The present invention relates to jumper modules for photovoltaic systems and, more particularly, jumper modules for electrically connecting subarrays of photovoltaic modules.
Photovoltaic modules can be placed on building roofs (e.g., residential roofs) to generate electricity.
In some embodiments, a system includes a plurality of photovoltaic modules installed on a roof deck, wherein the plurality of photovoltaic modules are arranged in an array on the roof deck; at least one jumper module electrically connecting a first subarray of the array and a second subarray of the array, wherein the at least one jumper module includes, a first end and a second end opposite the first end, and a sleeve, wherein the sleeve extends from the first end to the second end; and at least one electrical cable, wherein the sleeve is sized and shaped to receive the at least one electrical cable, and wherein the at least one electrical cable electrically connects the first subarray to the second subarray.
In some embodiments, the at least one jumper module includes a headlap portion, wherein the headlap portion extends from the first end to the second end, and wherein the sleeve is attached to the headlap portion. In some embodiments, the sleeve includes a tubular portion having an aperture, and wherein the aperture is sized and shaped to receive the at least one electrical cable. In some embodiments, the at least one jumper module includes a first side lap located at the first end, and wherein the at least one jumper module includes a second side lap located at the second end. In some embodiments, the at least one jumper module includes a first junction box located on the first side lap, wherein the first junction box is electrically connected to the at least one electrical cable. In some embodiments, at least one of the plurality of photovoltaic modules of the first subarray includes a second junction box, wherein the second junction box is electrically connected to the first junction box. In some embodiments, at least one of the plurality of photovoltaic modules of the second subarray includes a third junction box, wherein the third junction box is electrically connected to the first junction box by the at least one electrical cable.
In some embodiments, the at least one of the plurality of photovoltaic modules of the first subarray includes a headlap portion, and wherein one of the at least one jumper module overlays the headlap portion of the at least one of the plurality of photovoltaic modules. In some embodiments, the at least one of the plurality of photovoltaic modules of the first subarray includes a first side lap, and wherein the first side lap of the one of the at least one jumper module is proximate to the first side lap of the at least one of the plurality of photovoltaic modules of the first subarray. In some embodiments, the at least one of the plurality of photovoltaic modules of the first subarray includes a second side lap, and wherein the second side lap of the one of the at least one jumper module is proximate to the second side lap of the at least one of the plurality of photovoltaic modules of the first subarray. In some embodiments, the at least one jumper module includes a plurality of jumper modules, and wherein the first side lap of another one of the plurality of jumper modules overlaps the second side lap of the one of the plurality of jumper modules.
In some embodiments, the first junction box of the another one of the plurality of jumper modules is electrically connected to the at least one electrical cable of the one of the plurality of jumper modules. In some embodiments, the at least one electrical cable includes a first end, a second end opposite the first end of the at least one electrical cable, a first electrical connector at the first end of the at least one electrical cable, and a second electrical connector at the second end of the at least one electrical cable, wherein the first electrical connector extends from the sleeve at the first end of the at least one jumper module, and wherein the second electrical connector extends from the second end of the sleeve at the second end of the at least one jumper module.
In some embodiments, the first electrical connector is electrically connected to the first junction box and the second electrical connector is electrically connected to the third junction box. In some embodiments, at least one of the plurality of photovoltaic modules of the second subarray includes a headlap portion, and wherein the another one of the plurality of jumper modules overlaps the headlap portion of the at least one of the plurality of photovoltaic modules of the second subarray.
In some embodiments, the at least one jumper module includes at least one solar cell, an encapsulant encapsulating the at least one solar cell, wherein the encapsulant includes a first surface and a second surface opposite the first surface, and a frontsheet juxtaposed with the first surface of the encapsulant, wherein the frontsheet includes a glass layer, and a polymer layer attached to the glass layer, and wherein the polymer layer forms an upper surface of the at least one jumper module. In some embodiments, the at least one jumper module includes a backsheet juxtaposed with the second surface of the encapsulant, wherein the backsheet includes a first surface and a second surface opposite the first surface of the backsheet, and wherein the second surface of the backsheet forms a lower surface of the at least one jumper module.
In some embodiments, the backsheet is composed of thermoplastic polyolefin (TPO), and wherein the sleeve is composed of thermoplastic polyolefin (TPO). In some embodiments, the backsheet forms the headlap portion, and wherein the sleeve is attached to the first surface of the headlap portion. In some embodiments, the backsheet forms the headlap portion, and wherein the sleeve is attached to the second surface of the headlap portion.
