Quantum information processing uses quantum mechanical phenomena, such as energy quantization, superposition, and entanglement, to encode and process information in a way not utilized by conventional information processing. For example, it is known that certain computational problems may be solved more efficiently using quantum computation rather than conventional classical computation. However, to become a viable computational option, quantum computation requires the ability to precisely control a large number of quantum bits, known as “qubits,” and the interactions between these qubits. In particular, qubits should have long coherence times, be able to be individually manipulated, be able to interact with one or more other qubits to implement multi-qubit gates, be able to be initialized and measured efficiently, and be scalable to large numbers of qubits.
A qubit may be formed from any physical quantum mechanical system with at least two orthogonal states. The two states of the system used to encode information are referred to as the “computational basis.” For example, photon polarization, electron spin, and nuclear spin are two-level systems that may encode information and may therefore be used as a qubit for quantum information processing. Different physical implementations of qubits have different advantages and disadvantages. For example, photon polarization benefits from long coherence times and simple single qubit manipulation, but suffers from the inability to create simple multi-qubit gates.
Different types of superconducting qubits using Josephson junctions have been proposed, including “phase qubits,” where the computational basis is the quantized energy states of Cooper pairs in a Josephson Junction; “flux qubits,” where the computational basis is the direction of circulating current flow in a superconducting loop; and “charge qubits,” where the computational basis is the presence or absence of a Cooper pair on a superconducting island. Superconducting qubits are an advantageous choice of qubit because the coupling between two qubits is strong making two-qubit gates relatively simple to implement, and superconducting qubits are scalable because they are mesoscopic components that may be formed using conventional electronic circuitry techniques. Additionally, superconducting qubits exhibit excellent quantum coherence and a strong non-linearity associated with the Josephson effect. All superconducting qubit designs use at least one Josephson junction as a non-linear non-dissipative element.
Scalable quantum computation will ultimately require precise control over the various components used to implement quantum computation, including the qubits and the devices used to implement logical gates between qubits.
The following is a non-limiting summary of some embodiments of the present application.
Some aspects of the present application are directed to a nonlinear superconducting circuit. The circuit may include a first nonlinear superconducting device with a potential having a positive anharmonicity and a second nonlinear superconducting device coupled to the first nonlinear superconducting device. The second nonlinear superconducting device may have a potential with a negative anharmonicity, and a resonant frequency of the first nonlinear superconducting device may be equal to a resonant frequency of the second nonlinear superconducting device.
Some aspects of the present application are directed to a method of controlling a nonlinear superconducting circuit comprising a first nonlinear superconducting device and a second nonlinear superconducting device. The method includes: driving the first nonlinear superconducting device and the second nonlinear superconducting device to produce a Hamiltonian with least one off-diagonal interaction and diagonal interactions equal to zero.
Various aspects and embodiments of the disclosed technology will be described with reference to the following figures. It should be appreciated that the figures are not necessarily drawn to scale.
The inventors have recognized and appreciated that four-wave mixing interactions are useful for controlling qubits used in quantum information processing and may be used as a building block for further developments in the field. In some embodiments, a Josephson junction based circuit facilitates off-diagonal parametric four-wave mixing interactions, while cancelling undesired diagonal interactions that arise from the fourth-order nonlinearity of the Josephson cosine potential. Some embodiments of the circuit consist of two capacitively coupled Josephson anharmonic oscillators tuned to have the same resonant frequencies while having equal and opposite fourth-order nonlinearity. The eigenmodes of such a system closely approximate linear harmonic oscillators with the additional ability to perform parametric four-wave mixing interactions. Moreover, for some applications, the magnitude of the diagonal terms can be tuned to non-zero values by changing the flux bias of the circuit.
