A backing implant for joint revisions is provided. More specifically, an osteoconductive backing implant for joint revisions is provided.
Overview of Bone Grafts
The rapid and effective repair of bone defects caused by injury, disease, wounds, or surgery has long been a goal of orthopaedic surgery. Toward this end, a number of compositions and materials have been used or proposed for use in the repair of bone defects. The biological, physical, and mechanical properties of the compositions and materials are among the major factors influencing their suitability and performance in various orthopaedic applications.
Much effort has been invested in the identification and development of alternative bone graft materials. Urist has published seminal articles on the theory of bone induction and a method for decalcifying bone, i.e., making demineralized bone matrix (DBM). Urist M. R., Bone Formation by Autoinduction, Science 1965; 150(698):893-9; Urist M. R. et al., The Bone Induction Principle, Clin. Orthop. Rel. Res. 53:243-283, 1967. DBM is an osteoinductive material, in that it induces bone growth when implanted in an ectopic site of a rodent, owing to the osteoinductive factors contained within the DBM. Honsawek et al. (2000).
DBM implants have been reported to be particularly useful (see, for example, U.S. Pat. Nos. 4,394,370, 4,440,750, 4,485,097, 4,678,470, and 4,743,259; Mulliken et al., Calcif Tissue Int. 33:71, 1981; Neigel et al., Opthal. Plast. Reconstr. Surg. 12:108, 1996; Whiteman et al., J. Hand. Surg. 18B:487, 1993; Xiaobo et al., Clin. Orthop. 293:360, 1993, each of which is incorporated herein by reference). DBM typically is derived from cadavers. The bone is removed aseptically and treated to kill any infectious agents. The bone is particulated by milling or grinding, and then the mineral component is extracted by various methods, such as by soaking the bone in an acidic solution. The remaining matrix is malleable and can be further processed and/or formed and shaped for implantation into a particular site in the recipient. Demineralized bone prepared in this manner contains a variety of components including proteins, glycoproteins, growth factors, and proteoglycans. Following implantation, the presence of DBM induces cellular recruitment to the site of injury. The recruited cells may eventually differentiate into bone forming cells. Such recruitment of cells leads to an increase in the rate of wound healing and, therefore, to faster recovery for the patient.
Overview of Total Hip Joint Replacement Arthroplasty
Total hip joint replacement arthroplasty can provide a patient with dramatically improved quality of life by relieving pain and offering increased mobility. Total hip joint replacement arthroplasty is a surgical procedure wherein diseased portions of the hip joint are removed and replaced with artificial prostheses, such as a femoral component and an acetabular cup. The acetabular cup is fitted in or against the acetabulum. It is noted that the acetabulum comprises the ilium, the ischium, and the pubis. These bones are fused at the acetabulum. For ease of reference, the acetabulum will be discussed as a single structure. Successful replacement of deteriorated, arthritic, or severely injured hips has contributed to enhanced mobility and comfortable, independent living for many people who would otherwise be substantially disabled.
There generally are two broad classes of joint arthroplasty procedures: primary joint replacement arthroplasty and revision arthroplasty. Primary joint replacement is when the original, biological joint is removed and replaced with an implant. Revision arthroplasty is when the primary joint replacement fails and must be replaced.
A failed prosthesis and/or dislocation of a total hip replacement generally causes pain, reduces the ability to work, and necessitates a revision operation. Prosthesis failure and/or dislocations can result from a variety of causes, such as soft tissue laxity, loosening of the implant, and impingement of the femoral neck with either the rim of an acetabular cup implant or the soft tissue or bone surrounding the implant. Loosening of the implant is often due to bone loss around the implant, caused by adverse tissue reactions to wear particles.
Revision arthroplasty involves additional challenges over primary joint replacement because, in addition to placement of the revision implant, the primary implant must be removed. A common problem with revision arthroplasty is a loss of bone stock associated with the removal of bone cement, or osteolysis due to wear debris and the body's reaction to it, or from stress shielding, or a combination of these. Further, in some instances, upon insertion into the acetabulum of an implant, voids may remain between the back surface of the implant and the pelvic bone remaining in the acetabulum. In cases where there is a defect in the area of the acetabulum, or behind the acetabulum, the surgeon will often wish to fill the defect in some way. Bone graft material is sometimes applied to the acetabulum to encourage bone growth between the acetabulum and the acetabular cup. Frequently, the bone graft material falls through voids in the acetabulum.
Commonly, the acetabular cup prosthesis is manufactured of a polymeric material, such as polyethylene. A backing is commonly placed between the acetabular cup prosthesis and the acetabulum. In the past, metal backings have been widely used, at least in part because a stiff backing was believed to be mechanically favorable. It has more recently been determined that a stiff backing causes two problems: It generates higher stress peaks around the acetabular rim than those caused by full polyethylene cups, and it reduces the stresses transferred to the dome of the acetabulum, causing stress shielding.
It would be useful to provide a backing for an acetabular cup prosthesis using bone graft materials such that the prosthesis aids in holding graft material in place, encourages bone apposition up to the implant or, in the case of an implant with a porous metallic coating, encourages ingrowth and biological attachment to the implant.
An osteoconductive backing implant for joint revisions is provided that may enhance bone healing and, for cementless implants, bony integration of the implant.
In one embodiment, the backing implant comprises a disc having an inner hole and an outer edge, at least one slit extending from the inner hole to the outer edge. The disc may be formed from a coherent mass of elongate, mechanically entangled demineralized bone particles.
In another embodiment, the backing implant comprises a disc that has at least one slit extending from an interior of the disk to the outer edge. The disc further includes at least one perforation by which the size or shape of the disc may be manipulated. The disc may be shaped into a cone.
In a further embodiment, the backing implant comprises a sheet of material having a center and a plurality of petals. The sheet of material may be partially folded in on itself by manipulating the petals toward one another.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description. As will be apparent, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the detailed description is to be regarded as illustrative in nature and not restrictive.
Biocompatible, as used herein, is intended to describe materials that, upon administration in vivo, do not induce undesirable long-term effects.
Bone as used herein refers to bone that is cortical, cancellous or cortico-cancellous, of autogenous, allogenic, xenogenic, or transgenic origin.
Demineralized, as used herein, refers to any material generated by removing mineral material from tissue, e.g., bone tissue. In certain embodiments, the demineralized compositions described herein include preparations containing less than 5% calcium and preferably less than 1% calcium by weight. Partially demineralized bone (e.g., preparations with greater than 5% calcium by weight but containing less than 100% of the original starting amount of calcium) is also considered within the scope of the invention. In some embodiments, demineralized bone has less than 95% of its original mineral content. Demineralized is intended to encompass such expressions as “substantially demineralized,” “partially demineralized,” “fully demineralized,” “surface demineralized,” etc.