Referring to
In some embodiments, the at least one solar cell 20 includes a plurality of the solar cells 20. In some embodiments, the plurality of solar cells 20 includes two solar cells. In some embodiments, the plurality of solar cells 20 includes three solar cells. In some embodiments, the plurality of solar cells 20 includes four solar cells. In some embodiments, the plurality of solar cells 20 includes five solar cells. In some embodiments, the plurality of solar cells 20 includes six solar cells. In some embodiments, the plurality of solar cells 20 includes seven solar cells. In some embodiments, the plurality of solar cells 20 includes eight solar cells. In some embodiments, the plurality of solar cells 20 includes nine solar cells. In some embodiments, the plurality of solar cells 20 includes ten solar cells. In some embodiments, the plurality of solar cells 20 includes eleven solar cells. In some embodiments, the plurality of solar cells 20 includes twelve solar cells. In some embodiments, the plurality of solar cells 20 includes thirteen solar cells. In some embodiments, the plurality of solar cells 20 includes fourteen solar cells. In some embodiments, the plurality of solar cells 20 includes fifteen solar cells. In some embodiments, the plurality of solar cells 20 includes sixteen solar cells. In some embodiments, the plurality of solar cells 20 includes more than sixteen solar cells.
In some embodiments, the plurality of solar cells 20 is arranged in one row (i.e., one reveal). In another embodiment, the plurality of solar cells 20 is arranged in two rows (i.e., two reveals). In another embodiment, the plurality of solar cells 20 is arranged in three rows (i.e., three reveals). In another embodiment, the plurality of solar cells 20 is arranged in four rows (i.e., four reveals). In another embodiment, the plurality of solar cells 20 is arranged in five rows (i.e., five reveals). In another embodiment, the plurality of solar cells 20 is arranged in six rows (i.e., six reveals). In other embodiments, the plurality of solar cells 20 is arranged in more than six rows. In some embodiments, the at least one solar cell 20 is electrically inactive (i.e., a “dummy” solar cell). In some embodiments, the jumper module 10 does not include the at least one solar cell 20.
Referring to
In some embodiments, the jumper module 10 includes a backsheet 44. In some embodiments, the backsheet 44 is juxtaposed with the second surface 34 of the second layer 30b of the encapsulant 30. In some embodiments, the backsheet 44 includes a first surface 46 and a second surface 48 opposite the first surface 46 of the backsheet 44. In some embodiments, the second surface 48 of the backsheet 44 forms a lower surface of the jumper module 10. In some embodiments, the backsheet 44 includes a first layer 50. In some embodiments, the backsheet 44 includes a second layer 52. In some embodiments, the second layer 52 is attached to the first layer 50 by a second adhesive layer 54. In some embodiments, the backsheet 44 includes only one layer. In some embodiments, the backsheet 44 includes only the first layer 50. In some embodiments, the backsheet 44 is composed of a polymer. In some embodiments, the backsheet 44 is composed of thermoplastic polyolefin (TPO). In some embodiments, the backsheet 44 forms the headlap portion 16.
In some embodiments, each of the encapsulant 30, the frontsheet 36, including each of the glass layer 38, the polymer layer 40, and the first adhesive layer 42, and the backsheet 44, including the first layer 50, the second layer 52, and the second adhesive layer 54 of the jumper module 10 includes a structure, composition and/or function of similar to those of more or one of the embodiments of the corresponding components disclosed in PCT International Patent Publication No. WO 2022/051593, Application No. PCT/US2021/049017, published Mar. 10, 2022, entitled Building Integrated Photovoltaic System, owned by GAF Energy LLC, and U.S. Pat. No. 11,251,744 to Bunea et al., issued Feb. 15, 2022, entitled “Photovoltaic Shingles and Methods of Installing Same,” the contents of each of which are incorporated by reference herein in their entirety.
Referring to
In some embodiments, the sleeve 56 includes a tubular portion 62. In some embodiments, the tubular portion 62 includes an aperture 64. In some embodiments, the aperture 64 extends from the first end 58 to the second end 60 of the sleeve 56. In some embodiments, the tubular portion 62 has a circular-shaped cross-section. In some embodiments, the tubular portion 62 has a square-shaped cross-section. In some embodiments, the tubular portion 62 has a triangular-shaped cross-section. In some embodiments, the tubular portion 62 has a rectangular-shaped cross-section. In some embodiments, the tubular portion 62 has a star-shaped cross-section. In some embodiments, the tubular portion 62 has a cross-shaped cross-section. In some embodiments, the tubular portion 62 has a polygonal-shaped cross-section.
In some embodiments, the aperture 64 has a circular-shaped cross-section. In some embodiments, the aperture 64 has a square-shaped cross-section. In some embodiments, the aperture 64 has a triangular-shaped cross-section. In some embodiments, the aperture 64 has a rectangular-shaped cross-section. In some embodiments, the aperture 64 has a star-shaped cross-section. In some embodiments, the aperture 64 has a cross-shaped cross-section. In some embodiments, the aperture 64 has a polygonal-shaped cross-section.
