The present invention relates generally to the field of medical braces and similar supporting devices. More specifically, the present invention provides a wearable brace suitable for supporting the normal function and range of motion of a user's limb without exerting torsion across an affected joint.
Conventional knee braces employed in conjunction with physical therapy (or the like) provide a fixed axis-of-rotation to mimic bending at the knee joint. However, bending at the knee joint is accomplished via a rolling motion which, at each instant during the motion, is associated with an instantaneous axis-of-rotation. From the perspective of the femur (thighbone), the tibial plateau (top of shinbone) rolls on the femoral condyles (medial and lateral rounded ends of femur). This type of mechanical arrangement may be mimicked by a simplified pivoting hinge but cannot be perfectly replicated by such an assembly. Accordingly, the fixed axis-of-rotation of the conventional brace is, in general, not align with the actual instantaneous axis-of-rotation of the knee joint creating torsion in the knee joint during bending motions. This torsion is transmitted to neighboring joints such as the hip joint causing both pain and structural damage, particularly in long-term applications wherein a user with a compromised joint may rely on such a conventional brace to maintain personal mobility. This torsion is further amplified if the brace becomes misaligned during use, either by the abnormal motion of the simple hinge relative to the user's own biology, or by the user misadjusting the conventional brace due to any discomfort such a mismatch may cause.
The present invention aims to provide a torsion-free support to a user's joints by the insertion of a helical interstitial structure spanning across the affected joint. According to the preferred embodiment the present invention is suitable for fixation about a user's thigh and shin, though it is generally considered that a similar, rescaled iteration of the apparatus described herein may be applied to any other areas of the body without limitation. The specific dimensions and manufacture of the present invention are variable across multiple iterations and use cases such that the resistive force provided by the present invention across any given degree of movement may be affected by irregular construction and internal static forces emergent from said irregular construction. More specifically, the present invention may be deformed at various positions to alter the resistive or assistive forces applied across a joint.
All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention. The present invention is to be described in detail and is provided in a manner that establishes a thorough understanding of the present invention. There may be aspects of the present invention that may be practiced or utilized without the implementation of some features as they are described. It should be understood that some details have not been described in detail in order to not unnecessarily obscure focus of the invention. References herein to “the preferred embodiment”, “one embodiment”, “some embodiments”, or “alternative embodiments” should be considered to be illustrating aspects of the present invention that may potentially vary in some instances, and should not be considered to be limiting to the scope of the present invention as a whole.
As can be seen in
In a preferred embodiment, the helical orthosis comprises at least one helical coil 10, a primary band 30, and a secondary band 40. The helical coil 10 defines the load-bearing structure previously mentioned, arranged such that the helical coil 10 is mounted between the primary band 30 and the secondary band 40 along a helical path 11. As shown in
In another potential embodiment considered within the scope of the present invention, the present invention further comprises a plurality of primary mounts 31 and a plurality of secondary mounts 41. Further, in this embodiment, the at least one helical coil 10 comprises a plurality of helical coils 20. The plurality of primary mounts 31 ideally defines a series of socket couplings situated between the plurality of helical coils 20 and the primary band 30, the plurality of secondary mounts 41 defining a similar structure positioned between the plurality of helical coils 20 and the secondary band 40. The arrangement of these flexible connections allows the plurality of helical coils 20 to deflect and pivot in relation to the primary band 30 and the secondary band 40 without applying torsion across the corresponding primary mount 32 or the corresponding secondary mount 42. Consequently, this arrangement enables minute movements of the patient's limb while maintaining positional support of a joint via the plurality of helical coils 20. According to this preferred embodiment, the first end of each the plurality of helical coils 20 is laterally mounted onto the primary band 30 by a corresponding primary mount 32 from the plurality of primary mounts 31. Similarly, the second end of each the plurality of helical coils 20 being laterally mounted onto the secondary band 40 by a corresponding secondary mount 42 from the plurality of secondary mounts 41. The lateral mounting of the plurality of helical coils 20 to the primary band 30 and secondary band 40 as described creates a roughly cylindrical profile to the assembled embodiment of the present invention, wherein the plurality of helical coils 20 does not impede the regular positioning of a user's limb within the roughly cylindrical profile between the primary band 30 and the secondary band 40.
It is further proposed that opposing forces in tension provide a suitable support structure for an injured joint that is naturally resistant to disruptive torsional forces created when a patient moves said joint. In the preferred embodiment of the present invention illustrated in
To further minimize discomfort and disruption of the normal function of the joint, it is proposed that at least one coil guide 50 is slidably mounted onto an intersection point 51 between the first coil 21 and the second coil 24. The coil guide 50 ideally defines an enclosed fitting of suitable size and material quality to capture both the first coil 21 and the second coil 24 simultaneously, physically establishing the intersection point 51 between both separately mobile structures.
