This invention relates generally to power driven tools, and more specifically to a power driven tool for tightening or loosening fasteners including an impact drive having an oversized hammer clutch.
Power driven tools for tightening or loosening fasteners (e.g., nuts and bolts) are known, and power driven tools incorporating impact drives that can intermittently provide increased torque for tightening or loosening fasteners are common.
An impact wrench incorporating a ratchet head is disclosed in co-owned U.S. Pat. No. 4,821,611, which is incorporated by reference. A pneumatic motor rotates a clutch case that coaxially houses an impact drive. Under normal operation, a cam ball in the clutch case engages a finger of an impact clutch and rotates the clutch with an output shaft for tightening or loosening the fastener. But when frictional resistance of the fastener exceeds a preselected torque output for the tool, the cam ball slides under the impact clutch finger and pushes the clutch axially forward along the output shaft. This action moves a pair of hammers forward into alignment with a corresponding pair of anvils of the output shaft. The hammers simultaneously impact the anvils producing an increased torque in the output shaft, increasing torque applied to the fastener and acting to overcome the frictional resistance of the fastener. Immediately following the impact, the hammers retreat axially rearward and when the cam ball makes one full rotation with the clutch case, the impact sequence repeats if frictional resistance exceeds the preselected torque of the tool.
The clutch case and cam ball generally move at a rate equal to the output speed of the motor, which is relatively fast. Therefore, when the output shaft is unable to turn the fastener, the cam ball repeatedly pushes the impact clutch and hammers axially forward. This action often occurs so rapidly that the hammers impact the anvils before corresponding surfaces are fully aligned, or alternatively the hammers completely miss the anvils and fail to produce any additional torque. Moreover, when the frictional resistance of the fastener exceeds the additional torque produced by the hammers, the cam ball and impact clutch may unnecessarily push the hammers into repeated alignment with the anvils before an operator disengages the motor. This repeated impact and movement can damage components of the impact drive (e.g., the cam ball and impact clutch) or prematurely wear them out.
Co-owned U.S. Pat. No. 7,080,578, which is incorporated by reference, includes a speed reducing mechanism in the power driven impact wrench. This particular design reduces the speed of the motor output and controls the impact rate of the hammers of the impact drive. Although the components of the impact drive are less prone to damage and wear, the speed reducing mechanism requires the use of additional components adding complexity to the tool.
Accordingly, there is a need for a power driven ratchet tool having an impact drive capable of providing adequate damage and wear protection without using a speed reducing mechanism.
This invention relates generally to a power driven tool for rotating a mechanical element. The tool comprises a housing and a motor positioned in the housing. The motor has an output shaft extending therefrom. The shaft rotates relative to the housing during motor operation. Further, the tool includes an impact drive axially fixed within the housing and operatively connected to the motor output shaft. The impact drive including a base, an anvil shaft having an anvil extending therefrom rotatably mounted on the base, and an annular hammer having opposite impact lands pivotally mounted on the base for movement between three positions. The three positions included a forward position in which the hammer is positioned so one of the impact lands engages the anvil, a reverse position in which the hammer is positioned so another of the impact lands engages the anvil, and a disengaged position in which neither of the impact lands engages the anvil. In addition, the tool comprises a ratchet mechanism operatively connected to the anvil shaft of the impact mechanism. The ratchet mechanism includes an output drive mounted for rotation relative to the housing for rotating a mechanical element in a selected direction.
In another aspect of the invention, a power driven tool for tightening and loosening a mechanical fastener, the tool comprises a housing having first and second ends and a longitudinal axis extending between the first and second ends. The tool also includes an output drive rotatably mounted on the housing for operatively engaging the mechanical fastener and a motor positioned in the housing having an output shaft. Further, the tool includes an impact drive positioned in the housing and functionally connecting the motor and the output drive. The impact drive including a base, an anvil shaft having an anvil extending therefrom rotatably mounted on the base, and an annular hammer having opposite impact lands pivotally mounted on the base for movement between three positions, including a forward position in which the hammer is positioned so one of said impact lands engages the anvil, a reverse position in which the hammer is positions so another of said impact lands engages the anvil, and a disengaged position in which neither of the impact lands engages the anvil.
In yet another aspect of the invention, a pneumatic tool for tightening and loosening a mechanical fastener comprises an elongate tubular housing sized for being held in one hand. The tool includes a pneumatic motor in the housing having an output shaft adapted for rotation and an impact drive axially fixed within the housing and operatively connected to the motor output shaft. The impact drive includes a base and an anvil shaft having an anvil extending therefrom rotatably mounted on the base. The impact drive also includes an annular hammer having opposite impact lands pivotally mounted on the base for movement between three positions, including a forward position in which the hammer is positioned so one of said impact lands engages the anvil, and a reverse position in which the hammer is positioned so another of said impact lands engages the anvil. The hammer impacts the anvil on the shaft in response to loading on the impact drive exceeding a predetermined torque to instantaneously increase torque provided to the anvil shaft. Further, the tool includes a ratchet mechanism operatively connected to the anvil shaft of the impact mechanism. The ratchet mechanism includes an output drive mounted for rotation relative to the housing for rotating a mechanical element in a selected direction.
Other objects and features will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the drawings.
Referring now to the drawings, and particularly to
Referring to
As illustrated in
In general operation of the wrench 10, air enters through the air inlet fitting 30 at the rearward end of the grip 12 when the lever 32 is squeezed toward the grip. The air enters the motor 18 where it rotates the rotor 36 including the output shaft 40. The motor shaft 36 rotates the clutch base 50. When required torque is low, the clutch base 50 turns the hammer 52 which engages the anvil 92 to turn the shaft 54. The crank 98 orbits the wrench centerline 38, oscillating the ring gear 100. As the ring gear 100 oscillates in one direction, the dog 120 pivots into the dog carrier 114 so the output drive 112 does not turn. As the gear 100 oscillates in another direction, the dog 120 engages the gear so the output drive 112 turns with the gear. When the required torque exceeds some preselected value, the hammer 52 pivots on the pin 74, disengaging the engaged hammer land 94 or 96 from the anvil 92 on the shaft 54 and temporarily preventing the crank 98 from driving the ratchet mechanism 22. After the anvil 92 passes the hammer land 94 or 96, the hammer 62 pivots back to a position in which the land engages the anvil 92 on the next revolution. When the combined spinning mass of the motor rotor 36, base 60 and hammer 52 acts through the hammer to impact the anvil 92 on the next revolution, an instantaneous torque increase occurs. The torque increase acts to overcome the friction in the mechanical fastener. If the torque exceeds the preselected value on the next revolution the sequence repeats. Otherwise, the impact drive 20 delivers continuous toque.
It is envisioned that the wrench of the present invention can operate at relatively high pressures thus producing relatively high rotational speeds with the motor shaft of the motor. It is therefore a benefit of this wrench 10 that the impact drive 20 is capable of handling high pressures without a speed reducing mechanism or excessively wearing components.
Components of the wrench of this invention are made of a suitable rigid material, such as metal (ex., cold-forged steel). But a wrench having components made of different materials does not depart from the scope of this invention.
When introducing elements of the present invention or the preferred embodiments(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above construction without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Priority is claimed from U.S. Provisional Patent Application Ser. No. 61/108,756 filed Oct. 27, 2008, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61108756 | Oct 2008 | US |