Demineralized bone matrix, as used herein, refers to any material generated by removing mineral material from bone tissue. In some embodiments, the DBM compositions as used herein include preparations containing less than 5% calcium and preferably less than 1% calcium by weight. Partially demineralized bone (e.g., preparations with greater than 5% calcium by weight but containing less than 100% of the original starting amount of calcium) are also considered within the scope of the invention.
Osteoconductive is used herein to refer to the ability of a non-osteoinductive substance to serve as a suitable template or substance along which bone may grow.
Osteogenic is used herein to refer to the ability of an agent, material, or implant to enhance or accelerate the growth of new bone tissue by one or more mechanisms such as osteogenesis, osteoconduction, and/or osteoinduction.
Osteoimplant as used herein refers to any bone-derived implant prepared in accordance with the embodiments of this invention and therefore is intended to include expressions such as bone membrane, bone graft, etc.
Osteoinductive, as used herein, refers to the quality of being able to recruit cells from the host that have the potential to stimulate new bone formation. Any material that can induce the formation of ectopic bone in the soft tissue of an animal is considered osteoinductive. For example, most osteoinductive materials induce bone formation in athymic rats when assayed according to the method of Edwards et al., “Osteoinduction of Human Demineralized Bone: Characterization in a Rat Model,” Clinical Orthopaedics & Rel. Res., 357:219-228, December 1998, incorporated herein by reference. In other instances, osteoinduction is considered to occur through cellular recruitment and induction of the recruited cells to an osteogenic phenotype.
Superficially demineralized as used herein refers to bone-derived elements possessing at least about 90 weight percent of their original inorganic mineral content. The expression “partially demineralized” as used herein refers to bone-derived elements possessing from about 8 to about 90 weight percent of their original inorganic mineral content and the expression “fully demineralized” as used herein refers to bone containing less than 8% of its original mineral context.
A backing implant for joint revisions is provided that may enhance bone healing. The backing implant may generally be used in reconstruction of a joint, including concave or convex joint surfaces. For the purposes of description, reference is made herein to replacement of the acetabulum. It is to be appreciated, however, that the backing implant described herein may be used in other joint replacements such as replacement of a speroidal joint (also referred to as a “ball and socket joint”), an ellipsoid joint, a sellar joint (also referred to as a “saddle joint”), a bicondular joints, or any joint having a concavity with a defect and a mating convex surface. The present invention may be beneficially used in a variety of joint configurations; see Williams, P. L. and Warwick, R., Gray's Anatomy. 36th ed., Livingstone, Edinburgh (1980), which is hereby incorporated by reference. In some embodiments, the backing implant may be placed in the concavity of the joint.
For cementless implants, such as cementless acetabular cups, the backing implant may enhance bony integration of the implant. When used in a concavity, such as in an acetabular cup, the backing implant accentuates the concavity and offers a possibility of adhesion around the outer perimeter of the concavity. Generally, the backing implant may be fit to the joint surface such that it fills voids or defects in the joint surface. The backing implant may be used with bone, such as autograft bone or allograft bone. More specifically, bone may placed between the backing implant and the implant, such as the acetabular cup, the backing implant substantially preventing bone graft from falling through voids or defects in the joint surface. After implantation, the backing implant may be remodeled and wholly or partially replaced by bone. Thus, in various embodiments, the backing implant fulfills mechanical and bone forming functions. As noted, the backing implant may be used in revision of any suitable joint articulations, such as the shoulder joint, for example being fitted in the glenoid cavity of the scapula. Thus, while this description refers specifically ball-and-socket joints, and more specifically to acetabular cups, one skilled in the art will be able to modify the backing implant to fit other joints.
In accordance with some embodiments, the backing implant comprises a sheet of material that may be shaped to generally form to the joint surface prior to implantation. The sheet may be flexible and/or conformable such that it may conform to irregularities in the bone, for example in the bone of the acetabulum. Such flexibility or conformability permits achieving an increased degree of contact. In some embodiments, the backing implant may comprise a material that is osteoconductive and, possibly, osteoinductive, several examples of which are described below.
Generally, during the healing phase of total joint replacement arthroplasty, the backing implant may not act as the sole weight bearing component. Accordingly, the backing implant may be used with another implant. For example, in a total hip replacement arthroplasty, the backing implant may be used with an acetabular cup, the acetabular cup contacting sufficient host bone to provide support.
The backing implant may be press-fit into the joint, such as in the concavity of a joint, or may be fit around an implant, such as an acetabular cup, prior to its implantation. When press-fit into the joint, it may be desirable to effect pressing using a trial implant or using an implant that will be implanted. In some embodiments, the backing implant may be treated to impart additional stickiness to a portion of the backing implant coming into contact with the joint. The backing implant may be formed of a flexible material, may be formed of a rigid material, a semi-rigid or semi-flexible material, or a material that is rigid but can be made flexible. If the backing implant is formed of a material that is rigid but can be made flexible, the backing implant may be fit in the joint in the flexible state and allowed to become rigid before implanting the implant. Alternatively, the backing implant may remain flexible when the implant is implanted.
As previously noted, bone graft may be used with the backing implant. For example, the bone may comprise morselized allograft, autograft, or other suitable bone material. In use, the backing implant may be placed in the joint, such as in the acetabulum, for example via press fitting with an upper surface of the backing implant being thus provided for receiving an implant. Bone graft, for example morselized allograft, may be provided on the upper surface of the backing implant, before or after placement of the backing implant in the joint. The backing implant substantially prevents the morselized allograft from penetrating into joint, for example from penetrating the joint, for example, in hip arthroplasty, from penetrating the acetabulum and the pelvis. More specifically, the backing implant acts as a barrier to morselized allograft from falling into or through voids or defects in the joint surface. The backing implant works in conjunction with the morselized allograft through osteoinductive and/or osteoconductive properties to form new bone. In an alternative embodiment, autograft bone may be provided on the upper surface of the backing implant before or after placement of the backing implant in the joint. In alternative embodiments, other materials may be provided on the upper surface of the backing implant to aid in bone forming function.
Acetabular cups used in total hip joint replacement arthroplasty may be press-fit or may be cemented in place, for example using methacrylate bone cement. Often, press-fit cups are preferred because of possible bone-to-implant bonding. Using the backing implant provided herein, bone-to-implant bonding is enhanced; the backing implant closely molding to both the acetabulum and the acetabular cup and being osteoconductive, and possibly osteoinductive. Thus, the backing implant enables bone to be induced or conducted from the acetabulum to the acetabular cup.
