This application claims the priority of U.S. utility patent application Ser. No. 10/681,529, filed by Robert E. Stewart on Oct. 8, 2003 and entitled “JOINT MOTION SENSING TO MAKE A DETERMINATION OF A POSITIONAL CHANGE OF AN INDIVIDUAL” and claims the priority of U.S. provisional patent application 60/418,119, filed by Robert E. Stewart on Oct. 11, 2002, and entitled “STRAIN SENSOR EMPLOYMENT OF JOINT MOTION TO DETERMINE LOCATION OF BODY” of which the entire contents of both applications are incorporated herein by reference.
The invention in one example relates generally to sensing and more particularly to motion detection.
An inertial navigation system (“INS”) and a global positioning system (“GPS”) generate position information on an individual. The inertial navigation system and the global positioning system generate complementary position information. The position information generated by the global positioning system may be used to correct the position information generated by the inertial navigation system for some measurements. The position information generated by the inertial navigation system may be used during reacquisition of satellites by the global positioning system. A filter (e.g., a Kalman filter) is used to weigh and combine the position information received from the inertial navigation system and the global positioning system. The accuracy of the position information on the individual is dependent on the reliability and availability of the inertial navigation system and the global positioning system. If either the inertial navigation system or the global positioning system become unreliable and/or unavailable, then the position information determined by the filter becomes less accurate. If both the inertial navigation system and the global positioning system become unreliable and/or unavailable, then no position information is generated.
As one shortcoming, the inertial navigation system has a position error (e.g., drift) that builds up over time. As the elapsed time of operation increases, the position information generated by the inertial navigation system becomes less accurate. There are times when the elapsed time of operation is long compared to the drift performance of the inertial navigation system. During such times, the position information determined by the filter becomes less accurate.
As another shortcoming, there are times when the global positioning system is unavailable due to jamming or interference. During such times, the position information determined by the filter becomes less accurate.
As yet another shortcoming, upon initialization and/or re-initialization, the inertial navigation system requires a starting and/or restarting position to begin generating the position information of the individual. Without the external input of the starting and/or restarting position, the inertial navigation system is unable to begin navigation. Also, upon initialization and/or re-initialization, a delay exists between the start of initialization and/or re-initialization and when the global positioning system is able to begin navigation. The delay is reduced if upon initialization and/or re-initialization the starting and/or restarting position of the global positioning system is available. There are times when an accurate starting and/or restarting position is unavailable.
The invention in one implementation encompasses an apparatus. The apparatus comprises one or more sensors that produce one or more signals based on one or more joint motions of an individual, and one or more processing components that employ one or more of the one or more signals to make a determination of a positional change of the individual.
Another implementation of the invention encompasses a method. One or more movements of one or more joints of an individual are measured. The one or more movements are translated into a positional change of the individual.
Yet another implementation of the invention encompasses an article. The article comprises a computer-readable signal-bearing medium. The article includes means in the medium for measuring one or more movements of one or more joints of an individual. The article includes means in the medium for translating the one or more movements into a positional change of the individual.
Features of exemplary implementations of the invention will become apparent from the description and the accompanying drawings in which:
Turning to
In one example, the apparatus 100 employs at least one computer-readable signal-bearing medium. One example of a computer-readable signal-bearing medium for the apparatus 100 comprises an instance of a recordable data storage medium 201 (
In one example, the apparatus 100 comprises an anthropometric dead reckoning motion detector for a body. “Anthropometric” as used herein in one example refers to measurement of the body. “Dead reckoning” as used herein in one example refers to navigating by measuring the course and distance traveled from a known point. In one example, the body comprises an individual 102. For example, the individual 102 comprises a person, animal, or robot. The anthropometric dead reckoning motion detector takes measurements of the individual 102 and converts the measurements to a position change starting from a known location.
The apparatus 100 comprises one or more sensors, for example one or more of bi-lateral ankle sensors 104 and 106, knee sensors 108 and 110, hip sensors 111 and 112, waist sensors 113 and 114, wrist sensors 115 and 116, elbow sensors 118 and 120, shoulder sensors 122 and 124, a processing component 126, and a navigation component 128. In one example, one or more of the sensors comprise strain sensors, as described herein. In another example, one or more of the sensors comprise rate sensors, for example, low cost rate sensors. The one or more sensors serve to measure a movement of one or more joints of the individual 102. For example, the one or more sensors measure three dimensional motion of the one or more joints, such as the ankle, knee, hip, waist, wrist, elbow, and/or shoulder of the individual 102.
As the individual 102 traverses a path from a known starting location, the apparatus 100 serves to measure the movement of the one or more joints of the individual 102 and record the movement. Subsequently, the movement of the one or more joints of the individual 102 is reconstructed to determine the path of the individual 102.
The one or more sensors are arranged bi-laterally on the individual 102. The one or more sensors may be arranged symmetrically or asymmetrically on the individual 102. The one or more sensors may measure other joint locations, in addition to the ankle, knee, hip, waist, wrist, elbow, and/or shoulder of the individual 102. The one or more sensors monitoring the one more joints on the lower body of the individual 102 provide information to reconstruct a locomotion of the individual 102. For example, the information generated by the ankle sensors 104 and 106, knee sensors 108 and 110, hip sensors 111 and 112, and waist sensors 113 and 114 translate to the locomotion of the individual 102. The information generated by the one or more sensors may also be translated to measure critical points along the path such as abrupt turns or elevation changes.
