The apparatus and methods disclosed herein relate to the joints used between the moving and stationary portions of a heat transfer fluid circuit associated with some types of concentrated solar power collectors. In particular, the disclosed apparatus and methods relate to flexible joints between the receivers of parabolic trough collectors and the stationary portions of the heat transfer fluid circuit.
Concentrated Solar Power (CSP) systems utilize solar energy to directly or indirectly heat a working fluid which drives a thermal power cycle for the generation of electricity. Considerable interest in CSP has been driven by renewable energy portfolio standards applicable to energy providers in the southwestern United States and renewable energy feed-in tariffs in Spain. CSP systems are typically deployed as large, centralized power plants to take advantage of economies of scale.
One type of CSP system uses multiple parabolic trough reflectors to concentrate sunlight on a receiver containing a heat transfer fluid. The thermal energy of the heat transfer fluid is then transferred to a working fluid such as steam and used to drive a power generation cycle. Conventional parabolic trough-based CSP systems typically include a several lengthwise arrays of individual trough reflector elements known as modules. The lengthwise array of multiple modules is commonly referred to as a collector. A representative collector 10 including twelve separate modules 12 is illustrated in
Each module includes a supporting frame 14 and multiple reflecting elements 16. The supporting frames 14 are typically connected end-to-end and ultimately connected to a drive mechanism illustrated as a central drive 18 in
The solar receiver 20 can be implemented as a tube having surface characteristics making it suitable for absorbing solar energy. A heat transfer fluid, for example thermal oil or a molten salt is flowed within a series of receivers thereby causing the heat transfer fluid to be heated to an operational temperature. Thermal energy stored and transported in the heat transfer fluid is subsequently flowed through other portions of the heat transfer fluid circuit and utilized to generate electrical energy.
The length of each collector 10 is limited by the capacity of the drive 18 and the strength and torsional stiffness of each module 12. The heat transfer fluid will typically be required to pass through several collectors connected in series to reach a suitable hot temperature. This group of collectors connected in series between cold and hot heat transfer fluid supply piping is known as a “loop”.
As noted above, each module in a collector or loop must be rotated to track the sun. Therefore, each receiver 20 is moved along an arc as the associated module is rotated around the lengthwise axis of rotation. On the contrary, supply and return portions of the heat transfer fluid circuit are stationary. Typically, a ball joint or a combination of a flexible hose and a rotary joint is used to connect the first and last receiver tubes of a loop to adjacent stationary heat transfer fluid supply and return piping. Similar ball or rotary joint connections are often used between each collector in the loop to allow for thermal expansion of the receiver tubes and to enable each collector to move independently. For example,
A ball and socket joint 26, as illustrated in
An alternative joining method, illustrated in
However, the seal materials of ball joints and rotary joints are not compatible with certain heat transfer fluids of particular interest for use in CSP systems, high temperature salts for example. Commonly available seal materials for ball joints or rotary joints can fail or combust at the high temperature of a molten salt heat transfer fluid. In addition, the freezing point of a high-temperature heat transfer fluid will set a lower bound on the minimum operating temperature which must be maintained in a ball or rotary joint before the heat transfer fluid freezes causing leakage, blockage and another undesirable events. Because highly desirable heat transfer materials or fluids such as molten salts freeze at temperatures above normal ambient temperatures, the initial filling of a heat transfer fluid circuit and the night-time maintenance of the system require the heat transfer fluid circuit to be heated with a supplemental means at times when solar heating is unavailable. The heating of typical ball joints or rotary joints present difficult and costly challenges.
The embodiments disclosed herein are directed toward overcoming one or more of the problems discussed above.
Certain embodiments disclosed herein are flexible joints configured to be positioned between the movable and stationary elements of a CSP heat transfer fluid circuit. Other embodiments include parabolic trough solar reflector modules, solar collectors or solar collector loops having joints between the movable and stationary elements of the heat transfer fluid circuit which do not require ball joints, rotary joints or other joints having mating seal surfaces which slide, rotate or move with respect to each other.
