by a sampling clock, which also determines the sampling rate. The sampling clock can be advanced or delayed as will be described below.
The signal sampled in each window 56, 58 defines a sequence that is passed to a respective fast Fourier transform (FFT) unit 60, 62 for processing in the frequency domain. In the example of
To compensate for sampling phase error, Δφs, each phase correction block 68, 70 multiplies the input signal by e−j(n{circumflex over (φ)}
Voltage controlled oscillators (VCO) 80, 82 receive the filtered output signals from loop filters 76, 78, respectively. Loop filters 76, 78 and VCO elements 80, 82 act independently, but may operate in a substantially similar fashion. The loop filter/VCO elements 50 and 54, respectively, receive an estimated instantaneous carrier phase error, denoted Δ{circumflex over (φ)}c, and an estimated instantaneous sampling phase error (58), denoted Δ{circumflex over (φ)}s, from phase error estimator 74. VCOs 80, 82 serve as digital emulators of the analog counterparts, which perform accumulation of input signals, and apply low pass filter and accumulated phase error signals {circumflex over (φ)}s and {circumflex over (φ)}c to phase correction blocks 68, 70.
Channel estimation blocks 64, 66 provide estimates of the channel response for each transmission channel carrying signals R1,j,k and R2,j,k, respectively. Branch metric calculator 72 generates soft decision output codes Λ(bl−bn) based on the phase corrected sequences generated by phase correction blocks 68, 70, and the channel estimation values produced by channel estimators 64, 66. A slicer block 84 generates hard decisions based on the transmitted coded bits produced by branch metric calculator 72. Mapping block 86 then translates a finite number of bits from the coded bits to a transmitted symbol. Thus, the output of mapping block 86 is the estimate of the transmitted symbol. Phase error estimator 74 receives the estimated transmitted symbol from mapping element 86 and the joint phase corrected and equalized signal u*H from branch metric calculator 72, and produces sampling and carrier phase error values Δφc and Δφs. Hence, phase error estimator 74 can be referred to as a soft decision-directed phase error estimator in the sense that it is responsive to the output of branch metric calculator 72. The structure and function of phase error estimator 74 will be described in greater detail below.
As mentioned above, loop filter 76 and VCO 80, which track sampling phase error, may include additional functionality. In particular, loop filter 76 and VCO 80 can be constructed to include window adjustment circuitry that applies the estimated sampling phase error {circumflex over (φ)}s to adjust windows 56, 58. When {circumflex over (φ)}s is larger than π radians or smaller than −π radians, advance/delay signals 83 are generated to adjust sampling windows 56, 58. When {circumflex over (φ)}s is larger than π, windows 56, 58 are lagged by one sampling period, and {circumflex over (φ)}s is set to −2π+{circumflex over (φ)}s. When {circumflex over (φ)}s is smaller than −π, windows 56, 58 are adjusted in the other direction by one sampling period and {circumflex over (φ)}s is set to 2π+{circumflex over (φ)}s. In this way, {circumflex over (φ)}s remains between −π radians and π radians.
The number of samples taken in sampling windows 56, 58 remains unchanged, but the windows are advanced or delayed by one sampling period with each adjustment. In other words, window adjustment is performed in the time domain. The sampler may include an increment/decrement controller that responds to advance/delay signal 83. Notably, window adjustment is performed when needed to keep {circumflex over (φ)}s between −π radians and π radians, and is not necessarily performed after each sampling. Because the effect of the window adjustments is observed at the input of phase correction elements 68, 70 with some time delay associated with FFTs 60, 62, the sampling phase error estimate supplied to phase correction elements 68, 70 may be adjusted with the same delay to either −2π+{circumflex over (φ)}s or 2π+{circumflex over (φ)}s.
A 16-QAM mapping unit 86 maps the hard decisions from slicer block 84 to produce a transmitted symbol. Following the complex conjugate operation (94), the transmitted symbol is multiplied with the combined demodulated and equalized signal u/H and applied to phase error estimator 74. Phase error estimator 74, as shown in
Min sampler block 100 calculates:
Sum carrier block 102 and sum sampler block 104 calculate:
The carrier and sampler blocks 98, 100, 102, 104 provide additional inputs that enable phase error estimator 74′ to perform the calculations in expressions (58) and (59) as indicated below:
is much smaller than the real part, so a phase error estimate proportional to the actual phase error can be obtained using phase error estimator 74″ according to the expressions:
Upon estimating the channel responses for the signal paths associated with the antennas (116), the method involves equalizing each of the QAM symbol observations based on estimated channel responses (118). The QAM symbol observations are corrected for phase error (120), preferably including both carrier phase error and sampling phase error. The method then involves combining the QAM symbol observations (122), followed by application of a soft decision function (124) to carry out generation of soft decision bits (128), i.e., performance of the soft demapping function. Using the soft decision bits, the method further involves estimating phase error (128). This estimate can be used to make sampling phase error and carrier phase error adjustments, i.e., corrections, for subsequent observation samples. Then, branch metrics for the convolutional decoder are calculated using the soft decision bits (130), and the process repeats for subsequent samples.
The various components described herein for joint equalization, soft demapping and phase error estimation may be formed by a variety of hardware such as integrated logic circuitry, e.g., an Application Specific Integrated Circuit (ASIC), programmable logic devices, microprocessors, and the like. For size and complexity reasons, it is desirable that the various equalizations, soft demapping and phase error estimation circuitry be formed together within a common hardware device such as an ASIC.
Various embodiments of the invention have been described. These and other embodiments are within the scope of the following claims.
This application claims priority from U.S. provisional application Ser. No. 60/344,012, filed Dec. 27, 2001, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5732113 | Schmidl et al. | Mar 1998 | A |
6144711 | Raleigh et al. | Nov 2000 | A |
6188717 | Kaiser et al. | Feb 2001 | B1 |
6219334 | Sato et al. | Apr 2001 | B1 |
6289000 | Yonge, III | Sep 2001 | B1 |
6304750 | Rashid-Farrokhi et al. | Oct 2001 | B1 |
6320903 | Isaksson et al. | Nov 2001 | B1 |
6327316 | Ikeda | Dec 2001 | B1 |
6449245 | Ikeda et al. | Sep 2002 | B1 |
6473467 | Wallace et al. | Oct 2002 | B1 |
6647015 | Malkemes et al. | Nov 2003 | B2 |
6654340 | Jones et al. | Nov 2003 | B1 |
6754170 | Ward | Jun 2004 | B1 |
6907084 | Jeong | Jun 2005 | B2 |
6937558 | Wakutsu | Aug 2005 | B2 |
6952458 | Djokovich et al. | Oct 2005 | B1 |
7006848 | Ling et al. | Feb 2006 | B2 |
20030104797 | Webster et al. | Jun 2003 | A1 |
20050254461 | Shin et al. | Nov 2005 | A1 |
20060029162 | Chi | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
1999-0058954 | Jul 1999 | KR |
Number | Date | Country | |
---|---|---|---|
20030123582 A1 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
60344012 | Dec 2001 | US |