The backing implant may be initially formed as a flat sheet of material The flat sheet of material may, in some embodiments, be formed of one or more layers. The backing implant may be preshaped, may be partially preshaped (described below), or may be shaped by a surgeon for implantation. Generally, the backing implant may be shaped such that, when formed, it is generally complementary to the portion of the joint against which it will be placed. In the embodiments of
In a first embodiment, shown in
In a second embodiment, shown in
Thus, the backing implant may be formed as a sheet of material that may be folded and manipulated to form a backing for complementing an acetabular cup.
In the embodiments of
Thus, a backing implant is herein provided that comprises a generally planar sheet form that may be shaped to conform generally to an implant surface. While specific geometries are described for forming a sheet into, for example, a hemi-spherical shape, any suitable manner of doing so may be used. Thus, generally, the backing implant may be provided as any planar configuration that may be formed into a generally hemispherical shape. Such configurations include, for example, those that have been developed in the cartographic arts such as Cahill's butterfly, Waterman's butterfly, pseudocylindrical projections of the hemisphere, pseudoconic projections of the hemisphere, sinusoidal projections of the hemisphere, dymaxion projections of the hemisphere, other conic projections of the hemisphere, cyldinrical projections of the hemisphere, and other. As will be appreciated by one skilled in the art, the cartographic methods for converting a sphere to a planar surface may be adapted to developing a planar surface to form a hemisphere.
In some embodiments, fixation elements may be provided for fixing the backing implant to the acetabulum or other joint. For example, the backing implant may be provided with tabs, overhangs, or other structure for fixing to bone or other surface.
The backing implant comprises a material that is formed into a generally planar configuration For ease of reference, the generally planar configuration is referred to as a sheet however such term is not intended to be limiting. The material may be osteoconductive, and also may be osteoinductive. The backing implant may be formed of a flexible material. In a further embodiment, the backing implant may be generally rigid but capable of becoming flexible when exposed to liquids such as saline or body fluids. Alternatively, other manners of providing flexibility to the material may be provided. For example, the material may be generally rigid at room temperature but flexible when heated. Alternatively, the material may comprise a reverse-phase material, such as Poloxamer 407, so that the implant is more flexible at cooler temperatures, and then firms up to become less flexible when warmed to body temperatures. In some embodiments, the backing implant may be rehydrated, for example via exposure to saline, prior to use.
To form the backing implant, the sheet may be cut using a cutting machine, using cutting molds, or in any suitable manner. In some embodiments, the material may be directly formed into the shape of the backing implant without cutting of a sheet.
Bone Particles
In one embodiment, the backing implant comprises bone matrix. The bone matrix may be provided in a particulate form, wherein the particles are of any desired size and shape. The backing implant also may comprise a sheet fabricated from, or including, elongate bone particles, such as disclosed in U.S. Pat. No. 5,507,813 for Shaped Materials Derived from Elongate Bone Particles, herein incorporated by reference. The bone particles may be obtained from cortical, cancellous and/or corticocancellous bone which may be of autogenous, allogenic, transgenic, and/or xenogenic origin.
In one embodiment, elongate bone particles used in forming the backing implant may be generally characterized as having relatively high median length to median thickness ratios, e.g., about 50:1 or about 100:1 and, similarly, relatively high median length to median width ratios, e.g., about 10:1 or about 50:1. Such particles can be readily obtained by any one of several methods, e.g., by milling or shaving the surface of an entire bone or relatively large section of bone. Thereafter, the resulting elongate bone particles may be demineralized.
Employing a milling technique, particles ranging in median length from about 2 up to about 200 mm or more (as in the case of the long bones), in median thickness from about 0.05 to about 2 mm, and in median width from about 1 to about 20 mm can be readily obtained. Depending on the procedure employed for producing the elongate bone particles, one can obtain a mass of bone particles containing at least about 60 weight percent, at least about 70 weight percent, or at least about 80 weight percent of bone particles possessing a median length of from about 2 to about 200 mm or more, or from about 10 to about 100 mm, a median thickness of from about 0.05 to about 2 mm, or from about 0.2 to about 1 mm, and a median width of from about 1 mm to about 20 mm, or about 2 to about 5 mm. These bone particles may possess a median length to median thickness ratio of 10:1, to 50:1, and up to about 500:1, or from about 10:1 to about 100:1, and a median length to median width ratio of from about 10:1 to about 200:1, or from about 50:1 to about 100:1. The bone fibers or particles of the present invention may be demineralized in any desired manner, and to any desired extent.
As descried more fully below, the bone particles can be admixed with one or more substances such as adhesives, fillers, plasticizers, flexibilizing agents, biostatic/biocidal agents, surface active agents, binding and bonding agents, fillers, and the like, prior to, during, or after shaping the particles into a desired configuration.
To prepare the backing implant, a quantity of bone particles, for example, demineralized, elongate bone particles, slurried in a suitable liquid, e.g., water, organic protic solvent, aqueous solution such as physiological saline, etc., and optionally containing one or more biocompatible ingredients such as a carrier, adhesives, fillers, plasticizers, flexibilizing agents, biostatic/biocidal agents, surface active agents, medically/surgically useful substances, etc. is applied to a form such as a flat sheet, mesh screen or three-dimensional mold and excess liquid is removed, e.g., by being drained away. This procedure is referred to herein as “wet-laying.” For example, in the case of a sheet, the thickness of the layer of wetted bone particles can vary widely, e.g., from about 1 to about 40 mm. Some particle entanglement results from the wet-laying operation. Further particle entanglement, if necessary or desirable, can be effected by the use of water jets or other suitable mechanical entangling methods. Either before or after the wet-laying procedure, one or more additional substances can be added to the bone particles, e.g., thixotropic agents, therapeutic agents, and the like. The wet demineralized bone particles may then be dried, either in an oven or by lyophilization. In an alternative embodiment, the bone particles can be subjected to a compressive force, e.g., of up to about 100 psi, during and/or after the wet-laying step and/or while the drained but still wet shaped article is being dried. The resulting sheet is rigid and relatively strong when dry and flexible and pliable when wetted or hydrated.
In some embodiments, the sheet is formed by laying the DBM solution on a sieve shaped to correspond to the shape of the backing implant. Thus, for example, the sieve may be sized and shaped in a circle to correspond with the backing implant of
At the site of implantation, a backing implant formed of bone particles may be employed in the dry state or, where site conformation is desired, in the hydrated state. The dry or hydrated article can be cut or sized if need be to conform to a site being repaired. The backing implant can be hydrated with a suitable biocompatible liquid, e.g., water, saline solution, etc., for a period of time ranging from about 1 to about 120 minutes. After being hydrated, the backing implant becomes flexible yet substantially retains its shape and much of its strength. The backing implant may be packaged in either the dried or wet state and stored for subsequent application. In some circumstances, the backing implant may be packaged in the wet state so that it is ready for immediate use at the surgical site.