Examples of uses of the four-wave mixing process in quantum information processing include exchanging two photons of a high-Q harmonic oscillator with a single excitation of a low-Q mode and a pump-photon, which may be used as a fundamental building block for driven-dissipative stabilization of Schrödinger cat-states (see, e.g., M. Mirrahimi et al., New J. Phys. 16, 045014, 2014, which is incorporated herein by reference in its entirety). Another example of a useful four-wave mixing process is a longitudinal interaction which induces qubit photon-number dependent drive on another mode, resulting in single-shot readout of the qubit (see, S. Touzard et al., Phys. Rev. Lett. 122, 080502, 2019, which is incorporated herein by reference in its entirety). These four-wave mixing processes are conventionally obtained by off-resonantly driving the fourth-order nonlinearity present in the cosine potential of a Josephson junction. However, using conventional techniques, the fourth-order nonlinearity also introduces additional diagonal interactions that manifest as frequency shifts, such as Kerr, cross-Kerr and Stark shifts etc. These frequency shifts lead to difficulties in tuning of the desired parametric processes and, for certain applications, limit the fidelities of the resulting operations.
By way of example, a transmon coupled to a cavity may be described by the following Hamiltonian:
where ωc is the cavity frequency; a and a† are the annihilation and creation operators, respectively, for microwave radiation within the cavity; ωq is the transmon qubit frequency; b and b† are the annihilation and creation operators, respectively, for transmon quanta; EJ is the tunneling energy of the transmon's Josephson junction; and {circumflex over (φ)}=ϕa(a+a†)+ϕb(b+b†)+ξ(t), where ξ(t)=2ξ cos(ωpt), wherein ωp is a function of the frequency difference between twice the stark-shifted cavity frequency and the stark-shifted transmon qubit frequency. When the above Hamiltonian is expanded and put in a rotating frame, the resulting Hamiltonian is as follows:
where the first term is the cross-Kerr interaction between the cavity and the transmon qubit (with a coupling strength χab), the second term is the self-Kerr interaction in the cavity (with a coupling strength χaa), the third term is the self-Kerr interaction in the transmon qubit (with a coupling strength χbb), and the fourth term is the four-wave-mixing interaction (with a coupling strength
The self-Kerr and cross-Kerr interactions (i.e., the first three terms) shift the resonance frequencies and cause dephasing in a way that makes it difficult to precisely tune the desirable four-wave-mixing interaction. In addition, under certain circumstances, these interactions may lead to irretrievable loss of information.
The inventors have recognized that it is desirable to remove the aforementioned frequency shifts. Accordingly, in some embodiments, a Josephson junction based four-wave mixing circuit is used to take advantage of an interference effect that arises by engineering a particular symmetry to cancel out the undesired fourth-order diagonal interactions while preserving the four-wave mixing capabilities. In some embodiments, the circuit includes two capacitively coupled anharmonic oscillators, that are engineered and/or controlled to have the same frequencies, while making their fourth-order nonlinearity equal in magnitude but opposite in sign. This condition is described by a simplified Hamiltonian of the form
where ω0 is the frequency of the two modes, g is the strength of the capacitive coupling, g4 is the magnitude of the fourth-order nonlinearity at the operating point, a and a† are the annihilation and creation operators of one of the two bare modes of the circuit, and b and b† are the annihilation and creation operators the other of the two bare modes of the circuit. The bare modes of this circuit participate in the nonlinearity with equal and opposite amplitudes. This can be seen by diagonalizing the linear part H0/ℏ=ω0a†a+ω0b†b+g(a†b+b†a) of the Hamiltonian to get
Here, the symmetric bare mode S (ωS=ω0+g) participates in the nonlinearity symmetrically while the asymmetric bare mode A (ωA=ω0−g) participates in the nonlinearity asymmetrically. By expanding the nonlinear terms, it can be seen that the self-Kerr terms and the cross-Kerr terms of the two eigenmodes vanish, leaving a completely harmonic system. The only nonlinear terms that survive are the off-diagonal terms that have an odd number of asymmetric mode participation (e.g., S3A†, SA2A† etc.). These terms can then be addressed using off-resonant drives on appropriate modes.