The one or more sensors measure a direction and a displacement of the movement. In one example, a first sensor measures the direction of the movement and a second sensor measures the displacement of the movement. In another example, the first and second 25 sensors measure both the displacement and direction of the movement.
The one or more sensors comprise strain sensors. The strain sensors detect a bending strain and/or a twisting strain due to the movement of the one or more joints of the individual 102. For example, the ankle sensors 104 and 106 detect the bending strain and/or the twisting strain due to the movement of the ankle joint. The bending strain corresponds to, and may be translated to, the displacement (e.g., meters) of the movement. The twisting strain corresponds to, and may be translated to, the direction (e.g., degrees) of the movement.
In one example, the one or more sensors are embedded in a suit 130 at the one or more joints of the individual 102. The suit 130 is worn by the individual 102. The suit 130 may be worn as outerwear, an undergarment, or incorporated into another suit. The suit 130 may be incorporated into a second suit used to monitor other information such as biological functions of the individual 102 (e.g., heart rate, body temperature, etc.).
Referring to
The third algorithm 206 may additionally take inputs from a magnetic heading sensor 208 and a barometric altitude sensor 210. The magnetic heading sensor 208 provides additional information on the direction of the movement of the individual 102 to supplement the twisting component of the strain sensors. The magnetic heading sensor 208 would use the Earth's magnetic field to sense the direction of the movement. A change in magnetic field measured by the magnetic heading sensor 208 would correspond to a change of direction by the individual 102. The barometric altitude sensor 210 would measure an atmospheric pressure for altitude position changes. A change in atmospheric pressure measured by the barometric altitude sensor 210 would correspond to a change of altitude by the individual 102. The position information generated by the magnetic heading sensor 208 and the barometric altitude sensor 210 would assist the anthropometric dead reckoning motion detector during motion of the individual 102 while the one or more joints of the individual 102 are not in motion. The third algorithm 206 would weigh and combine the position information generated by the magnetic heading sensor 208 and the barometric altitude sensor 210 with the position information generated by the first and second algorithms 202 and 204.
The navigation component 128 in one example comprises an inertial navigation system 212 (“INS”) and/or a global positioning system 214 (“GPS”). The navigation component 128 provides position information of the individual 102 to supplement the position information generated by the processing component 126. In one example, the navigation component 128 is attached to the waist of the individual 102. For example, the navigation component 128 is integrated into a belt for the individual 102.
Referring to
Referring to
The recording device 140 stores the position information output from the filtering component 216. A path of the individual 102 may be reconstructed from the known starting location and the recorded position information. The path may be used to create a map of an area previously unmapped, incorrectly mapped, or update outdated maps. Using dead reckoning navigation to provide information for cartography is especially useful in remote areas where the global positioning system 214 is unavailable, or in areas where the global positioning system 214 in experiencing jamming or interference.
Upon initialization and/or re-initialization, the inertial navigation system 212 requires a starting and/or restarting location to begin generating the position information of the individual 102. The dead reckoning position information generated by the processing component 126 may be used as an estimate of the starting and/or restarting location for the inertial navigation system 212. Upon initialization and/or re-initialization, the global positioning system 214 would benefit from the starting and/or restarting position to lock onto satellites. The dead reckoning position information generated by the processing component 126 may be used as an estimate of the starting and/or restarting location for the global positioning system 214.
During the run times, the inertial navigation system 212 and the global positioning system 214 may provide corrections to the one or more sensors and/or the processing component 126. Therefore, the position information generated by the inertial navigation system 212, the global positioning system 214, and the processing component 126 would be in better agreement. Due to the corrections, at a time when the inertial navigation system 212 and/or the global positioning system 214 become unavailable, the processing component 126 would be more able to alone generate an estimate of the position information.
Referring to
The steps or operations described herein are just exemplary. There may be many variations to these steps or operations without departing from the spirit of the invention. For instance, the steps may be performed in a differing order, or steps may be added, deleted, or modified.
Although exemplary implementations of the invention have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions, and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5583776 | Levi et al. | Dec 1996 | A |
6132391 | Onari et al. | Oct 2000 | A |
20030083596 | Kramer et al. | May 2003 | A1 |
Entry |
---|
Judd, C. Tom. A Personal Dead Reckoning Module. Presented at Institute of Navigation's ION GPS '97. Kansas City, MO. Sep. 1997. |
Dingwell, JB et al. “Increased variability of continuous overground walking in neuropathic patients is only indirectly related to sensor loss” Gait and Posture. 2001; pp. 1-10. |
Trnkoczy, Amadej, and Tadej Bajd. “A simple electrogoniometric system and its testing.” Biomedical Engineering, IEEE Transactions on 3 (1975): 257-259. |
Number | Date | Country | |
---|---|---|---|
20110238366 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
60418119 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10681529 | Oct 2003 | US |
Child | 13134208 | US |