The present invention relates to jump ropes and methods of assembling jump ropes.
Past efforts have led to various inventions directed toward jump ropes, yet room for continued improvement remains. An object of the present invention is to provide an improved jump rope handle. Another object of the invention is to provide an improved method of assembling a jump rope. Yet another object of the invention is to provide an improved method of adjusting the length of a jump rope.
The present invention involves jump ropes, jump rope handles, and methods of assembling, adjusting, and/or repairing jump ropes. A preferred embodiment of the present invention includes a pair of novel jump rope handles with a conventional flexible rope interconnected therebetween. Each handle includes a tubular body having an exterior sized and configured for grasping in a person's hand, and an interior sized and configured to house an end of the rope; and a rope clamp having a rotor portion rotatably retained within the interior of the tubular body, and a clamping portion disposed outside the tubular body, wherein the clamping portion is sized and configured to releasably clamp a section of the rope. Each tubular body preferably includes two elongate members having generally C-shaped cross-sections and aligned with one another to define a generally cylindrical tube, and a collar sleeved about one end of the tube, and an end cap sleeved about an opposite end of the tube.
The handle parts are configured to be assembled and disassembled without the use of any tools or secondary fasteners. As a result, assembly is quick and convenient, and after assembly and use, any broken part may be readily removed and replaced. The tubular nature of the handles cooperates with the releasable rope clamps to accommodate tidy and convenient adjustments to the length of available rope extending between the handles. In other words, the distal ends of the rope may be stored within the handle and selectively extracted if and when relatively more rope is needed (e.g. as a child grows). Conversely, relatively more of the rope may be stored if and when less rope is needed (e.g. when the jump rope is exchanged from a taller person to a shorter person). Many such features and/or advantages of the present invention will become apparent from the more detailed description that follows.
With reference to the Figures of the Drawing, wherein like numerals represent like parts and assemblies throughout the views:
Each handle includes identical first and second tube halves 121 and 122 that cooperate to form a handle tube 120; a collar 130; an end cap 140; and a resilient hand grip sleeve 160. Also, as further explained below, a separate rope clamp 150 is rotatably retained within each handle tube 120 and releasably clamped to a respective end of the rope 110. Each handle tube 120 may be described as generally cylindrical in shape and approximately nine inches long, or alternatively, between seven and eleven inches long. Generally cylindrical may be interpreted to include varying outside diameters, in this case ranging between one-half inch and one and one-quarter inch, and various cross-sections that fall within a circle having a diameter up to one and one-quarter inches.
One of the tube halves 121 is shown by itself in
A J-shaped leaf spring 137 is integrally formed in the first end 123 of each tube half 121 and 122, and it occupies the same arcuately curved space as the sidewall disposed about it. As shown in
A linear leaf spring 146 is integrally formed in the second end 124 of each tube half 121 and 122, and it occupies a flat space that extends linearly in chord-like fashion relative to the adjacent material. As shown in
As shown in
The hand grip sleeve 160 may be described as a cylindrical tube made of foam rubber and known in the art. The sleeve 160 has an outside diameter of approximately one-inch, and an inside diameter that is slightly smaller than the outside diameter of the intermediate portion 125 of the handle tubes 120. Also, the hand grip sleeve 160 is sufficiently resilient to be pulled onto and beyond the second end 124 of the handle tube 120 and into a snug-fitting position on the intermediate portion 125.
The clamping portion has a generally U-shaped cross-section, and may be described in terms of opposing first and second jaws 156 and 157 that define a channel therebetween. The jaws 156 and 157 are integrally interconnected to define a leaf spring that accommodates resilient deflection of the jaws 156 and 157 away from one another, and that biases the jaws 156 and 157 toward parallel alignment with one another. The channel is sized and configured to receive a section of the rope 110 therebetween, as further explained below. Staggered ribs or teeth 158a, 158b, and 159 are provided on inwardly facing sides of respective jaws 156 and 157 to force the clamped segment of the rope 110 to assume a non-linear, generally serpentine route through the clamping portion, as suggested in
The present invention also may be described in terms of methods, including a method of assembling the preferred embodiment jump rope 100, for example. In this regard, the present invention may be described as a method of assembling a rope 110, a first pair of elongate handle members 121 and 122, a second pair of elongate handle members 121 and 122, a first rope clamp 150 and a second rope clamp 150, a first collar 140 and a second collar 140, a first end cap 140, and a second end cap 140 into a jump rope 100. The first handle members 121 and 122 are aligned relative to one another in a manner that defines an elongate tube 120 and rotatably supports the first rope clamp 150 inside a first end of the tube 120. The complementary pegs 107 and holes 108 help to ensure proper alignment of the handle members 121 and 122, and the cavities 105 align to rotatably retain the disc 155 on the rope clamp 150.
