Embodiments of the present disclosure relate generally to the field of drilling and processing of wells. More particularly, present embodiments relate to a system and method for solidifying or reinforcing tool joints of certain coupled tubular sections to facilitate coupling or decoupling of other tubular sections.
Top drives are typically utilized in well drilling and maintenance operations, such as operations related to oil and gas exploration. In conventional oil and gas operations, a well is typically drilled to a desired depth with a drill string, which includes drill pipe and a drilling bottom hole assembly (BHA). During a drilling process, the drill string may be supported and hoisted about a drilling rig by a hoisting system for eventual positioning down hole in a well. As the drill string is lowered into the well, a top drive system may rotate the drill string to facilitate drilling. The drill string may include multiple sections of tubular that are coupled to one another by threaded connections or tool joints. In traditional operations, the sections of tubular are coupled together and decoupled from one another using hydraulic tongs.
In a first embodiment, a joint solidification tool, a clamping mechanism of the joint solidification tool, wherein the clamping mechanism is configured to apply a compressive force on a first tool joint and a second tool joint, and a support structure of the joint solidification tool, wherein the support structure is configured to support the clamping mechanism, wherein the clamping mechanism is configured to rotate relative to the support structure and about an axis of the first and second tool joints when the clamping mechanism is in a clamped position.
In a second embodiment, a system includes a clamping mechanism configured to apply a force on a first tool joint and a second tool joint, wherein the clamping mechanism is configured to transfer a torque from the first tool joint to the second tool joint, and the clamping mechanism is configured to rotate about an axis of the first and second tool joints.
In a third embodiment, a method includes reinforcing a first threaded connection between a first tool joint of a first tubular and a second tool joint of a second tubular with a solidification tool clamped about the first tool joint and the second tool joint, driving rotation of the first tubular with a top drive of a drilling rig, transferring rotation of the first tubular to the second tubular via the solidification tool, and disengaging a second threaded connection between a third tool joint of the second tubular and a fourth tool joint of a third tubular, wherein the second threaded connection is axially below the first threaded connection.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
The drill string 28 may include multiple sections of threaded tubular 38 that are threadably coupled together. It should be noted that present embodiment may be utilized with drill pipe, casing, or other types of tubular. After setting or landing the drill string 28 in place such that the male threads of one section (e.g., one or more joints) of the tubular 38 and the female threads of another section of the tubular 38 are engaged, the two sections of the tubular 38 may be joined by rotating one section relative to the other section (e.g., in a clockwise direction) such that the threaded portions tighten together. Thus, the two sections of tubular 38 may be threadably joined.
Furthermore, as the drill string 28 is removed from the wellbore 30, the sections of the tubular 38 may be detached by disengaging the corresponding male and female threads of the respective sections of the tubular 38 via rotation of one section relative to the other in a direction opposite that used for coupling. In the manner described below, the top drive 40 may be used to rotate a section of tubular 38 coupled to another section of tubular 38 such that the two sections of the tubular 38 become decoupled. Additionally, as will be appreciated by one skilled in the art, it may be desirable to detach only certain sections of tubular 38 from one another. For example, in certain applications, three sections (e.g., joints) of the tubular 38 may remain coupled to one another. As a result, every third threaded connection between two sections of tubular 38 may be detached or disengaged.
As discussed in detail below, embodiments of the present disclosure include a solidification tool 50 that solidifies or reinforces a threaded connection between two sections of tubular 38, such that the threaded connection does not detach or disengage when one of the sections of tubular 38 is rotated. The solidification tool 50 may be utilized with two or more sections of tubular 38 to establish a fixed section of tubular 38 including the two or more sections (e.g., joints). In this manner, the solidification tool 50 functions to allow the top drive 40 to simultaneously rotate the multiple sections of tubular 38 coupled to one another in the same direction without initiating decoupling between any of the multiple sections that make up the fixed section. Again, this may be achieved by utilizing the solidification tool 50 to secure and reinforce certain threaded connections between sections of tubular 38 to prevent rotation of the tubular sections 38 with respect to one another. Further, while preventing the rotation of certain tubular sections with respect to one another, other sections of coupled tubular are allowed to rotate relative to the fixed section, which results in detachment or disengagement of the other threaded connections from the fixed section.
It should be noted that the illustration of
When the drill string 28 is removed from the wellbore 30, it may be desirable to disconnect sections of tubular 38 that include multiple joints. In other words, several joints of tubular 38 may be left connected by the tool joints 52 when the drill string 28 is removed from the wellbore 30 in sections. For example, it may be desirable to remove sections of tubular 38 that each includes two or three joints of tubular 38 that remain coupled together and thus limit trip times. The length of each section of tubular 38 kept intact (not decoupled at every joint) may be limited by the rig height. For example, when removing the drill string 28 from the wellbore 30, every second, third, or fourth tool joint 52 may be broken or disconnected depending on joint lengths and the height of the drilling rig 10. In this manner, sections of tubular 38 including multiple joints that remain connected may be set aside for later use with the drilling rig 10. As will be appreciated, this practice may result in faster re-assembly of the drill string 28, when the drill string 28 is assembled for use within the wellbore 30 at a later time.