One particular embodiment is a solar collector comprising a linear array of one or more parabolic trough reflectors. Each parabolic trough reflector in the collector array is configured to reflect sunlight to a receiver positioned in an elongated zone of concentrated solar flux. Each reflector includes one or more support frames which provide for the reflector and receiver elements to be rotated around an axis of rotation substantially parallel to, but typically displaced from, the elongated zone of concentrated solar flux. The rotational motion allows the reflector to track the motion of the sun and thereby maintain focus of concentrated solar flux on the receiver.
The solar collector also includes or is associated with a heat transfer fluid circuit. The heat transfer fluid circuit comprises at least one stationary cold-side supply pipe which transports relatively cool heat transfer fluid to the collector. The heat transfer fluid circuit also includes at least one stationary hot-side return pipe or other return pipe which transports heated heat transfer fluid away from the collector. Heat transfer fluid flows from the supply pipe to the return pipe through the various joints and solar receivers described herein. As the heat transfer fluid is flows through the receiver elements, it is heated to an operational temperature by concentrated solar flux. The connection between the stationary supply or return pipes and the input to or output from the first and last receivers in the collector must accommodate the motion of the receivers as the parabolic trough reflectors are rotated around the axis of rotation to track the sun.
Accordingly, a joint is provided between the stationary supply and/or return pipes and the input to or the output from the adjacent receivers. The joint comprises a flexible pipe connecting the stationary heat transfer fluid circuit pipe with the inlet or outlet of a receiver. The flexible pipe may comprise a loop segment defining at least a partial loop around the axis of rotation. In certain embodiments the loop segment is supported at least in part by a drum approximately centered upon the axis of rotation. In other embodiments, the loop segment is self-supporting and may be configured as a freestanding coil.
In certain embodiments, the joint and in particular the flexible pipe portion of the joint is fabricated at least in part from an electrically conductive material. The electrically conducting material may be, but is not limited to, corrugated pipe with a stainless steel overbraid or a stainless steel pipe configured in a freestanding coil. Providing an electrically conductive joint between a stationary heat transfer fluid circuit pipe and a receiver of the parabolic trough reflectors facilitates the direct impedance heating of each of the pipes, joints, receivers or other elements of the heat transfer fluid circuit with a reduced number of transformers.
Therefore, the disclosed embodiments are particularly well-suited for implementation with heat transfer fluids which have a freezing temperature which is above the ambient temperature experienced by the system at night, or during extended cloudy periods. The disclosed joints are particularly well-suited for implementation with systems utilizing a molten salt heat transfer fluid which might be unsuitable for use with conventional ball or rotary joint assemblies positioned between a solar receiver and stationary heat transfer fluid circuit piping because of the potential for molten salt to burn or destroy conventional joint packing materials and further in view of the difficulty conducting electricity across a ball or rotary joint having conventional seal materials.
Accordingly, in certain embodiments the disclosed solar collector or loop will include one or more transformers in electrical communication with stationary heat transfer fluid circuit piping, joints and receivers to provide for the direct impedance heating of these elements.
Certain alternative embodiments include fluid tight joints providing for the connection of a stationary pipe to the receiver of a parabolic trough solar reflector. The disclosed joints include a flexible pipe connecting the stationary pipe to a receiver inlet or outlet and no ball, rotary or other joints having mating sealing surfaces which rotate, slide or move with respect to each other between the stationary piping and receiver. The flexible pipe of the joint may include a loop segment which extends through any degree of loop rotation, for example, a loop rotation of at least 360°. In some embodiments the joint includes a drum supporting at least a portion of the loop segment. In other embodiments, the loop segment is implemented with a freestanding coil.
Some portion or the entire flexible pipe element may be fabricated from an electrically conductive material such that electrical connectivity may be maintained between the stationary pipe connection and the receiver connection. For example, the flexible pipe may include a corrugated inner hose and a stainless steel overbraid or the flexible pipe may be implemented with a coiled stainless steel pipe segment.
Alternative embodiments include methods of joining the receiver of a solar collector to stationary heat transfer fluid circuit piping using the joints described herein.
Alternative methods include providing direct impedance heating to a solar collector or loop by flowing current through conductive pipes, joints, receivers or other elements in a heating circuit which extends across one or more of the described joints.
