The present invention relates to the technique of elements of a railway vehicle, and particularly to a journal box rubber pad and a bogie.
A railway wagon generally comprises a wagon body, a bogie and a braking device, wherein the most commonly used bogie on the railway wagon is a two-axle cast steel three-piece bogie. As shown in
However, the disadvantages of the journal box rubber pad of the structure shown in
One embodiment of the invention provides an journal box rubber pad and a bogie so that the conductive function of the journal box rubber pad still can be realized even when the journal box rubber pad has a thin vulcanization rubber layer between the surfaces of the upper and the lower wear liners.
One embodiment of the invention provides an journal box rubber pad, which comprises an upper wear liner, a lower wear liner, a rubber layer positioned between the upper wear liner and the lower wear liner and a thin rubber layer formed on the outer surfaces of the upper wear liner and the lower wear liner respectively. The journal box rubber pad also comprises a glue-injection hole and a conductive mechanism, wherein the glue-injection hole comprises a cavity formed in the rubber layer, a first hole formed on the upper board and a second hole formed on the lower wear liner; the cavity, the first hole and the second hole are communicated with each other. The conductive mechanism is internally positioned in the glue-injection hole; the two ends of the conductive mechanism pass through the first hole and the second hole respectively and contact with two conducted apparatuses.
One embodiment of the invention provides a bogie, which comprises a bolster, bogie side frames, and wheel sets, wherein the bogie side frames are connected with the wheel sets via an adapter being positioned at the ends of the wheel sets; an journal box rubber pad used to produce an elastic buffer effect is provided between the bogie side frames and the adapter, and the abovementioned journal box rubber pad is adopted for the journal box rubber pad.
As for the journal box rubber pad and the bogie in the embodiments of the invention, the conductive mechanism is internally placed in the glue-injection hole of the journal box rubber pad, and the two end surfaces of the conductive mechanism contact the bogie side frames and the adapters respectively, which solves the problems of the journal box rubber pad in the prior art that the wear liner provided with the thin rubber layer can not have conductive function at the same time; therefore, the journal box rubber pad not only can overcome the disadvantages of high manufacturing accuracy required by the upper and the lower wear liners, easy abrasion, easy poor contact between the wear liner and the side frame as well as that between the wear liner and the adapter but also can realize conductive function.
In order to explain the embodiments of the invention and the technical solution of the prior art more clearly, the drawings needed by the embodiments or the description of the prior art are introduced simply in following details. It is obvious that the drawings described in the following are a plurality of embodiments of the invention. As for those persons skilled in this art, they can achieve other drawings according to these drawings under the premise that they do not provide creative labor.
Reference signs mentioned in the drawings:
In order to make the objects, technical solutions and merits of the present invention clearer, a further detailed description of embodiments of the present invention is given by reference to accompanying drawings. It is obvious that the described embodiments is one part of the embodiments of the invention and is not the whole embodiments. Base on the embodiments of the invention, those persons skilled in the art can obtain all other embodiments not under the premise that they should provide creative labor. These embodiments all are within the protection range of the invention.
The main technical solution of the present invention is as follows: a conductive mechanism is internally placed in a glue-injection hole of an journal box rubber pad; two end surfaces of the conductive mechanism are respectively higher than the surfaces of an upper wear liner and a lower wear liner; the conductive function can be realized according to the two end surfaces of the conductive mechanism being in contact with the bogie side frames and the adapters respectively.
With the following drawings and embodiments, the technical solution of the present invention can be further described in details.
Specifically, the glue-injection hole 20 can be provided at the middle part of the journal box rubber pad. The glue-injection hole 20 can comprise a cavity formed in a rubber layer 18, a first hole positioned on the upper wear liner and a second hole positioned on the lower wear liner, wherein the first hole and the second hold both communicated with the cavity. The conductive mechanism is placed in the glue-injection hole 20. Two ends of the conductive mechanism pass through the first hole and the second hole respectively and contact with two conducted apparatuses; therefore, the electric conduction between the two apparatuses can be realized. When the journal box rubber pad is used for the bogie of the railway wagons, the two ends of the conductive mechanism can contact with the bogie side frames and the adapters respectively. A gap is reserved between the conductive mechanism and the glue-injection hole. Therefore, when the bogie is operating on wires, the journal box rubber pad can be adapted to the contraction and shearing force caused by the vibration of a vehicle, and the journal box rubber pad can bear vertical, lateral and longitudinal displacements without damage.
Firstly, the structure of the conductive mechanism can be explained as follows: in the embodiment, the conductive mechanism can comprise a first conductive pin 21, a second conductive pin 22, wires 23 and a spring 24, wherein the head part of the first conductive pin 21 can pass through a first hole on the upper wear liner; the end surface of the head part extends out of and is higher than the surfaces of a thin rubber layer and can be used for contacting a bogie side frame. The head part of the second conductive pin 22 can pass a second hole on the lower wear liner; the end surface of the head part extends out of the thin rubber layer surfaces on the lower wear liner and can be used for contacting an adapter.
