This application is a U.S. National Stage Application of International Application No. PCT/JP2020/005406 filed Feb. 12, 2020, which claims priority from Japanese Patent Application No. 2019-034616 filed Feb. 27, 2019. The entirety of all the above-listed applications are incorporated herein by reference.
The present disclosure relates to a joint structure.
In piping facilities for circulating fluid, a joint structure for connecting a hollow pipe to another member is used (see PTL 1 and PTL 2).
In the piping facilities, it may be necessary to disconnect a pipe, which is connected by the joint structure, in order to repair or replace a part such as the pipe. In order to remove the connected pipe, it is necessary to create a gap between the pipe and another member by moving the pipe in a longitudinal direction thereof. However, in piping facilities in which a plurality of parts such as a pipe are combined, it may be difficult to move the pipe in the longitudinal direction.
On the other hand, PTL 3 discloses a joint structure capable of disconnecting a pipe by sliding the pipe in a direction orthogonal to the longitudinal direction.
[PTL 1]
[PTL 2]
[PTL 3]
However, in the joint structure described in PTL 3, one end of the pipe has to be machined by flaring, which incurs time and effort.
An object of the present disclosure is to provide a joint structure capable of disconnecting a pipe without moving the pipe in the longitudinal direction, even if the pipe is not machined.
A joint structure according to one embodiment of the present invention includes: a hollow joint body; a first sleeve that has a cylindrical portion having an inner cavity, into which a pipe is inserted, and a locking portion that protrudes inward in a radial direction thereof from one end part of the cylindrical portion, with the locking portion coming into contact with the joint body; a second sleeve that has a hole, into which the pipe is inserted, and a contact portion that comes into contact with the other end part of the cylindrical portion, with the contact portion rising diagonally from an outer peripheral surface of the pipe in a direction away from the first sleeve; and a nut that covers one end part of the joint body, the first sleeve and the second sleeve and is tightened to the joint body in a state of pressing against a surface of the second sleeve on a side opposite from the first sleeve.
According to the present invention, it is possible to disconnect a pipe without moving the pipe in the longitudinal direction, even if the pipe is not machined.
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
As illustrated in
A male thread portion 1a that is threaded onto the nut 4 is formed on the outer peripheral surface of one end part (the end part on the pipe 100 side) of the joint body 1, and a male thread portion 1b that is threaded onto the manifold 101 is formed on the outer peripheral surface of the other end part (the end part on the manifold 101 side). A gripping portion 1c of which a cross-section along the radial direction Y is substantially polygonal (for example, substantially hexagonal) is formed between the male thread portion 1a and the male thread portion 1b.
The first sleeve 2 is arranged between the joint body 1 and the second sleeve 3. The first sleeve 2 has a cylindrical portion 2a, a locking portion 2b, and an inclined surface 2c.
The cylindrical portion 2a is a portion having an inner cavity into which the pipe 100 is inserted. An inclined surface 2c is formed at the end part of the rear end surface of the cylindrical portion 2a on the pipe 100 side. As a result, an annular gap is formed between the rear end part of the cylindrical portion 2a and the outer peripheral surface of the pipe 100.
The locking portion 2b is formed between the joint body 1 and the cylindrical portion 2a, and comes into contact with one end part of the joint body 1. The locking portion 2b is formed as a protruding portion that protrudes inward in the radial direction Y. As a result, the pipe 100 inserted into the cylindrical portion 2a comes into contact with the locking portion 2b to prevent the same from being inserted into the joint body 1.
The second sleeve 3 is arranged on the rear side of the first sleeve 2. The second sleeve 3 has an annular portion 3a and a contact portion 3b.
The annular portion 3a is a portion having a hole into which the pipe 100 is inserted. As illustrated in
The contact portion 3b is a wedge-shaped portion formed at the end part on the first sleeve 2 side of the annular portion 3a. The contact portion 3b is inclined so as to face the inclined surface 2c of the first sleeve 2. That is, the contact portion 3b is inclined so as to become thicker toward the rear side. The contact portion 3b enters the inclined surface 2c (more specifically, an annular gap formed by the inclined surface 2c) of the first sleeve 2.