The negative fourth-order nonlinearity mode can be engineered using any Josephson inductive element such as a single Josephson junction or a flux-tunable element such as SQUID, RF-SQUID, SNAIL etc. biased near zero flux quantum. On the other hand, the mode with positive fourth-order nonlinearity can only be engineered using an asymmetric flux-tunable element such as RF-SQUID, SNAIL (a.k.a. flux-qubit) etc., biased near half flux quantum. The conditions for making the two modes equal in frequency and equal-and-opposite in fourth-order nonlinearity can be derived based on the particular implementation chosen. In some embodiments this may be achieved by selecting the shunting capacitance of the individual bare modes to be equal.
In some embodiments, the circuit can also be coupled to other resonator/qubit modes using a capacitive dipole-dipole coupling. It is possible to selectively couple these external modes via only symmetric or only asymmetric eigenmodes by choosing the correct orientation of the circuit. The same technique can be applied to make the eigenmodes selectively high-Q or low-Q depending on their function. Moreover, the circuit can be configured, by tuning the flux bias, to provide a non-zero magnitude of diagonal interactions and/or to provide odd-order mixing processes.
In some embodiments, using an interference effect arising from a symmetric circuit design leads to a versatile device with the ability to may be used to engineer multimode systems that are useful in the field of quantum information processing, since eliminating the always on diagonal interactions makes it easier to address the individual modes while keeping the other modes unperturbed. Moreover, in certain applications, the diagonal interactions can be tuned to non-zero values by tuning the flux away from the ideal operating point. Additionally, some embodiments of the circuit use well-studied dipole inductive elements. This makes the implementation of some embodiments of the circuit straight forward and the parameter space easily accessible. Finally, in some embodiments, appropriate orientation of the circuit may be used to specifically couple to the chosen eigenmode, further increases the selectivity of engineered interactions.
The first nonlinear superconducting device 101 is a nonlinear device that exhibits a positive anharmonicity. In some embodiments, a positive anharmonicity refers to the fourth order term of the potential having a positive, non-zero value. In some embodiments, the nonlinear device that exhibits a positive anharmonicity uses an external magnetic field to create the positive anharmonicity. For example, an external magnetic field may be threaded through a loop or ring of the nonlinear device. Some examples of nonlinear superconducting devices that are capable of exhibiting positive anharmonicity include superconducting nonlinear asymmetric inductive elements (SNAILs), fluxonium qubits, radio frequency (RF) superconducting quantum interference devices (SQUIDS), and capacitively-shunted flux qubits.
The second nonlinear superconducting device 102 is a nonlinear device that exhibits a negative anharmonicity. In some embodiments, a negate anharmonicity refers to the fourth order term of the potential having a negative, non-zero value. Some examples of nonlinear superconducting devices that are capable of exhibiting negative anharmonicity include SNAILs, transmons, and SQUID transmons.
In some embodiments, the first and second nonlinear superconducting devices 101/102 are manufactured to have the respective anharmonicity properties. Alternatively, the anharmonicity properties of the nonlinear superconducting devices may be controlled at the time of operation. This may be achieved, for example, by using nonlinear superconducting devices that include at least one loop and threading an external magnetic field through the at least one loop. In some embodiments, an electromagnetic solenoid may be positioned near the nonlinear superconducting devices such that the external magnetic field created by the solenoid is oriented in a direction that is substantially perpendicular to the plane of the at least one loop.
In some embodiments, the first and second nonlinear superconducting devices 101/102 comprise a superconducting material, such as aluminum formed on a substrate 110. The substrate 110 may, for example, be made from sapphire. In some embodiments, the first and second nonlinear superconducting devices 101/102 may be formed on the same substrate 110, as illustrated in
In some embodiments, the nonlinear superconducting circuit 100 includes the cavity 120. The cavity 120 may be, for example a three-dimensional (3D) resonator that supports one or more microwave frequencies. The substrate 110 on which the first and second superconducting devices 101/102 are formed may be suspended in the three-dimensional resonator. However, embodiments are not limited to 3D cavity resonators. Some embodiments use two-dimensional, planar superconducting resonators and circuits.