To block the disassembly of certain tool joints 52 when the drill string 28 is removed from the wellbore 30, one or more solidification tools 50 may be used. More specifically, the solidification tool 50 may be used to secure or solidify the tool joint 52 between two joints of tubular 38, thereby blocking the disengagement or disassembly of the tool joint 52. For example, in the illustrated embodiment, a section 56 of tubular 38 having three joints of tubular 38 is being removed from the wellbore 30. That is, the section 56 of tubular 38 includes a first joint 58, a second joint 60, and a third joint 62 of tubular. Moreover, the first and second joints 58 and 60 are coupled by a first tool joint 64 (e.g., a threaded connection between the first and second joints 58 and 60), and the second and third joints 60 and 62 are coupled by a second tool joint 66 (e.g., a threaded connection between the second and third joints 60 and 62). The first tool joint 64 is reinforced by a first solidification tool 68, and the second tool joint 66 is reinforced by a second solidification tool 70. In some embodiments, the features of the first and second solidification tools 68 and 70 may be integrated into a single solidification tool.
As discussed in detail below, the solidification tool 50 is configured to clamp the tool joint 52 (e.g., the coupling between two joints of tubular 38) and block rotation of the two joints of tubular 38 relative to one another. In this manner, the solidification tool 50 may block decoupling of the tool joint 52 due to relative rotation of one joint of tubular with respect to the other. In the illustrated embodiment, the first solidification tool 68 clamps the first tool joint 64, thereby blocking rotation of the first and second joints 58 and 60 relative to one another. Similarly, the second solidification tool 70 clamps the second tool joint 66 and blocks rotation of the second and third joints 60 and 62 relative to one another.
Furthermore, the solidification tool 50 is configured to rotate about an axis 72 of the tubular 38. That is, the solidification tool 50 may clamp and reinforce the tool joint 52, while still being able to rotate about the axis 72. As a result, the top drive 40, which is coupled to the first joint 58 of tubular 38, may drive rotation of the section 56 of tubular 38 in the direction 54 (e.g., in the counter-clockwise direction), and the first and second solidification tools 68 and 70 may remain clamped to the first and second tool joints 64 and 66, respectively, thereby blocking unthreading and decoupling of the first and second tool joints 64 and 66.
As mentioned above, the solidification tools 50 enable the disassembly or unthreading of certain tool joints 52 in a section of tubular 38, while reinforcing and maintaining the assembly of other tool joints 52 in the section of tubular 38. In the illustrated embodiment, as the top drive 40 drives rotation of the section 56 of tubular 38 in the direction 54, the first and second tool joints 64 and 66 are secured and reinforced by the first and second solidification tools 68 and 70, while a third tool joint 74 may be unthreaded and disassembled. Specifically, the third tool joint 74 couples the third joint 62 of tubular 38 to a fourth joint 76 of tubular 38, which may be held in place (e.g., stationary) by a power slip or other clamping mechanism 53. In other words, the third tool joint 74 couples the section 56 of tubular 38 to the drill string 28 within the wellbore 30. Therefore, with the first and second solidification tools 68 and 70 positioned and clamped in the manner described above, the entire section 56 of tubular 38 (e.g., the first, second, and third joints 58, 60, and 62 of tubular 38) may be rotated together by the top drive 40 with the first and second tool joints 64 and 66 reinforced and maintained, and the section 56 of tubular 38 may be disconnected from the fourth joint 76, which may be representative of the remaining drill string 28.
As discussed in detail below, the solidification tool 50 may have various configurations, components, and so forth. In the illustrated embodiment, the first and second solidification tools 68 and 70 are supported by the derrick 14. For example, the first and second solidification tools 68 and 70 may be coupled to a mast or other rail of the derrick 14 with a respective arm or other brace. Furthermore, the arm or brace coupling the solidification tool 50 to the derrick 14 may be configured to translate up and/or down along the mast of the derrick 14. In other embodiments, the solidification tool 50 may be a modular or mobile device that may be manually or automatically positioned onto the tool joint 52.
As mentioned above, the solidification tool 50 may have a variety of configurations. In the illustrated embodiment, the solidification tool 50 is supported by an arm 110, which may extend from a rail or mast of the derrick 14 shown in
The solidification tool 50 includes a caliper assembly 114, which clamps about the threaded connection 100. That is, the caliper assembly 114 clamps onto the tool joints 106 and 108 of the first and second joints 102 and 104. Specifically, the caliper assembly 114 includes a first clamping plate 116 and a second clamping plate 118, where the first and second clamping plates 116 and 118 are positioned opposite one another about the threaded connection 100. In the manner described below, the first and second clamping plates 116 and 118 apply a compressive, radially inward force on the tool joints 106 and 108 at the threaded connection 100, thereby gripping the tool joints 106 and 108 and the threaded connection 100.