Alternative embodiments include systems and methods for generating electricity utilizing a thermal power cycle. In system embodiments, thermal energy is provided directly or indirectly to a working fluid from solar flux concentrated using parabolic trough collectors having joints as described herein.
Unless otherwise indicated, all numbers expressing quantities of ingredients, dimensions, reaction conditions and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about”.
In this application and the claims, the use of the singular includes the plural unless specifically stated otherwise. In addition, use of “or” means “and/or” unless stated otherwise. Moreover, the use of the term “including”, as well as other forms, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one unit unless specifically stated otherwise.
All the features described in this specification (including the claims, description and drawings) and/or all the steps of the described method can be combined in any combination, with the exception of combinations of mutually exclusive features and/or steps.
As noted above, concentrated solar power (CSP) plants utilizing parabolic trough reflectors as the primary solar energy concentrating element typically include a large number of individual parabolic trough reflector modules arranged in groups or arrays. Each reflector module usually consists of several reflective facets supported by framework. As shown in
CSP systems such as described herein utilize concentrated sunlight to directly or indirectly heat a working fluid which is used to drive one or more power generation cycles. Many CSP systems include an initial heat transfer fluid circuit where heat transfer fluid is directly heated to high operational temperatures by concentrated solar energy. The heat transfer fluid circuit exchanges heat with a separate power cycle working fluid circuit. For example,
A primary heat transfer fluid circuit 48 carries heat transfer fluid through the receivers 20 where the heat transfer fluid is heated to an operational temperature. Thermal energy from the heat transfer fluid may be stored at any point in the heat transfer fluid circuit, for example in thermal energy storage devices 50 or 52 to extend the operational timeframe of the system.
In the simplified diagram of
The thermal energy of the working fluid in the working fluid circuit 55 is utilized to drive a thermal power cycle 56. In the particular embodiment of
As noted above, to best track the sun and most effectively concentrate solar flux, each parabolic reflector element must pivot or rotate around an axis which is substantially parallel to, but typically displaced from, the axis defined by the elongated receiver 20. On the contrary, the hot and cold heat transfer fluid pipework (schematically illustrated as heat transfer fluid circuit 48 on
Various embodiments disclosed herein include one or more parabolic solar collectors, having joints which provide for motion between a receiver input and receiver output and the stationary portions of a heat transfer fluid circuit. In each embodiment, no ball joints, rotary joints or other joints having a fluid-tight sealing surface that rotates or slides with respect to a mating fluid tight sealing surface is used between the stationary heat transfer fluid circuit pipes and the receiver.
The scope of the present disclosure includes large or small and simple or complex systems. For example, the disclosed joints could be implemented between a single parabolic trough reflector having a single receiver and adjacent stationary heat transfer fluid circuit supply or return pipes. In any commercial embodiment however, it is much more likely that a described joint will be implemented between a stationary heat transfer fluid circuit pipe and the inlet to a first receiver or the outlet to a final receiver in a linear collector or loop array of multiple parabolic trough reflectors.
The embodiments disclosed herein are particularly well-suited for use with certain high temperature heat transfer fluids. Heat transfer fluids that are stable at very high temperatures (for example, above 400° C.) can improve the efficiency of CSP systems by increasing the steam temperature generated in the working fluid circuit 55. One problem with many high temperature heat transfer fluids is that certain materials, such as molten salts, freeze at relatively high temperatures, which are well above the ambient temperature of the CSP system at night or when the system is initially filled. For example, nitride salts which are highly desirable heat transfer fluids freeze at 150° C.-260° C. Therefore, when implementing a CSP system to utilize a molten salt heat transfer fluid, a freeze protection system is required to keep the heat transfer fluid from solidifying in the receiver tubes, joints, circuit piping or other elements at ambient temperatures.