The nut 4 is a hollow member that is tightened onto the joint body 1 in a state where the pipe 100 is inserted. The nut 4 has an accommodating chamber 4a, a female thread portion 4b, and an inner wall surface 4c.
The accommodating chamber 4a is an internal space for accommodating a portion (a rear end part) of the joint body 1, the first sleeve 2, and the second sleeve 3 in the connected state. The inner wall surface 4c at the rear of the accommodating chamber 4a comes into contact with the rear end surface 3c of the second sleeve 3 (specifically, the annular portion 3a). The inner wall surface 4c is inclined toward the front side (the joint body 1 side) toward the outer side in the radial direction Y. The inclination angle (tapering angle) of the inner wall surface 4c and the inclination angle of the rear end surface 3c may be equal to each other or different from each other.
The female thread portion 4b is provided on the inner peripheral surface of the front end part of the accommodating chamber 4a, and is threaded onto the male thread portion 1a of the joint body 1 in the connected state. In the example illustrated in the drawing, the male thread portion 1a is formed on the joint body 1 and the female thread portion 4b is formed on the nut 4. However, there is no limitation to this configuration as long as the joint body 1 and the nut 4 can be threaded together. For example, a female thread portion may be formed on the joint body 1 and a male thread portion may be formed on the nut 4.
When connecting the pipe 100 and the manifold 101 using the joint structure 10 described above, first, the joint body 1 is fitted to the manifold 101, and the nut 4, the second sleeve 3, and the first sleeve 2 are inserted into the pipe 100 in that order. In this state, the joint body 1 and the locking portion 2b of the first sleeve 2 are brought into contact with each other. After that, the nut 4 is tightened to the joint body 1 while threading the male thread portion 1a of the joint body 1 and the female thread portion 4b of the nut 4 together. As a result, the inner wall surface 4c of the accommodating chamber 4a of the nut 4 comes into contact with the rear end surface 3c of the second sleeve 3, the nut 4 presses the second sleeve 3, and the second sleeve 3 presses the first sleeve 2. As a result, the joint body 1 and the locking portion 2b of the first sleeve 2 are brought into contact with each other, and the first sleeve 2 and the second sleeve 3 are sandwiched between the joint body 1 and the nut 4 (this state is usually referred to as finger-tight). When the nut is further tightened from this state, as illustrated in
When the connection between the pipe 100 and the manifold 101 is released, tightening of the nut 4 into the joint body 1 is released so that the nut 4 is moved rearward more than the joint body 1 as illustrated in
For example, the example of
As illustrated in
The example of
The example of
The configurations described in
Further, in each embodiment, the rear end surface of the joint body 1 and the front end surface of the first sleeve 2 that come into contact with each other are formed as flat surfaces, but the present invention is not limited to this example. For example, at least one of the rear end surface of the joint body 1 and the front end surface of the first sleeve 2 may be formed as a convex curved surface. At this time, the other of the end surface of the joint body 1 and the front end surface of the first sleeve 2 may be formed as a flat surface or a concave curved surface. In the example of
Further, an annular concave portion may be provided in at least one of the rear end surface 1d of the joint body 1 and the front end surface 2e of the first sleeve 2, and an O-ring may be mounted in the concave portion. In the example of
Further, a convex portion may be provided on at least one of the rear end surface 1d of the joint body 1 and the front end surface 2e of the first sleeve 2. In the example of
The configurations illustrated in each of the embodiments described above are merely examples, and there is no limitation to these examples. For example, there may be three or more sleeves. For example, another sleeve may be provided on the front side of the first sleeve, on the rear side of the second sleeve 3, and between the first sleeve 2 and the second sleeve 3.
As described above, the present disclosure includes the following matters.
A joint structure (10) according to one aspect of the present disclosure includes a hollow joint body (1), a first sleeve (2), a second sleeve (3), and a nut (4). The first sleeve has an inner cavity into which a pipe (100) is inserted, and has one end part coming into contact with the joint body. The second sleeve has a hole into which the pipe is inserted, and has one end part coming into contact with the other end part of the first sleeve. The nut covers one end part of the joint body and the first sleeve and the second sleeve, and is threaded onto the joint body in a state of pressing against the surface of the second sleeve on the side opposite from the first sleeve.