In some embodiments, the nonlinear superconducting circuit 100 includes a first antenna 103 and a second antenna 104. The first antenna 103 is coupled to the first nonlinear superconducting device 101. The first antenna 103 enables microwave signals supported by the cavity 120 to couple to the first nonlinear superconducting device 101. The second antenna 104 is coupled to the second nonlinear superconducting device 102. The second antenna 104 enables microwave signals supported by the cavity 120 to couple to the second nonlinear superconducting device 102. In some embodiments, the first antenna 103 and the second antenna 104 are formed on the same substrate 110 as the first and second nonlinear superconducting device 101/102, as illustrated in
In some embodiments, the first and second antenna 103/104 may each include multiple portions. For example, a first portion of the first antenna 103 may be located on a first side of the first nonlinear superconducting device 101 and the second portion of the first antenna 103 may be located on a second side, opposite the first side, of the first nonlinear superconducting device 101. In this way, the first portion and the second portion of the first antenna 103 may be connected to opposite sides of the first nonlinear superconducting device. Similarly, a first portion and a second portion of the second antenna may be connected to opposite sides of the second nonlinear superconducting device.
In some embodiments, the first and second antennas 103/104 may include a superconducting pad formed from the same superconducting material (e.g., aluminum) as is used to form the first and second nonlinear superconducting devices 101/102.
In some embodiments, a portion of the first antenna 103 is physically connected to a portion of the second antenna 104 by a superconducting connecting member 105. In some embodiments, the superconducting connecting member 105 may be a wire of superconducting material formed on the substrate 110.
The first ring portion includes multiple Josephson junctions 305-307 connected in series. In some embodiments, there are no other circuit elements between one Josephson junction and the next Josephson junction. For example, a Josephson junction is a dipole circuit element (i.e., it has two nodes). A first node of a first Josephson junction 305 is directly connected to the first node 311 of the SNAIL, which may lead to some other external circuit element (such as a portion of the antenna). A second node of the first Josephson junction 305 is directly connected to a first node of a second Josephson junction 306. A second node of the second Josephson junction 306 is directly connected to a first node of a third Josephson junction 307. A second node of the third Josephson junction 307 is directly connected to a second node 312 of the SNAIL, which may lead to some other external circuit element (such as a portion of the antenna).
While
In some embodiments, Josephson junctions 305-307 are formed to be identical. For example, the tunneling energies, the critical current, and the size of the Josephson junctions 305-307 are all the same.
The second ring portion of the SNAIL 300 includes a single Josephson junction 308. In some embodiments, there are no other circuit elements in the second ring portion. A first node of a single Josephson junction 308 is directly connected to the first node 311 of the SNAIL, which may lead to some other external circuit element (such as a portion of the antenna). A second node of the single Josephson junction 308 is directly connected to the second node 312 of the SNAIL, which may lead to some other external circuit element (such as a portion of the antenna).
The single Josephson junction 308 has a smaller tunneling energy than each of Josephson junctions 305-307. For this reason, the single Josephson junction 308 may be referred to as a “small” Josephson junction and Josephson junctions 305-307 may be referred to as “large” Josephson junctions. The terms “large” and “small” are relative terms that are merely used to label the relative size of Josephson junction 308 as compared to Josephson junctions 305-307. The Josephson energy and the Josephson junction size are larger in the large Josephson junction than in the small Josephson junction. The parameter α is introduced to represent the ratio of the small Josephson energy to the large Josephson energy. Thus, the Josephson energy of the large Josephson junctions 305-307 is E1 and the Josephson energy of the small Josephson junction 108 is αEJ, where 0<α<1.
The SNAIL 300 may controlled at least in part by threading a DC magnetic flux Φext through the superconducting ring 301. In some embodiments, a magnetic flux generation device (not shown) may be positioned in proximity to the superconducting ring. For example, an electrical coil (e.g., a solenoid) may be formed in proximity to the ring 101. The coil may be next to the ring 101 and in the same plane as ring 101. Alternatively, a coil may be under the ring 101 in a different layer of the device 100, e.g., above or below the plane of the superconducting ring 301.