The first collar 130 is slid over an opposite, second end of the tube 120, then along the tube 120, and into a locked position at the first end of the tube 120. The leaf springs 137 deflect to accommodate passage of the collar 130 past the tabs 139. The shoulders 129 on the tube halves 121 and 122 engage the shoulder 132 on the collar 130 to stop travel of the collar 130 toward the first end of the tube 120. The collar 130 is then rotated, if necessary, until the tabs 139 on the leaf springs 137 align with the notches 133 in the collar 130 and deflect into the notches 133, thereby discouraging movement of the collar 130 back toward the second end of the tube 120.
The first end cap 140 is slid over the second end of the tube 120 and into a locked position at the second end of the tube 120. The leaf springs 146 deflect to accommodate passage of the end cap 140 past the tabs 148. The shoulders 128 on the tube halves 121 and 122 engage the smaller end of the end cap 140 to stop travel of the end cap 140 onto the second end of the tube 120. The end cap 140 is then rotated, if necessary, until the tabs 148 on the leaf springs 146 align with the notches 144 in the end cap 140 and deflect into the notches 144, thereby discouraging movement of the end cap 140 back off the second end of the tube 120.
The process is repeated for the second handle assembly. In other words, the second handle members 121 and 122 are similarly aligned relative to one another in a manner that defines an elongate second tube 120 and rotatably supports the second rope clamp 150 inside a first end of the second tube 120. The second collar 130 is similarly slid over an opposite, second end of the second tube 120 and into a locked position at the first end of the second tube 120. The second end cap 140 is similarly slid over the second end of the second tube 120 and into a locked position at the first end of the second tube 120.
The preferred method may include the additional steps of subsequent to sliding the first collar 130 onto the first end of the first tube 120, and prior to sliding the first end cap 140 onto the second end of the first tube 120, sliding a first hand grip sleeve 160 over the second end of the first tube 120 and onto an intermediate portion of the first tube 120; and subsequent to sliding the second collar 130 onto the first end of the second tube 120, and prior to sliding the second end cap 140 onto the second end of the second tube 120, sliding a second hand grip sleeve 160 over the second end of the second tube 120 and onto an intermediate portion of the second tube 120.
The preferred method further involves securing a first end of the rope 110 to the first rope clamp 150, and securing an opposite, second end of the rope 110 to the second rope clamp 150. These steps involving the rope 110 are preferably performed after the rope clamps 150 are connected to respective handle tubes 120, but may be performed in advance if so desired. In any event, on the preferred embodiment 100, these steps involve sliding the first end of the rope 110 through the bore 151 in first rope clamp 150 and into a rope cavity defined inside the first tube 120, and sliding the second end of the rope 110 through the bore 151 in the second rope clamp 150 and into a rope cavity defined inside the second tube 150. An advantage of the present invention is that this step may be reiterated in order to adjust how much of the rope 110 is available between the two rope clamps 150. As shown in
Each handle tube 120 is long enough to house a linear segment of the rope 110 that measures approximately nine inches in length. As a result, the effective length of the jump rope 100, as defined between the two rope clamps 150, may be adjusted through a range of approximately eighteen inches. The nature of the rope clamps 150 accommodates such adjustments without tools or hassle. A person simply pries the rope 110 from one or both rope clamps 150, positions a desired amount of the rope 110 inside the handle tube(s) 120, and then wedges the rope 110 back into the rope clamp(s) 150. In other words, a person can assess how much useable rope is extending between the first rope clamp 150 and the second rope clamp 150, and if more useable rope is deemed necessary, pull some of the rope 110 out of at least one handle tube 120, and if less useable rope is deemed necessary, push some of the rope 110 into at least one handle tube 120. This feature of the present invention makes the jump rope 100 particularly well suited for growing children and for use by multiple people (e.g. in a family or an institutional environment). This feature also accommodates quick and easy replacement of an old rope 110 with a new rope 110.
Another advantage of the preferred embodiment jump rope 100 is that the handles can be completely assembled and disassembled without any tools or secondary fasteners. In this regard, the leaf springs 137 and 146 may be depressed to release the collar 130 and the end cap 140, respectively, for removal from the handle tube 120. The hand grip sleeve 160 is preferably removed subsequent to removal of the end cap 140 and prior to removal of the collar 130.