Alternatively, the bone particles, including elongate bone particles, may be formed into a sheet that remains flexible in the dry state, for example through the addition of a plasticizer, or that is rigid and becomes flexible upon heating.
In some embodiments, the backing implant may be formed of a bone graft material having not greater than about 32% void volume formed at least in part from elongate bone-derived elements optionally in combination with bone powder. U.S. Pat. No. 6,332,779 for Method of Hard Tissue Repair discusses such bone graft material and is hereby incorporated by reference.
Other Materials
In further embodiments, the backing implant may comprise other or additional materials. For example, osteoinductive materials, such as osteoinductive proteins, may be added to the backing implant. Any suitable material may be used, but they should generally be biocompatible and lack immunogenicity. The materials may be of biological origin, such as collagen sponges, collagen fibers, etc., which may be cross-linked or otherwise processed, as desired. Other suitable biological materials, including those of allograft, autograft (e.g., iliac crest or local bone), or xenograft origin, growth factors and/or bone morphogenic proteins (including on a carrier), gelatins, hydrogels, etc., also may be used. Nonanimal biological material or synthetic materials also may be used, as desired, including silk, cotton, linen, calcium phosphate- and calcium sulfate-based materials, etc. Polymers may be used, including in combination with any of the above. Any suitable combination of the above materials may be used. The implant also may comprise synthetic materials.
In one embodiment, the backing implant comprises a polymer sheet containing calcium phosphate particles. Examples of other suitable materials include polymers, such as polyalkylenes (e.g., polyethylenes, polypropylenes, etc.), polyamides, polyesters, polyurethanes, poly(lactic acid-glycolic acid), poly(lactic acid), poly(glycolic acid), poly(glaxanone), poly(orthoesters), poly(pyrolicacid), poly(phosphazenes), minerals, etc. These may be resorbable, non-resorbable, or some of each. These materials may be used to form wicking materials, and may be synthetic, natural, etc. They may be formed as a woven material, including a braid, a nonwoven matrix, axially aligned, or in any other suitable manner.
The osteoimplant may also comprise combinations of these and other materials, and may further comprise bone, e.g., DBM fibers, DBM particles, combinations, etc.
As previously described, the backing implant may be formed of a flexible material. Such flexibility may be imparted wherein the backing implant includes a plasticizer such as glycerol. Alternatively, the backing implant may be constructed from a flexible polymer. In a further embodiment, the backing implant may be generally rigid but capable of becoming flexible when exposed to liquids such as saline or body fluids.
In alternative embodiments, the backing implant may be formed of a relatively rigid material that is premolded to a hemispherical shape.
Additives
Regardless of the material used for forming the backing implant, additional substances may be added to the material. The material used to form the backing implant may be admixed with one or more substances such as adhesives, fillers, plasticizers, flexibilizing agents, biostatic/biocidal agents, surface active agents, binding and bonding agents, fillers, and the like, prior to, during, or after shaping the particles into a desired configuration. Suitable adhesives, binding agents and bonding agents include acrylic resins, cellulosics, bioresorbable polymers such as polyglycolide, polylactide, glycolide-lactide copolymer, etc. Suitable fillers include bone powder, demineralized bone powder, hydroxyapatite, etc. Suitable plasticizers and flexibilizing agents include liquid polyhydroxy compounds such as glycerol, monacetin, diacetin, etc. Suitable biostatic/biocidal agents include antibiotics, povidone, sugars, etc. Suitable surface active agents include the biocompatible nonionic, cationic, anionic and amphoteric surfactants.
Any of a variety of medically and/or surgically useful substances can be incorporated in, or associated with the material used to form the backing implant during or after fabrication of the backing implant. Thus, for example when demineralized bone particles are used to form the material, one or more of such substances may be introduced into the demineralized bone particles, e.g., by soaking or immersing the bone particles in a solution or dispersion of the desired substance(s).
Radiopaque materials may be added to the material of the backing implant for visualization. Such materials may comprise, for example, nondemineralized bone, barium sulfate, iodine-containing compounds, titanium, or other.
Medically/surgically useful substances that can be readily combined with the demineralized bone particles and/or osteogenic material include, e.g., collagen, insoluble collagen derivatives, etc., and soluble solids and/or liquids dissolved therein, e.g., antiviricides, particularly those effective against HIV and hepatitis; antimicrobials and/or antibiotics such as erythromycin, bacitracin, neomycin, penicillin, polymyxin B, tetracyclines, viomycin, chloromycetin and streptomycins, cefazolin, ampicillin, azactam, tobramycin, clindamycin and gentamicin, etc.; biocidal/biostatic sugars such as dextroal, glucose, etc.; amino acids, peptides, vitamins, inorganic elements, co-factors for protein synthesis; hormones; endocrine tissue or tissue fragments; synthesizers; enzymes such as collagenase, peptidases, oxidases, etc.; polymer cell scaffolds with parenchymal cells; angiogenic drugs and polymeric carriers containing such drugs; collagen lattices; antigenic agents; cytoskeletal agents; cartilage fragments, living cells such as chondrocytes, bone marrow cells, mesenchymal stem cells, natural extracts, tissue transplants, bone, demineralized bone powder, autogenous tissues such blood, serum, soft tissue, bone marrow, etc.; bioadhesives, bone morphogenic proteins (BMPs), angiogenic factors, transforming growth factor (TGF-beta), insulin-like growth factor (IGF-1); growth hormones such as somatotropin; bone digestors; antitumor agents; immuno-suppressants; permeation enhancers, e.g., fatty acid esters such as laureate, myristate and stearate monoesters of polyethylene glycol, enamine derivatives, alpha-keto aldehydes, etc.; and, nucleic acids. The amounts of such optionally added substances can vary widely with optimum levels being readily determined in a specific case by routine experimentation.