According to this configuration, the joint body and one end part of the first sleeve are brought into contact with each other, and the nut covering the one end part of the joint body, the first sleeve and the second sleeve is tightened to the joint body in a state of pressing against the surface of the second sleeve on the side opposite from the first sleeve.
Therefore, due to the pressing of the nut, the first sleeve can be brought into close contact with the joint body via the second sleeve, and the sealing property can be ensured. Therefore, it is possible to secure the sealing property without machining the pipe. In addition, the connection can be released simply by releasing the tightening of the nut and sliding the joint body and the first sleeve in the radial direction. Therefore, the connection can be released without moving the pipe in the longitudinal direction thereof.
Further, the first sleeve has a cylindrical portion (2a) having an inner cavity and a protruding portion (2b) protruding inward in the radial direction from one end part of the cylindrical portion, and the protruding portion comes into contact with the joint body. Therefore, it is possible to prevent the pipe from being inserted into the joint body.
Further, a limiting portion for limiting deformation in an axial direction of the first sleeve is formed on at least one of the surface of the first sleeve facing the nut and the surface of the nut facing the first sleeve and the second sleeve. Therefore, the contact portion of the second sleeve widens the end part of the first sleeve on the second sleeve side in the radial direction, and accordingly, the end part of the first sleeve on the joint body side is tilted. Thus, deterioration of the close contact state between the joint body and the first sleeve can be prevented.
Further, the limiting portion includes a convex portion (2d) formed on a surface of the first sleeve facing the nut. According to this configuration, the convex portion and the inner peripheral surface of the nut can be brought into contact with each other. Therefore, it is possible to prevent the first sleeve from being deformed in the radial direction. Further, the place where the nut and the first sleeve come into contact when the pipe is connected can be limited to the convex portion. Therefore, the nut can be easily removed when the pipe is disconnected.
Further, the limiting portion includes an inclined portion formed on the surface (4d) of the nut facing the first sleeve and the second sleeve and inclined so that the inner diameter of the nut becomes wider toward the joint body. According to this configuration, since the rear end part of the first sleeve and the inner peripheral surface of the nut can be brought into contact with each other, it is possible to prevent the first sleeve from being deformed in the radial direction. Further, the place where the nut and the first sleeve come into contact when the pipe is connected can be limited to the rear end part of the first sleeve. Therefore, the nut can be easily removed when the pipe is disconnected.
Further, the limiting portion includes a step formed on the surface of the nut facing the first sleeve so that a portion on the joint body side is farther from the first sleeve than a portion on the second sleeve side. According to this configuration, since the rear end part of the first sleeve and the inner peripheral surface of the nut can be brought into contact with each other, it is possible to prevent the first sleeve from being deformed in the radial direction. Further, the place where the nut and the first sleeve come into contact when the pipe is connected can be limited to the rear end part of the first sleeve. Therefore, the nut can be easily removed when the pipe is disconnected.
The embodiments of the present disclosure described above are examples for explaining the present disclosure, and are not intended to limit the scope of the present invention to those embodiments only. Those skilled in the art can implement the present invention in various other aspects without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2019-034616 | Feb 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/005406 | 2/12/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/175143 | 9/3/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7806443 | Plattner | Oct 2010 | B1 |
20040212192 | Williams | Oct 2004 | A1 |
20080007050 | Williams et al. | Jan 2008 | A1 |
20090167015 | Nakata et al. | Jul 2009 | A1 |
20100140932 | Williams et al. | Jun 2010 | A1 |
20150323110 | Trivett | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
102012103878 | Nov 2013 | DE |
2007-502940 | Feb 2007 | JP |
2009-522525 | Jun 2009 | JP |
2010-534804 | Nov 2010 | JP |
3195332 | Jan 2015 | JP |
1306140 | Nov 1995 | TW |
Entry |
---|
International Preliminary Report on Patentbility in PCT/JP2020/005406, dated Feb. 12, 2020. |
International Search Report in PCT/JP2020/005406, dated Mar. 24, 2020. |
Written Opintion in PCT/JP2020/005406, dated Mar. 24, 2020. |
International Preliminary Report on Patentbility in PCT/JP2020/005406, dated Sep. 10, 2021. |
Number | Date | Country | |
---|---|---|---|
20220136629 A1 | May 2022 | US |