Wires 23 connect the first conductive pin 21 and the second conductive pin 22. Copper stranded wires can be adopted for the wires 23. The bases of the first conductive pin 21 and the second conductive pin 22 can be connected through the copper stranded wires, wherein the first conductive pin 21 and/or the second conductive pin 22 can be connected with the wires 23 through a rivet 25. Fox example, the connection can be realized through a blind rivet; or the conductive pins can be connected with the wires 23 through a pin hole, for example, the diameters of the holes at the middle parts of the first conductive pin 21 and the second conductive pin 22 are provided and slightly larger than the diameters of the wires 23. When being installed, the wires 23 is penetrated into the hole of the conductive pin, and then the wires 23 is clamped by the tail part of the conductive pin being pressed into a flat shape, hence the first conductive pin 21 and the second conductive pin 22 can connect reliably.
A spring 24 can be sleeved on the wires 23 and provide a support between the first conductive pin 21 and the second conductive pin 22. The spring 24 can be a cylinder-shaped helical spring, of which the two ends can be connected with the bases of the first conductive pin 21 and the second conductive pin 22 respectively. When the journal box rubber spring is mounted on a bogie, with the elastic support provided by the spring 24, the conductive pin can contact the bogie side frame and the adapter reliably under various conditions, so as to maintain a conductive passage from the bogie side frame to the adapter.
Secondly, the connecting structure of the conductive mechanism and the glue-injection hole can be explained as follows: the diameter of the second hole on the lower wear liner 17 can be slightly larger than that of the head part of the second conductive pin 22 and be smaller than the diameter of the base of the second conductive pin 22 and that of the cavity. The head part of the second conductive pin 22 passes through the second hole.
The diameter of the first hole on the upper wear liner 16 is slightly larger than that of the base of the first conductive pin 21 and that of the cavity. The first conductive pin 21 is directly put into the first hole. Meanwhile, a sealing apparatus 26 can be provided. It is sealed connection between the sealing apparatus 26 and the first hole, i.e., the first hole is sealed by the sealing apparatus 26, so as to realize that the whole conductive mechanism is sealed and blocked in the glue-injection hole.
Specifically, a third hole can be provided on the sealing apparatus 26. The diameter of the third hole is larger than that of the head part of the first conductive pin 21 and smaller than that of the base of the first conductive pin 21. For example, the diameter of the third hole can be provided to be the same as the diameter of the second hole on the lower wear liner. The head part of the first conductive pin 21 passes through the third hole and the base of the first conductive pin 21 is pressed with a lower end surface of the sealing apparatus, so as to sealing the conductive mechanism in the glue-injection hole.
The sealing apparatus 26 can be in threaded connection with the first hole. Meanwhile, the sealing apparatus is a plug. For example, an outer thread is provided at the outer surfaces of the sealing apparatus and its diameter is slightly larger than that of the cavity in the rubber layer. The first hole is a thread hole (i.e., inner thread). The diameter of the threaded hole is slightly larger than that of the base of the first conductive pin 21. The sealing apparatus 26 can be screwed into the first hole and press the first conductive pin 21. When the sealing apparatus 26 is screwed into a certain depth, it is blocked by the rubber layer and stop fastening. Or, the sealing apparatus 26 also can be connected with the first hole according to interference fit connection. That is, threads are not provided at the outer surface of the sealing apparatus 26 and the inner surface of the first hole on the upper wear liner 16. However, the outer diameter of the sealing apparatus 26 should slightly larger than the inner diameter of the first hole. During assembly, the sealing apparatus 26 can be pressed, assembled and compacted by pressure and is kept not to be released.
Furthermore, a block pad 27 is fastened on the upper wear liner 16. The block pad 27 can be welded on the upper wear liner 16 and be positioned between the lower end surface of the sealing apparatus 26 and the base of the first conductive pin 21. The block pad 27 is provided to avoid the problem of the unreliable connection between the sealing apparatus 26 and the upper wear liner when the upper wear liner 16 is relatively thin, to increase the effective thickness of the upper wear liner and further strengthen the connection of the sealing apparatus. For example, after the block pad 27 is provided, the sealing apparatus 26 can be in threaded connection with the first hole and the block pad; therefore, the connection between the upper wear liner 16 and the sealing apparatus 26 becomes more reliable.
The manufacturing and using processes of an journal box rubber pad of the embodiment of the invention is further explained in the following details, wherein copper stranded wires are adopted as the wires, for example:
Firstly, the conductive mechanism can be assembled. When assembling, establish a connection between the second conductive pin 22 and the copper stranded wires first of all, wherein the connection can be obtained with the adopt of blind rivets. Then, a spring used for supporting is sleeved onto the copper stranded wires. As the diameter of the base of the second conductive pin 22 is larger than the inner diameter of the spring 24, the spring 24 can be blocked in the base of the second conductive pin 22 and can not be released. The first conductive pin 21 is connected with the copper stranded wires through the compression spring 24 by blink rivets. Therefore, a conductive mechanism consists of the first conductive pin 21, the second conductive pin 22, the copper stranded wires and the spring 24.