As described in detail below, one method of providing freeze protection (or to allow the initial filling of a system) is to electrically heat the receiver elements, supply and return piping and joints. For example, joints and stationary piping could be wrapped or otherwise associated with electrical heating elements. A typical receiver cannot be implemented with an external impedance heater however, because the heater elements and associated insulation would block sunlight during use and heater materials suitable for external impedance heating would be very expensive when engineered to withstand the extreme temperatures of the receiver during use. Accordingly, it can be useful to construct the receiver and heat transfer fluid piping from materials, such as high temperature stainless steel, which have sufficient conductivity to operate directly as impedance heating elements when electrical current is applied to some portion or all of a heat transfer fluid loop.
Conventional ball and rotary joints such as illustrated in
The problems noted above may be addressed by implementing CSP systems having joints and joining methods as illustrated in
One particular embodiment of joint 70 is shown in
In use, as the system tracks the sun, the receiver 20 will be moved through a substantial arc around an axis of rotation defined by the supporting frame 14 supporting the reflective facets of the trough reflector 78. Therefore, the flexible pipe 72 must accommodate substantial motion of the receiver 20 with respect to the stationary heat transfer fluid piping 74 on a daily basis without undue failure. This requirement may, in certain embodiments, be facilitated by providing the flexible pipe 72 with a whole or partial loop 82 substantially positioned around the axis of rotation. In the embodiment illustrated in
The particular configuration illustrated in
The joint 70 therefore includes a flexible pipe 72 between the inlet or outlet of a receiver 20 and stationary heat transfer fluid circuit piping 74 which accommodates the necessary motion between the receiver and the stationary piping without requiring any conventional joint such as a ball joint, rotary joint or other joint having a fluid tight sealing surface that rotates, slides or moves across a mating fluid tight sealing surface. Therefore, leakage is prevented, seal packing material degradation or destruction is prevented and, as is described in detail below, an electrical current can flow from the receiver to the heat transfer fluid piping facilitating the impedance heating of the joint 70 and adjacent elements.
An alternative joint 94 configuration is illustrated in
As noted above, joints 70 or 96 are typically implemented at the inlet to a first receiver or the outlet from the last receiver in a collector, loop or linear array. In this configuration, crossover pipes may be used to connect the outlets and inlets of adjacent interior receivers. The crossover pipes may be implemented with flexible tubing or other means to accommodate thermal expansion between the receivers. However, substantially rigid crossover pipes do require that each parabolic reflector in an array be rotated in unison to track the sun. Unified rotation may be accomplished by mechanically coupling the modules of adjacent reflectors and providing centralized or distributed drive mechanisms to rotate the entire array together. Alternatively, optical, mechanical or other sensors may be implemented between adjacent modules to coordinate and control unified rotation. Unified rotation between adjacent modules eliminates the requirement for joints such as the prior art rotary joint 22 (
The joints 70 or 94 described herein also facilitate impedance heating across multiple parabolic trough reflectors and therefore across some or all of a collector or loop. For example,
Impedance heating is provided across all elements of the loop 108 by a single transformer 132 in electrical communication with the supply and return pipes 116 and 130. Thus, electrical current may be caused to flow from the transformer 132 through the various joints, receivers and crossover pipes without interruption by insulating materials such as the seals or bearing packing materials of conventional rotary or ball joints. In alternative embodiments, more than one transformer may be provided if required to provide suitable current for impedance heating.
Various embodiments of the disclosure could also include permutations of the various elements recited in the claims as if each dependent claim was a multiple dependent claim incorporating the limitations of each of the preceding dependent claims as well as the independent claims. Such permutations are expressly within the scope of this disclosure.
While the embodiments disclosed herein have been particularly shown and described with reference to a number of alternatives, it would be understood by those skilled in the art that changes in the form and details may be made to the various configurations disclosed herein without departing from the spirit and scope of the disclosure. The various embodiments disclosed herein are not intended to act as limitations on the scope of the claims. All references cited herein are incorporated in their entirety by reference.
This application claims the benefit under 35 USC section 119 of U.S. provisional application 61/983,815 filed on Apr. 24, 2014 and entitled “Joints and Joining Methods for the Heat Transfer Fluid Circuit of Trough-Type Solar Collector Systems,” the content of which is hereby incorporated by reference in its entirety and for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US15/26915 | 4/21/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61983815 | Apr 2014 | US |