As mentioned above, any number of large Josephson junctions may be used in the SNAIL 300. For a SNAIL with n large Josephson junctions, the SNAIL has an inductive energy given by:
where φ is the superconducting phase across the single small Josephson junction 108, φext=2πΦext/Φ0 is the reduced applied magnetic flux, and Φ0=h/2e is the magnetic flux quantum. Eqn. 1 indicates that the potential is a function of a single degree of freedom (φ). This is because dynamics due to any intra-array modes are eliminated and only common excitations across the array of n Josephson junctions are considered. This reduction is valid when EJ>>EC for each junction, where EC=e2/2CJ is the Coulomb charging energy of the junction with capacitance CJ, and when C0<<CJ/n2, where C0 is the capacitance to ground of each island between junctions. Some embodiments meet all of these requirements.
In some embodiments, the parameters α and Φ0 may be selected such that the SNAIL 300 has properties desirable for its application. For example, for α˜0.8 and Φext˜0.5Φ0, the SNAIL 300 will have a double-well potential, which is undesirable due to the resulting hysteresis affects. But the parameters can be adjusts to create a potential with a single minimum. Moreover, the potential may simultaneously be tuned to have a positive anharmonicity in the fourth-order term (e.g., for α˜0.2 and Φext˜0.4Φ0).
To select desirable parameters, the potential of Eqn. 1 is Taylor expanded about its minimum value Omin to obtain the effective potential for {tilde over (φ)}=φ−φmin:
where (c2, c3, c4, . . . ) are numerically determinable coefficients whose specific values depend on n (which is three in the illustrated embodiments), α, and Φext.
It is noted that for n=1 (e.g., a SQUID) c3=0 because the potential is a pure cosine irrespective of the values of α, and Φt. Additionally, in the limit n>>1, the array of multiple large Josephson junctions act as a linear inductance and the potential approaches that of a fluxonium qubit/RF SQUID regime. While embodiments may include any number of large Josephson junctions so long as n>1 and the number is not in the regime where n>>1, the example described herein is focused on the case where n=3. Embodiments are not however, limited to this example embodiment.
(the c3 term is small, making the effective fourth-order phase term not too dissimilar from the actual fourth-order phase term). Thus, in some embodiments, a quartic coefficient of the potential of the SNAIL 300 is equal to a quadratic coefficient of the potential of the SNAIL 300. In some embodiments, the quartic coefficient is the aforementioned effective quartic coefficient, which is a function of the quadratic coefficient, the cubic coefficient and the actual quartic coefficient of the potential of the SNAIL 300.
These two maps of
The above values may be of interest for a SNAIL with three Josephson junctions. In particular, the value of alpha may be 0.18<α<0.33. However, other embodiments may use a SNAIL with a larger number of Josephson junctions. In an embodiment with N Josephson junctions, the range of interest may be between, and including, the values 1/N and ½(1/N+1/N3). However, embodiments are not limited to this particular range.
In addition to the above criteria, some embodiments have the SNAIL resonance frequency equal to the transmon resonance frequency. This requirement is equivalent to the inductance of the transmon (LJt) being equal to the inductance of the SNAIL (LJs) (see
When the above conditions are met, the nonlinear superconducting circuit 200 exhibits a symmetric mode and an asymmetric mode.
The Hamiltonian of the superconducting circuit 200 written in terms of the symmetric and asymmetric eigenmodes is as follows:
H
nl
=g
4t[ϕS(S+S†)+ϕA(A+A†)+ϕC(C+C†)]4+g4s[ϕS(S+S†)−ϕA(A+A†)+ϕC(C+C†)]4
where S and S† are the annihilation and creation operators, respectively, for the symmetric eigenmode of the circuit 200; A and A† are the annihilation and creation operators, respectively, for the asymmetric eigenmode of the circuit 200; and C and C† are the annihilation and creation operators, respectively, for the cavity mode of the circuit 200. In the above Hamiltonian, g4t=−EJt/4!ℏ and g4s=c4EJs/4!ℏ. Thus, g4t and g4s have opposite signs. When the Hamiltonian is expanded, the self-Kerr and cross-Kerr terms are equal to zero when the condition g4s=−g4t=g4>0. In some embodiments, g4s may be tuned using the external magnetic flux and/or the ratio α of the SNAIL. In some embodiments, g4t may be set at the time of manufacturing by setting the capacitance and/or size of the superconducting pads forming the antennas of the transmon and/or the critical current, Ic, of the transmon.