A number of endogenous factors that play important roles in the development and/or repair of bone have been identified. BMPs such as BMP-2 and BMP-4 induce differentiation of mesenchymal cells towards cells of the osteoblastic lineage, thereby increasing the pool of mature cells, and also enhance the functions characteristic of differentiated osteoblasts. Canalis et al., Endocrine Rev. 24(2):218-235, 2003. In addition, BMPs induce endochondral ossification and chondrogenesis. BMPs act by binding to specific receptors, which results in phosphorylation of a class of proteins referred to as SMADs. Activated SMADs enter the nucleus, where they regulate transcription of particular target genes. BMPs also activate SMAD-independent pathways such as those involving Ras/MAPK signaling. Unlike most BMPs such as BMP-2 and BMP-4, certain BMPs (e.g., BMP-3) act as negative regulators (inhibitors) of osteogenesis. In addition, BMP-1 is distinct both structurally and in terms of its mechanism of action from other BMPs, which are members of the TGF-β superfamily. Unlike certain other BMPs (e.g., BMP-2, BMP-4), BMP-1 is not osteoinductive. Instead, BMP-1 is a collagenolytic protein that has also been shown to cleave chordin (an endogenous inhibitor of BMP-2 and BMP-4). Tolloid is a metalloprotease that is structurally related to BMP-1 and has proteolytic activity towards chordin. See Canalis, supra, for further details regarding the activities of BMPs and their roles in osteogenesis and chondrogenesis.
Further, other osteoinducing agents may be added to the material. These agents may be added in an activated or non-activated form. These agents may be added at anytime during the preparation of the inventive material. For example, in the case of a DBM backing implant, the osteoinducing agent may be added after the demineralization step and prior to the addition of the stabilizing agents so that the added osteoinducing agent is protected from exogenous degrading enzymes once implanted. In some embodiments the DBM is lyophilized in a solution containing the osteoinducing agent. In certain other embodiments, the osteoinducing agents are adhered onto the hydrated demineralized bone matrix and are not freely soluble. In other instances, the osteoinducing agent is added after addition of a stabilizing agent so that the osteoinducing agent is available immediately upon implantation of the DBM.
Osteoinducing agents include any agent that leads to or enhances the formation of bone. The osteoinducing agent may do this in any manner, for example, the agent may lead to the recruitment of cells responsible for bone formation, the agent may lead to the secretion of matrix which may subsequently undergo mineralization, the agent may lead to the decreased resorption of bone, etc. Suitable osteoinducing agents include bone morphogenic proteins (BMPs), transforming growth factor (TGF-0), insulin-like growth factor (IGF-1), parathyroid hormone (PTH), and angiogenic factors such as VEGF. In one embodiment, the inducing agent is genetically engineered to comprise an amino acid sequence which promotes the binding of the inducing agent to the DBM or the carrier. Sebald et al., PCT/EPOO/00637, incorporated herein by reference, describe the production of exemplary engineered growth factors suitable for use with DBM.
Any of the implants made pursuant to the teachings herein may be treated to impart, or to increase, osteoinductivity, as taught in U.S. patent application Ser. No. 11/555,606, filed Nov. 1, 2006, hereby incorporated by reference herein.
Fibers are milled form human cortical shafts to a desired size range. The milled fibers are demineralized, subjected to an ethylene oxide soak as a cleansing step, and introduced to a glycerol/water solution. The fibers soak in the glycerol/water solution for a predetermined period of time. The solution containing the fibers is poured through a sheet-forming sieve. Much of the solution passes through the sieve, but the fibers and residual solution remain in a sheet-like form. The form is lyophilized, and the resulting DBM comprises a flat yet flexible consistency. A cutter is used to cut the flat form to the desired shape, such as a circular form having a diameter of 60 mm and a 5 mm hole center. The shape may be formed into a generally conical shape.
A backing implant for joint replacement is thus provided. Generally, the backing implant may be used in arthroplasty of speroidal joints such as the hip and shoulder joints, ellipsoid joints such as the radiocarpal joint, sellar joints such as the carpometacarpal joint of the thumb or the talocrural joint of the ankle, or bicondular joints such as the knee, particularly in the tibial area. The backing implant may comprise a thin sheet of material, which may be osteoconductive, and possibly osteoinductive, to thus enhance bone healing and, for cementless acetabular cups, bony integration of the acetabular cup. The backing implant may be flexible and conformable such that it may conform to irregularities in the bone of the joint and generally fill or act as a barrier to voids in the joint surface. After implantation, the backing implant may be remodeled and wholly or partially replaced by bone.
The backing implant may be used during original primary joint replacement arthroplasty or revision arthroplasty.
Although the invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