In the illustrated embodiment, the compressive force applied by the first and second clamping plates 116 and 118 is provided by hydraulic pistons 120. Specifically, two hydraulic pistons 120 operate to force each of the first and second clamping plates 116 and 118 radially inward toward the tool joints 106 and 108. While the illustrated embodiment includes two hydraulic pistons 120 for each of the first and second clamping plates 116 and 118, other embodiments may include any suitable number of hydraulic pistons 120. As shown, the hydraulic pistons 120 are supported by an outer frame 122 of the solidification tool 50. In certain embodiments, a hydraulic fluid may be supplied to the hydraulic pistons 120 through a conduit that may be routed through the outer frame 122 and/or the arm 110 to a hydraulic fluid source. The outer frame 122 further supports guide rails 124 that extend to from the outer frame 122 to each of the first and second clamping plates 116 and 118. The guide rails 124 serve to align and guide the first and second clamping plates 116 and 118 radially inward as the hydraulic pistons 120 force the first and second clamping plates 116 and 118 toward the tool joints 106 and 108.
As will be appreciated, the solidification tool 50 may include other components not detailed in the embodiment shown in
Furthermore, as mentioned above, the solidification tool 50 may have other configurations, components, and so forth. For example, in certain embodiments, the solidification tool 50 may have other numbers of clamping plates or surfaces. Additionally, the force applied by the clamping plates or surfaces may be provided by other mechanisms. For example, compressive and/or radially inward forces may be provided by one or more springs, which may be pre-loaded, pneumatic pistons, magnets, electromagnetic systems, or other force-generating systems. Additionally, while the illustrated embodiment of the solidification tool 50 is supported by the arm 110 and the derrick 14, other embodiments of the solidification tool 50 may not include the arm 110 or other support structure. Indeed, the solidification tool 50 may also be a modular or mobile system that couples to the tool joints 106 and 108 and moves freely with the tool joints 106 and 108.
As mentioned above, the solidification tool 50 may be configured to rotate along the axis 72 of the tubular 38 to which the solidification tool 50 is clamped. In this manner, when the solidification tool 50 is clamped to the tool joints 106 and 108, the solidification tool 50 rotates with the tubular 38 (e.g., the first and second joints 102 and 104 and the tool joints 106 and 108) as the tubular 38 is rotated by the top drive 40. As will be appreciated by those skilled in the art, the rotating capability of the solidification tool 50 reduces the reactive torque acting on the tubular 38 by the solidification tool 50 when the top drive 40 is rotating the tubular 38.
As shown, the outer frame 122 of the solidification tool 50 includes an upper lip 150 that forms a retaining track 152 and rests on the support structure 112. Additionally, the upper lip 150 extends over the support structure 112, such that an inner edge 154 of the support structure 112 extends through the retaining track 152. As a result, the support structure 112 supports the outer frame 122 of the solidification tool 50 and enables a clamping portion of the solidification tool 50 to rotate about the axis 72 of the tubular 38.
In certain embodiments, the solidification tool 50 may be spring loaded, such that the outer frame 122 of the solidification tool 50 returns to an original position (e.g., the position of the outer frame 122 shown in
As discussed in detail above, the solidification tool 50 reinforces and secures the threaded connection 100 between tool joints 106 and 108 of a tubular 38. More specifically, as the top drive 40 rotates the tubular 38, which may include multiple joints of pipe coupled to one another by tool joints 52, the solidification tool 50 transfers the torque from one joint to another joint. For example, in the illustrated embodiment, as the top drive 40 drives rotation of the first joint 102, which is coupled to the tool joint 106, torque within the first joint 102 of tubular 38 and the tool joint 106 is transferred to the solidification tool 50, as indicated by arrow 182. More specifically, the torque 180 is transferred to the clamping mechanisms (e.g., the second clamping plate 118) of the solidification tool 50. Thereafter, as the clamping mechanisms grip both of the tool joints 106 and 108 in the manner described above, the torque is transferred from the clamping mechanisms (e.g., the second clamping plate 118) to the tool joint 108 and the second joint 104 of tubular 38, as indicated by arrow 184. As the torque generated by the top drive 40 is transferred from the first joint 102 to the second joint 104 by the solidification tool 50, the threaded connection 100 is maintained and disengagement or disassembly of the tool joints 106 and 108 is blocked.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
7437974 | Slettedal et al. | Oct 2008 | B2 |
8235104 | Sigmar et al. | Aug 2012 | B1 |
20040174163 | Rogers | Sep 2004 | A1 |
20040251050 | Shahin et al. | Dec 2004 | A1 |
20060174729 | Slettedal et al. | Aug 2006 | A1 |
20080217067 | Ge | Sep 2008 | A1 |
20120297933 | Lavalley et al. | Nov 2012 | A1 |
Entry |
---|
International Search Report & Written Opinion for International Application No. PCT/US2013/065375 mailed Mar. 25, 2015. |
Number | Date | Country | |
---|---|---|---|
20140116722 A1 | May 2014 | US |