In a related configuration of the present invention, at least one coil guide 50 is proposed to comprise a plurality of coil guides 50. This configuration additionally defines a helical axis of at least one first coil 21 crossing a helical axis of at least one second coil 24 at a plurality of intersections 52, wherein the first coil 21 and the second coil 24 are from the plurality of helical coils 20. Each of the plurality of coil guides 50 is slidably mounted onto the first coil 21 and the second coil 24 at a corresponding intersection 53 from the plurality of intersections 52 in a similar arrangement to the configuration outlined previously. The plurality of intersections 52 is ideally positioned outside of the normal range of motion for a supported limb, thereby enabling the present invention to define a consistent structural profile without impeding the normal function of a limb. In the proposed configuration a knee may be supported by a primary intersection 54 positioned proximal to the primary band 30, wherein the primary intersection 54 is from the plurality of intersections 52. This primary intersection 54 is positioned roughly behind a user's thigh in an exemplary embodiment, above the knee and outside of the space occupied by said user's calf during maximum positive flexion (i.e. bending the knee). Additionally, a secondary intersection 55 is positioned proximal to the secondary band 40, wherein the secondary intersection 55 is from the plurality of intersections 52. The secondary intersection 55 is positioned behind the user's calf in the exemplary application, also outside of the space occupied by a user's thigh during maximum positive flexion. Finally, at least one intermediary intersection 56 is positioned in between the primary intersection 54 and the secondary intersection 55, wherein the intermediary intersection 56 is from the plurality of intersections 52. The exemplary application features the intermediary intersection 56 adjacent to the patella or kneecap, also clear of any normal range of motion for a human leg. Supporting this arrangement, the coil guide 50 is slidably mounted onto an intersection point 51 between a first coil 21 and a second coil 24, wherein the first coil 21 and the second coil 24 are from the plurality of helical coils 20. In the exemplary application outlined thus far an instance of the coil guide 50 will be positioned at each of the plurality of intersections 52 to prevent the first coil 21 and the second coil 24 from rattling against one another or becoming separated during movement of the limb.
It is considered that the present invention may require reconfiguration to fit a variety of patients, both in terms of limb dimensions and desired supporting force exerted by the plurality of helical coils 20. Supporting this adjustable functionality, the present invention further comprises a first radial adjuster 33 and a second radial adjuster 43 as illustrated in
As outlined above, the primary band 30 and the secondary band 40 are adjustable to comfortably fit any patient. As illustrated in
The helical structure of at least one helical coil 10 supported between the primary band 30 and the secondary band 40 inherently provides a measure of support to a joint positioned within said helical coil 10. As illustrated in
In addition to the variable contours described above, structural deformations defined along the entire length of at least one helical coil 10 are proposed to mimic the natural resting position of a limb. In an application supporting the knee of a patient the helical coil 10 forms an arch between the primary band 30 and the secondary band 40 to approximate the profile of a relaxed leg. In broader terms the present invention comprises a primary axis 23 and a secondary axis 26, the secondary axis 26 being angularly offset from the primary axis 23. Presuming an alignment of the primary band 30 and the secondary band 40 with adjacent portions of a limb separated by a joint, the primary band 30 is concentric to the primary axis 23 and the secondary band 40 is concentric to the secondary axis 26. This arrangement will position the intersection of the primary axis 23 and the secondary axis 26, the approximate center of rotation of the joint, and the apex of the arched helical coil 10 at approximately the same position. Consequently, the helical coil 10 will float freely around the limb during the full range of motion of said limb while biasing the joint into a relaxed posture intermediate between a maximum flexion and extension.
Incidental to the linear forces exerted across the primary band 30 and the secondary band 40 by the compression of the helical coil 10, it is also understood that a torsional force is exerted by iterations utilizing the singular helical coil 10. This torsional force may unintentionally ratchet the primary band 30 or secondary band 40 into an uncomfortable position on a user's limb, in addition to disrupting any configurations related to the support provided to a joint by the compression of the helical coil 10. To counteract this torsional force, the present invention comprises a first volume of padding 34 and a second volume of padding 44, wherein the first volume of padding 34 is laterally connected within the primary band 30 and the second volume of padding 44 being laterally connected within the secondary band 40. This arrangement permits the tightening of the primary band 30 and the secondary band 40 around a patient's limb to a greater extent than bare iterations of the same components without causing undue discomfort to a patient. Further, the first volume of padding 34 is dispersed about the interior of the primary band 30 with a primary directional bias 35 and the second volume of padding 44 is dispersed about the interior of the secondary band 40 with a secondary directional bias 45, wherein the secondary directional bias 45 is opposed to the primary directional bias 35. As shown in
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.