This application is a National Stage under 35 U.S.C. 371 of PCT Application No. PCT/US2008/053588, filed on Feb. 11, 2008, which claims priority to U.S. Application No. 60/889,437, filed Feb. 12, 2007, and to U.S. Application No. 60/985,859, filed Nov. 6, 2007, all of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/053588 | 2/11/2008 | WO | 00 | 10/14/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/100856 | 8/21/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1025008 | Miner | Apr 1912 | A |
1939797 | Swift | Dec 1933 | A |
2375116 | Larkin | May 1945 | A |
2525222 | Holt | Oct 1950 | A |
3068916 | Richardson | Dec 1962 | A |
3486505 | Morrison | Dec 1969 | A |
3604298 | Dekiel | Sep 1971 | A |
3604487 | Gilbert | Sep 1971 | A |
3707006 | Bokros et al. | Dec 1972 | A |
3848601 | Ma et al. | Nov 1974 | A |
4033244 | Jacobson | Jul 1977 | A |
4059115 | Jumashev et al. | Nov 1977 | A |
4185383 | Heimke et al. | Jan 1980 | A |
4273117 | Neuhauser | Jun 1981 | A |
4349921 | Kuntz | Sep 1982 | A |
4394370 | Jefferies | Jul 1983 | A |
4416278 | Miller | Nov 1983 | A |
4440750 | Glowacki et al. | Apr 1984 | A |
4484570 | Sutter et al. | Nov 1984 | A |
4485097 | Bell | Nov 1984 | A |
4516276 | Mittelmeier et al. | May 1985 | A |
4553575 | Brown | Nov 1985 | A |
4559936 | Hill | Dec 1985 | A |
4566466 | Ripple et al. | Jan 1986 | A |
4573448 | Kambin | Mar 1986 | A |
4637931 | Schmitz | Jan 1987 | A |
4649918 | Pegg et al. | Mar 1987 | A |
4678470 | Nashef et al. | Jul 1987 | A |
4714469 | Kenna | Dec 1987 | A |
4743256 | Brantigan | May 1988 | A |
4743259 | Bolander et al. | May 1988 | A |
4753235 | Hasson | Jun 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4782833 | Einhorn | Nov 1988 | A |
4798213 | Doppelt | Jan 1989 | A |
4820305 | Harms et al. | Apr 1989 | A |
4834757 | Brantigan | May 1989 | A |
4863477 | Monson | Sep 1989 | A |
4877020 | Vich | Oct 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
4904261 | Dove et al. | Feb 1990 | A |
4917704 | Frey et al. | Apr 1990 | A |
4932973 | Gendler | Jun 1990 | A |
4938768 | Wu | Jul 1990 | A |
4950296 | McIntyre | Aug 1990 | A |
4955885 | Meyers | Sep 1990 | A |
4961740 | Ray et al. | Oct 1990 | A |
4963154 | Anapliotis et al. | Oct 1990 | A |
4997434 | Seedhom et al. | Mar 1991 | A |
5015247 | Michelson | May 1991 | A |
5015255 | Kuslich | May 1991 | A |
5026373 | Ray et al. | Jun 1991 | A |
5047058 | Roberts et al. | Sep 1991 | A |
5049150 | Cozad | Sep 1991 | A |
5053049 | Campbell | Oct 1991 | A |
5055104 | Ray | Oct 1991 | A |
5061786 | Burnier et al. | Oct 1991 | A |
5062845 | Kuslich et al. | Nov 1991 | A |
5098144 | Marvin | Mar 1992 | A |
5112354 | Sires | May 1992 | A |
5171278 | Pisharodi | Dec 1992 | A |
5192321 | Strokon | Mar 1993 | A |
5192327 | Brantigan | Mar 1993 | A |
5197967 | Wilson | Mar 1993 | A |
5207710 | Chu et al. | May 1993 | A |
5236456 | O'Leary et al. | Aug 1993 | A |
5284655 | Bogdansky et al. | Feb 1994 | A |
5298254 | Prewett et al. | Mar 1994 | A |
5306307 | Senter et al. | Apr 1994 | A |
5306308 | Gross et al. | Apr 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5306310 | Siebels | Apr 1994 | A |
5312408 | Brown | May 1994 | A |
5314476 | Prewett et al. | May 1994 | A |
5314478 | Oka et al. | May 1994 | A |
5361483 | Rainville et al. | Nov 1994 | A |
5380333 | Meloul et al. | Jan 1995 | A |
5390683 | Pisharodi | Feb 1995 | A |
5397364 | Kozak et al. | Mar 1995 | A |
5423817 | Lin | Jun 1995 | A |
5423825 | Levine | Jun 1995 | A |
5425772 | Brantigan | Jun 1995 | A |
5425773 | Boyd et al. | Jun 1995 | A |
5439684 | Prewett et al. | Aug 1995 | A |
5443514 | Steffee | Aug 1995 | A |
5445639 | Kuslich et al. | Aug 1995 | A |
5458638 | Kuslich et al. | Oct 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5484437 | Michelson | Jan 1996 | A |
5489307 | Kuslich et al. | Feb 1996 | A |
5489308 | Kuslich et al. | Feb 1996 | A |
5490962 | Cima et al. | Feb 1996 | A |
5505731 | Tornier | Apr 1996 | A |
5505732 | Michelson | Apr 1996 | A |
5507813 | Dowd et al. | Apr 1996 | A |
5514180 | Heggeness et al. | May 1996 | A |
5518680 | Cima et al. | May 1996 | A |
5522899 | Michelson | Jun 1996 | A |
5534028 | Bao et al. | Jul 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5545222 | Bonutti | Aug 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5562738 | Boyd et al. | Oct 1996 | A |
5571190 | Ulrich et al. | Nov 1996 | A |
5571192 | Schonhoffer | Nov 1996 | A |
5591235 | Kuslich | Jan 1997 | A |
5593409 | Michelson | Jan 1997 | A |
5607269 | Dowd et al. | Mar 1997 | A |
5607424 | Tropiano | Mar 1997 | A |
5609635 | Michelson | Mar 1997 | A |
5609636 | Kohrs et al. | Mar 1997 | A |
5632747 | Scarborough et al. | May 1997 | A |
5645596 | Kim et al. | Jul 1997 | A |
5645598 | Brosnahan, III | Jul 1997 | A |
5653761 | Pisharodi | Aug 1997 | A |
5653762 | Pisharodi et al. | Aug 1997 | A |
5653763 | Errico et al. | Aug 1997 | A |
5658336 | Pisharodi | Aug 1997 | A |
5658337 | Kohrs et al. | Aug 1997 | A |
5662710 | Bonutti | Sep 1997 | A |
5669909 | Zdeblick et al. | Sep 1997 | A |
5683394 | Rinner | Nov 1997 | A |
5683463 | Godefroy et al. | Nov 1997 | A |
5683464 | Wagner et al. | Nov 1997 | A |
5702391 | Lin | Dec 1997 | A |
5707371 | Metz-Stavenhagen | Jan 1998 | A |
5709683 | Bagby | Jan 1998 | A |
5716415 | Steffee | Feb 1998 | A |
5716416 | Lin | Feb 1998 | A |
5720751 | Jackson | Feb 1998 | A |
5728159 | Stroever et al. | Mar 1998 | A |
5741253 | Michelson | Apr 1998 | A |
5749916 | Richelsoph | May 1998 | A |
5766251 | Koshino | Jun 1998 | A |
5766252 | Henry et al. | Jun 1998 | A |