The present invention has been described with reference to a preferred embodiment. However, the present invention may be implemented on alternative embodiments and in alternative manners. For example,
The jump rope 200 similarly has first and second tube halves 121 and 122 that are secured together by a collar 140 and an end cap 130 in the same manner as the preferred embodiment 100. However, a conventional ball bearing pack 270 is retained in the cavities 105, instead of the rope clamp disc 155, and after an alternative embodiment rope clamp 250 is retained relative to the ball bearing pack 270. In this regard, the rope clamp 250 has a clamping portion that is identical to the rope clamp 150, but a rotor portion that is different. In other words, the rotor portion includes a shaft 254 that is devoid of the disc 155, and instead, has shallow circumferential grooves formed in opposite sides of its exterior surface. The shaft 254 is inserted through the ball bearing pack 270, and then a C-ring fastener 257 is pressed into the grooves in the shaft 254 to capture the ball bearing pack 270 between the C-ring fastener 257 and a relatively larger diameter portion of the rope clamp 250. The outside diameter of the shaft 254 is essentially identical to the inside diameter defined by the ball bearing pack 270 to ensure a snug fit. After these initial assembly steps, the ball bearing pack 270 is retained within the cavities 105, and the remaining assembly is identical to that described above with reference to the preferred embodiment 100.
The shaft 354 extends linearly outward from the ball bearing pack 270, and a modified spring clip 358 is mounted on the shaft 354. In this regard, a hole is formed through the central intermediate portion of a conventional spring clip to accommodate passage of the shaft 354. Also, at least one rib or tooth 359 is optionally added to the otherwise conventional spring clip to bite into the rope 110. The shaft 354 is inserted through the hole, and a third C-ring fastener 257 is pressed into grooves in the shaft 354, outboard from the spring clip 358, to retain the spring clip 359 on the shaft 354. A fourth C-ring fastener (not shown) may be secured on a side of the spring clip 358 opposite the third C-ring fastener 257 to sandwich the spring clip 358 therebetween. As on the other embodiments 100 and 200, a coaxially aligned bore extends through the shaft 354 to accommodate passage of the rope 110. The remaining assembly of the jump rope 300 is identical to that described above with reference to the preferred embodiment 100.
To adjust how much of the rope 110 is available between the two spring clips 359, a person simply squeezes the wireform handles toward one another (when arranged as shown in
Persons skilled in the art will recognize additional ways to clamp the rope in accordance with the principles of the present invention (e.g. other leaf spring arrangements, alligator clips and other clamps biased by torsion springs, clamps with one stationary jaw and one moving jaw, clamping members associated with an auxiliary fastener that moves in one direction to squeeze and in an opposite direction to release, spring-biased cams that pivot or otherwise move one direction to squeeze and an opposite direction to release), and/or additional ways to assemble the handles (e.g. extruded tubes, blow-molded tubes, bored tubes) in accordance with the principles of the present invention, and further that various rope clamping elements may be combined with various handle structures to create additional alternative embodiments. Recognizing that this disclosure will enable persons skilled in the art to derive various modifications, improvements, and/or applications that nonetheless embody the essence of the invention, the scope of the present invention is to be limited only to the extent of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3017678 | Christensen | Jan 1962 | A |
3107092 | Morris et al. | Oct 1963 | A |
4101123 | Anthony | Jul 1978 | A |
4605219 | Mahana et al. | Aug 1986 | A |
4776585 | Maleyko et al. | Oct 1988 | A |
4801137 | Douglass | Jan 1989 | A |
4872666 | Smith | Oct 1989 | A |
4878270 | Westerkamp | Nov 1989 | A |
5054772 | Winston | Oct 1991 | A |
5102381 | Danielak et al. | Apr 1992 | A |
5496204 | Brown et al. | Mar 1996 | A |
5697871 | Landfair | Dec 1997 | A |
6113520 | Greiner | Sep 2000 | A |
6131969 | Natkins | Oct 2000 | A |
6505384 | Renton et al. | Jan 2003 | B1 |
6595900 | Cook | Jul 2003 | B1 |
6752746 | Winkler et al. | Jun 2004 | B1 |
7293438 | Benda | Nov 2007 | B2 |
7614179 | Kavanaugh | Nov 2009 | B2 |
8043196 | Chen | Oct 2011 | B1 |
8075455 | Gamboa et al. | Dec 2011 | B2 |
8141212 | Fontaine et al. | Mar 2012 | B2 |
20050054483 | Peng et al. | Mar 2005 | A1 |
20060128531 | Planke | Jun 2006 | A1 |
20110207586 | Whyatt et al. | Aug 2011 | A1 |