When the first condition (Ls=Lt) and the second condition (g4s=−g4t=g4>0) are met, and the Hamiltonian is expanded, the terms with an odd number of ϕA will not cancel (due to the difference in signs in the asymmetric terms of the Hamiltonian), but all terms with an even number of ϕA do cancel. Thus, constructive interference results in only the following four-wave-mixing terms being non-zero:
ωp=2ωc−ωA⇒Heff=24g4ϕC2ϕSϕAξ(C2A†+C†2A)
ωp=ωA⇒Heff=24g4ϕC2ϕSϕAξ(2C†C)(A†+A)
Thus, by forming a nonlinear superconducting circuit with two nonlinear superconducting devices that satisfy the above two conditions, a pure four-wave-mixing interaction may be engineered without the negative influences of dephasing and frequency shifts caused be the self-Kerr and cross-Kerr interactions, which are canceled out due to the symmetry of the circuit.
The above discussion focuses on the example embodiment of
The superconducting circuit 600 includes the SNAIL 601 and the SQUID 602 as the first and second nonlinear superconducting devices, respectively. Thus, both nonlinear superconducting devices of the nonlinear superconducting circuit 600 include a superconducting ring through which an external magnetic flux is thread. The superconducting circuit 600 includes a magnetic flux source 615 for generating the external magnetic flux that can be used to control one or more parameters of the SNAIL 601 and the SQUID 602. In some embodiments, the magnetic flux source 615 is a solenoid that is located outside of the cavity 620. The magnetic flux source 615 is located above the substrate 610 and oriented such that the axis of the solenoid is perpendicular to the upper surface of the substrate 610.
The SNAIL 601 is physically connected to a first antenna that includes the first antenna portion 603 and the second antenna portion 605. The first antenna couples the SNAIL 601 to the microwave signals supported by the cavity 620. The first antenna portion 603 and the second antenna portion 605 are attached on opposite sides of the SNAIL 601.
The SQUID 602 is physically connected to a second antenna that includes the third antenna portion 604 and the fourth antenna portion 606. The second antenna couples the SQUID 602 to the microwave signals supported by the cavity 620. The third antenna portion 604 and the fourth antenna portion 606 are attached on opposite sides of the SQUID 602. Additionally, the second antenna portion 605 and the fourth antenna portion 606 are physically connected by a superconducting connecting member 607.
Microwave signals that drive the nonlinear superconducting circuit 600 are coupled to the cavity 620 via the transmission line 611 via the microwave pin 612, which interfaces with an aperture of the cavity 620. The substrate 610 is suspended in the cavity 620 such that the two antennas are near the center of the cavity 620.
While the above discussion has focused on the four-wave mixing terms that correspond to the annihilation of two cavity microwave photons to form an anti-symmetric quanta in the superconducting circuit (e.g., the C2A† term) there are other terms that may be used under the same cancellation conditions if pumped at higher frequencies. These additional terms correspond to higher order terms of the Hamiltonian.
Having thus described several aspects and embodiments of the technology set forth in the disclosure, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be within the spirit and scope of the technology described herein. For example, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the embodiments described herein. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described. In addition, any combination of two or more features, systems, articles, materials, kits, and/or methods described herein, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present disclosure.
Also, as described, some aspects may be embodied as one or more methods. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
The present application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 62/793,850, filed Jan. 17, 2019, and titled “JOSEPHSON NONLINEAR CIRCUIT,” which is hereby incorporated by reference in its entirety. The present application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 62/812,714, filed Mar. 1, 2019, and titled “JOSEPHSON NONLINEAR CIRCUIT,” which is hereby incorporated by reference in its entirety.
This invention was made with government support under W911NF-18-1-0212 awarded by the United States Army Research Office and under 1609326 awarded by the National Science Foundation. The government has certain rights to the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/013675 | 1/15/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62812714 | Mar 2019 | US | |
62793850 | Jan 2019 | US |