5769897 | Harle | Jun 1998 | A |
5776199 | Michelson | Jul 1998 | A |
5782830 | Farris | Jul 1998 | A |
5782919 | Zdeblick et al. | Jul 1998 | A |
5785710 | Michelson | Jul 1998 | A |
5800547 | Schafer et al. | Sep 1998 | A |
5807437 | Sachs et al. | Sep 1998 | A |
5814084 | Grivas et al. | Sep 1998 | A |
5824078 | Nelson et al. | Oct 1998 | A |
5824094 | Serhan et al. | Oct 1998 | A |
5846484 | Scarborough et al. | Dec 1998 | A |
5860973 | Michelson | Jan 1999 | A |
5865845 | Thalgott | Feb 1999 | A |
5868749 | Reed | Feb 1999 | A |
5885299 | Winslow et al. | Mar 1999 | A |
5885300 | Tokuhashi et al. | Mar 1999 | A |
5888219 | Bonutti | Mar 1999 | A |
5888222 | Coates | Mar 1999 | A |
5888227 | Cottle | Mar 1999 | A |
5895426 | Scarborough et al. | Apr 1999 | A |
5895428 | Berry | Apr 1999 | A |
5899939 | Boyce et al. | May 1999 | A |
5904683 | Pohndorf et al. | May 1999 | A |
5904719 | Errico et al. | May 1999 | A |
5928238 | Scarborough et al. | Jul 1999 | A |
5941882 | Jammet et al. | Aug 1999 | A |
5968047 | Reed | Oct 1999 | A |
5972368 | McKay | Oct 1999 | A |
5980522 | Koros et al. | Nov 1999 | A |
5984967 | Zdeblick et al. | Nov 1999 | A |
5989289 | Coates et al. | Nov 1999 | A |
6004353 | Masini | Dec 1999 | A |
6025538 | Yaccarino, III | Feb 2000 | A |
6030635 | Gertzman et al. | Feb 2000 | A |
6045554 | Grooms et al. | Apr 2000 | A |
6045579 | Hochshuler et al. | Apr 2000 | A |
6045580 | Scarborough et al. | Apr 2000 | A |
6066174 | Farris | May 2000 | A |
6077267 | Huene | Jun 2000 | A |
6083225 | Winslow et al. | Jul 2000 | A |
6090143 | Meriwether et al. | Jul 2000 | A |
6096081 | Grivas et al. | Aug 2000 | A |
6102950 | Vaccaro | Aug 2000 | A |
6111164 | Rainey et al. | Aug 2000 | A |
6113637 | Gill et al. | Sep 2000 | A |
6113638 | Williams et al. | Sep 2000 | A |
6123705 | Michelson | Sep 2000 | A |
6123731 | Boyce et al. | Sep 2000 | A |
6132470 | Berman | Oct 2000 | A |
6132472 | Bonutti | Oct 2000 | A |
6136002 | Shih et al. | Oct 2000 | A |
6139211 | Schroeder et al. | Oct 2000 | A |
6143033 | Paul et al. | Nov 2000 | A |
6156037 | LeHuec et al. | Dec 2000 | A |
6159215 | Urbahns et al. | Dec 2000 | A |
6174311 | Branch et al. | Jan 2001 | B1 |
6200347 | Anderson et al. | Mar 2001 | B1 |
6206923 | Boyd et al. | Mar 2001 | B1 |
6210442 | Wing et al. | Apr 2001 | B1 |
6235059 | Benezech et al. | May 2001 | B1 |
6258125 | Paul et al. | Jul 2001 | B1 |
6270528 | McKay | Aug 2001 | B1 |
6277149 | Boyle et al. | Aug 2001 | B1 |
6294041 | Boyce et al. | Sep 2001 | B1 |
6294187 | Boyce et al. | Sep 2001 | B1 |
6315795 | Scarborough et al. | Nov 2001 | B1 |
6326018 | Gertzman et al. | Dec 2001 | B1 |
6350283 | Michelson | Feb 2002 | B1 |
6379385 | Kalas et al. | Apr 2002 | B1 |
6383221 | Scarborough et al. | May 2002 | B1 |
6425920 | Hamada | Jul 2002 | B1 |
6432107 | Ferree | Aug 2002 | B1 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6468543 | Gilbertson et al. | Oct 2002 | B1 |
6527773 | Lin et al. | Mar 2003 | B1 |
6530955 | Boyle et al. | Mar 2003 | B2 |
6547823 | Scarborough et al. | Apr 2003 | B2 |
6569168 | Lin | May 2003 | B2 |
6579321 | Gordon et al. | Jun 2003 | B1 |
6638310 | Lin et al. | Oct 2003 | B2 |
6696073 | Boyce et al. | Feb 2004 | B2 |
6733504 | Lin et al. | May 2004 | B2 |
6855167 | Shimp et al. | Feb 2005 | B2 |
6863694 | Boyce et al. | Mar 2005 | B1 |
6911045 | Shimp | Jun 2005 | B2 |
20010020186 | Boyce et al. | Sep 2001 | A1 |
20010043258 | Ohki | Nov 2001 | A1 |
20020029084 | Paul et al. | Mar 2002 | A1 |
20020045897 | Dixon et al. | Apr 2002 | A1 |
20020058950 | Winterbottom et al. | May 2002 | A1 |
20020128717 | Alfaro et al. | Sep 2002 | A1 |
20020161445 | Crozel | Oct 2002 | A1 |
20020188295 | Martz et al. | Dec 2002 | A1 |
20030039676 | Boyce et al. | Feb 2003 | A1 |
20030049326 | Nimni | Mar 2003 | A1 |
20030060825 | Alfaro et al. | Mar 2003 | A1 |
20030130667 | Lin | Jul 2003 | A1 |
20030135214 | Fetto et al. | Jul 2003 | A1 |
20030147860 | Marchosky | Aug 2003 | A1 |
20040024457 | Boyce et al. | Feb 2004 | A1 |
20040044409 | Alfaro et al. | Mar 2004 | A1 |
20040098129 | Lin | May 2004 | A1 |
20040146543 | Shimp et al. | Jul 2004 | A1 |
20040243242 | Sybert et al. | Dec 2004 | A1 |
20040249377 | Kaes et al. | Dec 2004 | A1 |
20050008620 | Shimp et al. | Jan 2005 | A1 |
20050008672 | Winterbottom et al. | Jan 2005 | A1 |
20050027033 | Knaack et al. | Feb 2005 | A1 |
20050038511 | Martz et al. | Feb 2005 | A1 |
20050107880 | Shimp et al. | May 2005 | A1 |
20050143740 | Morris et al. | Jun 2005 | A1 |
20050283255 | Geremakis et al. | Dec 2005 | A1 |
20060149376 | Shimp et al. | Jul 2006 | A1 |
20070178158 | Knaack et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
744371 | Nov 1998 | AU |
2 253 086 | Oct 1972 | DE |
40 12 622 | Jul 1991 | DE |
43 02 397 | Jul 1993 | DE |
198 15 407 | Oct 1999 | DE |
298 14 174 | Dec 1999 | DE |
0 302 719 | Feb 1989 | EP |
0 307 241 | Mar 1989 | EP |
0 325 566 | Jul 1989 | EP |
0 332 826 | Sep 1989 | EP |
0 493 698 | Jul 1992 | EP |
0 732 093 | Feb 1996 | EP |
0 734 703 | Oct 1996 | EP |
1 064 890 | Jan 2001 | EP |
2636227 | Mar 1990 | FR |
2703580 | Oct 1994 | FR |
2742652 | Jun 1997 | FR |
2769827 | Apr 1999 | FR |
01179689 | Jul 1989 | JP |
1107854 | Aug 1984 | SU |
590872 | Nov 1985 | SU |
WO 8909035 | Oct 1989 | WO |
WO 9301771 | Feb 1993 | WO |
WO 9421298 | Sep 1994 | WO |
WO 9715246 | May 1997 | WO |
WO 9747258 | Dec 1997 | WO |
WO 9802117 | Jan 1998 | WO |
WO 9817209 | Apr 1998 | WO |
WO 9848738 | Nov 1998 | WO |