Secondly, the glue-injection hole is provided and filled with the glue which is then vulcanized. Before the journal box rubber is vulcanized, one round hole (that is, the second hole) is provided at the middle part of the lower wear liner 17 beforehand. The diameter of the second hole is slightly larger than the diameter of the head part of the second conductive pin 22 and is smaller than the diameter of the base thereof. One first hole (for example, a threaded hole) is provided at the middle part of the upper wear liner 16. The diameter of the threaded hole is slightly larger than the diameter of the base of the first conductive pin 21. During the vulcanization of the journal box rubber pad, the threaded hole at the middle part of the upper wear liner 16 is taken as the glue-injection hole. When the glue is injected, a pressure pin of which the diameter is slightly larger than the diameter of the base of the first conductive pin 21 and is slightly smaller than the diameter of the threaded hole is adopted for the pressing and injecting of the glue. After the glue is injected, the pressure pin in the threaded hole of the upper wear liner is pressed into the lower wear liner 17 directly, and then the glue is pressurized and vulcanized. After the vulcanization is completed, a cylinder-shaped cavity structure of which the diameter is slightly larger than that of the first conductive pin 21 and that of the base of the second conductive pin 22 and is slightly smaller than that of a threaded hole of the upper wear liner 16 is formed at the middle of the rubber layer. The threaded hole is provided on the upper wear liner 16 at the corresponding part. The round hole is provided on the lower wear liner.
Then, the conductive mechanism is mounted into the glue-injection hole. The mounted conductive mechanism is penetrated into the threaded hole of the upper wear liner 16, which facilitates the head part of the second conductive pin 22 to pass through the round hole (that is, the second hole) of the lower wear liner 16. A sealing apparatus (for example, a plug) with a hole (that is, the third hole. The diameter of the hole can be the same as that of the second hole in the middle of the lower wear liner 17) provided in the middle thereof is screwed into the threaded hole at the middle of the upper wear liner 16 and presses the first conductive pin 21. At this time, the rubber layer 18 is compressed. When the plug is screwed into a certain depth, as the diameter of the cavity is slightly smaller than the diameter of the outer thread, the plug is blocked by the rubber layer 18 and stops. In addition, during the assembly, through proper design, the end surface of the second conductive pin 22 is slightly higher than the outer surface of the vulcanized thin rubber layer of the lower layer of the lower wear liner 17, which facilitates the end surface of the first conductive pin 21 is slightly higher than the outer surface of the vulcanized thin rubber layer of the lower surface of the lower wear liner 17.
Furthermore, being taken as a positioning piece between the journal box rubber pad and the bogie side frame as well as between the journal box rubber pad and an adapter, a positioning pin 28 can be provided or can not be provided according to the requirements of a concrete structure. In additions, as the effective thickness of he block pad 27 welded on the upper wear liner 16 is increased, the connection between the upper wear liner 16 and the plug becomes more reliable.
When being used, the journal box rubber pad of the embodiment is assembled between the bogie side frame and the adapter. The end surface of the head part of the first conductive pin of the journal box rubber pad is in contact with the bogie side frame, and the end surface of the head part of the second conductive pin is in contact with the adapter. In
As for the journal box rubber pad of the embodiment, through the conductive mechanism internally placed in the glue-injection hole of the journal box rubber pad, the two end surfaces of the conductive mechanism respectively contact the bogie side frame and the adapter is utilized, which solves the problems that the conductive functions of the journal box rubber pad of the prior art provided with the thin rubber layer can not be realized at the same time. The journal box rubber pad not only can overcome the disadvantages of high manufacturing accuracy of the upper and the lower wear liners, easy abrasion and easy poor contact between the journal box rubber pad and the bogie side frame as well as that between the journal box rubber pad and the adapter but also can realize the conductive function.
The embodiment provides a bogie, comprising a bolster, a bogie side frame and wheel sets, wherein the bogie side frame is connected with the wheel sets through the adapter provided at the ends of the wheel sets; the journal box rubber pad with elastic buffer action is provided between the bogie side frame and the adapter.
The main differences between the bogies of the embodiments and the prior art are as follows: the journal box rubber pad of the embodiment 1 can be adopted. Through the adoption of the journal box rubber pad, the thin rubber layer can be provided on the surfaces of the wear liners while the conductance between the side frame and the adapter can be realized; therefore, the journal box rubber pad not only can overcome the disadvantages of high manufacturing accuracy of the upper and the lower wear liners, easy abrasion and easy poor contact between the journal box rubber pad and the bogie side frame as well as that between the journal box rubber pad and the adapter but also can realize the conductive function.
Finally, it should be understood that: the above embodiments are only used to explain but not to limit the technical solution of the present invention. In despite of the detailed description of the present invention with referring to above preferred embodiments, it should be understood that various modifications, changes or equivalent replacements can be made by those skilled in the art without departing from the scope of the present invention and covered in the claims of the present invention.