WO 9907312 | Feb 1999 | WO |
WO 9909914 | Mar 1999 | WO |
WO 9921515 | May 1999 | WO |
WO 9938461 | Aug 1999 | WO |
WO 0007527 | Feb 2000 | WO |
WO 0024327 | May 2000 | WO |
WO 0040177 | Jul 2000 | WO |
WO 0040179 | Jul 2000 | WO |
WO 0100792 | Jan 2001 | WO |
WO 0149220 | Jul 2001 | WO |
WO 0166048 | Sep 2001 | WO |
WO 0170136 | Sep 2001 | WO |
WO 0170137 | Sep 2001 | WO |
WO 0170139 | Sep 2001 | WO |
WO 0178798 | Oct 2001 | WO |
WO 03030956 | Apr 2003 | WO |
WO 2005072656 | Aug 2005 | WO |
Entry |
---|
Albee, Fred H., “Bone Surgery with Machine Tools,” Scientific American, Apr. 1936, pp. 178-181. |
Allograft Freeze-Dried Release Specifications, Osteotech, Inc., Sep. 30, 1992, 3 pages. |
Brantigan, J.W., DePuy AcroMed, Lumbar I/F Cage With VSP Spinal System (Surgical Technique) (1999). |
Crowe et al., “Inhibition of Enzymatic Digestion of Amylose by Free Fatty Acids in Vitro Contributes to Resistant Starch Formation”, J. Nutr. 130(8): 2006-2008, 2000. |
DePuy AcroMed, Lumbar I/F Cage Implants & Instruments (Product Catalog) (1999). |
Driessens et al., “Calcium phosphate bone cements,” Universitat Politecnica de Catalunya, Barcelona, Spain, 31: 855-77. |
Edwards et al., “Osteoinduction of Human Demineralized Bone: Characterization in Rat Model”, Clinical Orthopaedics and Related Research, No. 357, pp. 219-228 (1998). |
Frymoyer et al., Eds., “The Adult Spine Principles and Practice,” Poster Lumbar Interbody Fusion, James W. Simmons, vol. 2, pp. 1961-1987 (1991). |
Gerhart et al. “Biomechanical optimization of a model particulate composite for orthopaedic applications,” J. Orthop. Res (1986); 4(1): 86-85 [abstract only]. |
Glowacki et al., “Fate of Mineralized and Demineralized Osseous Implants in Cranial Defects”, Calcified Tissue Int. 33: 71-76, 1981. |
Glowacki et al., “Demineralized Bone Implants”, Symposium on Horizons in Plastic Surgery, vol. 12, No. 2, pp. 233-241 (1985). |
Han et al. “Quantitative and sensitive in vitro assay for osteoinductive activity of demineralized bone matrix,” J. Orthop. Res., 21(4): 648-54, 2003. |
Jain et al., “Anchoring of phospholipase A2: the effect of anions and deuterated water, and the role of N-terminus region,” Biochem. et Biophys. Acta, 860:448-61, 1986. |
Katz, “The biology of heavy water,” Scientific American, 106-116, 1960. |
Lewandrowski et al., “Improved Osteoinduction of Cortical Bone Allografts: A Study of the Effects of Laser Perforation and Partial Demineralization,” J. Ortho Res. 15:748-756 (1997). |
Ma, G.W.C., Posterior Lumbar Interbody Fusion with Specialized Instruments, Clinical Ortho and Rel. Res., 193 (March) pp. 57-63 (1985). |
McCord et al., “Anterior endoscopic thoracolumbar instrumentation and implants,” Curr. Ortho 12, pp. 96-103 (1998). |
MTF Bone Catalog, Fibular Wedges, Femoral Struts, Tibial Struts, published prior to 2000, 1 page. |
Neigal et al., “Use of Demineralized Bone Implants in Orbital and Craniofacial”, Opthal. Plast. Reconstrs. Surg., 12: 108-120, 1996. |
Ray et al., “Preliminary Report of an Experimental Study”, J. Bone Joint Surgery, 39 A: 1119-1128, 1957. |
Russell et al., “Clinical Utility of Demineralized Bone Matrix for Osseous Defects, Arthrodesis and Reconstruction: Impact of Processing Techniques and Study Methodology”, Orthpaedics, 22(5): 524-531, 1999. |
Smith, MD et al. “Load-bearing capacity of corticocancellous bone grafts in the spine” (truncated abstract), Aug. 1993, Journal of Bone & Joint Surgery, 75(8): 1206-13. |
Sofamar Danek, “Surgical Technique Using Bone Dowel Instrumentation for Anterior Approach” [Publication Date Unknown]. |
Stevenson, S., “Enhancement of Fracture Healing with Autogenous and Allogeneic Bone Grafts,” Clin. Ortho, Rel. Res. 355S, pp. S239-S246 (1998). |
Tan et al., A modified technique of anterior Lumbar fusion with femoral cortical allograft; J. Orthop. Surg. Tech; vol. 5, No. 3 91990), pp. 83-93. |
Ueland et al., “Increased Cortical Bone Content of Insulin-Like Growth Factors in Acromegalic Patients”, J. Clin. Endocrinol. Metab., 84(1): 123-127, 1999. |
University of Florida Tissue Bank, Inc., Allograft Catalog [Publication Date Unknown]. |
University of Florida Tissue Transplant Patient Education Series [Publication Data Unknown]. |
Urist et al., “Observations implicating an extracellular enzymic mechanism of control of bone morphogenesis,” J. Histochem & Cytochem, 22(2): 88-103, 1974. |
Urist et al., “Preservation and biodegradation of the morphogenetic property of bone matrix,” J. Theor. Biol. 38: 155-67, 1973. |
Urist, “Bone: Formation by Autoinduction”, Science, 150: 893-899, 1965. |
VG2 Interbody Bone Grafts, DuPuy AcroMed, 2000, 6 pages. |
Vich, Jose M. Otero, “Anterior cervical interbody fusion with threaded cylindrical bone,” J. Neurosurg. 63:750-753, 1985. |
Whiteman et al., “Demineralized Bone Powder—Clinical Applications for Bone Defects of the Hand”, J. Hand. Surg., 18B: 487-490, 1993. |
Whittaker et al., “Matrix Metalloproteinases and Their Inhibitors—Current Status and Future Challenges”, Celltransmissions, 17(1): 3-14. |
Xiabo et al., “Experimental and Clinical Investigations of Human Insoluble Bone Matrix Gelatin”, Clin. Orthrop. 293: 360-365, 1993. |
Zhang, et al., “A Quantative Assessment of Osteoinductivity of Human Demineralized Bone Matrix”, J. Periodontol. 68(11): 1076-1084, 1997. |
Number | Date | Country | |
---|---|---|---|
20100049326 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
60889437 | Feb 2007 | US | |
60985859 | Nov 2007 | US |