In some embodiments, the sleeve 56 includes a first flange 65a. In some embodiments, the first flange 65a extends from the tubular portion 62. In some embodiments, the sleeve 56 includes a second flange 65b. In some embodiments, the second flange 65b extends from the tubular portion 62. In some embodiments, the second flange 65b extends from the tubular portion 62 opposite the first flange 65a. In some embodiments, the first flange 65a is planar. In some embodiments, the second flange 65b is planar.
In some embodiments, the sleeve 56 is composed of a polymer. In some embodiments, the sleeve 56 is composed of thermoplastic polyolefin (TPO). In some embodiments, the sleeve 56 is composed of a single ply TPO roofing membrane. In other embodiments, non-limiting examples of TPO membranes are disclosed in U.S. Pat. No. 9,359,014 to Yang et al., which is incorporated by reference herein in its entirety. In another embodiment, the sleeve 56 is composed of polyvinyl chloride (PVC). In some embodiments, the sleeve 56 is composed of polyethylene terephthalate (“PET”). In another embodiment, the sleeve 56 is composed of styrene acrylic copolymer. In some embodiments, the sleeve 56 is composed of ethylene tetrafluoroethylene (“ETFE”). In some embodiments, the sleeve 56 is composed of an acrylic such as polymethyl methacrylate (“PMMA”). In some embodiments, the sleeve 56 is composed of polyvinyl chloride. In some embodiments, the sleeve 56 is composed of ethylene propylene diene ruionomer (EPDM) rubber. In some embodiments, the sleeve 56 includes a flame retardant additive. In some embodiments, the flame retardant additive may be clays, nanoclays, silicas, carbon black, metal hydroxides such as aluminum hydroxide, metal foils, graphite, and combinations thereof. In some embodiments, the sleeve 56 is white in color. In some embodiments, the sleeve 56 is white TPO.
In some embodiments, the sleeve 56 is attached to the first surface 17 of the headlap portion 16. In some embodiments, the first flange 65a and the second flange 65b of the sleeve 56 is attached to the first surface 17 of the headlap portion 16.
In some embodiments, the sleeve 56 and the headlap portion 16 are welded to one another. In some embodiments, the sleeve 56 and the headlap portion 16 are ultrasonically welded to one another. In some embodiments, the sleeve 56 and the headlap portion 16 are heat welded to one another. In some embodiments, the sleeve 56 and the headlap portion 16 are thermally bonded to one another. In some embodiments, the sleeve 56 and the headlap portion 16 are adhered to one another by an adhesive. In some embodiments, the sleeve 56 and the headlap portion 16 are mechanically attached to one another. In some embodiments, the sleeve 56 and the headlap portion 16 are fastened to one another. In some embodiments, the sleeve 56 and the headlap portion 16 are fastened to one another by a fastener. In some embodiments, the fastener may be one or more of a nail, a screw, a rivet, a staple or a bolt. In some embodiments, the sleeve 56 is configured to be attached to the headlap portion 16 prior to installation of the jumper module 10 on a roof deck. In some embodiments, the sleeve 56 is configured to be attached to the headlap portion 16 during installation of the jumper module 10 on a roof deck.
In some embodiments, the sleeve 56 is configured, sized, and shaped to receive at least one electrical cable 66. In some embodiments, the at least one electrical cable 66 is an electrical wire. In some embodiments, the at least one electrical cable 66 is a flat ribbon wire. In some embodiments, the at least one electrical cable 66 includes a plurality of the electrical cables 66. In some embodiments, the at least one electrical cable 66 includes a first end 68 and a second end 70 opposite the first end 68. In some embodiments, at least one electrical connector 72 is located at the first end 68. In some embodiments, the at least one electrical connector 72 includes a plurality of the electrical connectors 72. In some embodiments, at least one electrical connector 74 is located at the second end 70. In some embodiments, the at least one electrical connector 74 includes a plurality of the electrical connectors 74.
In some embodiments, the first end 68 of the at least one electrical cable 66 and the at least one electrical connector 72 extend outwardly from the first end 58 of the sleeve. In some embodiments, the at least one electrical connector 72 extends outwardly from the first end 58 of the sleeve 56. In some embodiments, the second end 70 of the at least one electrical cable 66 and the at least one electrical connector 74 extend outwardly from the second end 60 of the sleeve. In some embodiments, the at least one electrical connector 74 extends outwardly from the second end 60 of the sleeve 56.
Referring to
In some embodiments, the roof deck 102 may be a sloped roof of a structure. As used herein, a “sloped” roof deck is a roof deck that has a slope less than a slope of a steep slope roof deck, but is not a flat roof deck.
In some embodiments, the roof deck 102 is a component of a commercial roof. In some embodiments, the roof deck 102 has a slope of 3 inches per foot or less. In some embodiments, the roof deck 102 has a slope of 0.25 inch to 3 inches per foot. In some embodiments, the roof deck 102 has a slope of 0.25 inch to 2 inches per foot. In some embodiments, the roof deck 102 has a slope of 0.25 inch to 1 inch per foot. In some embodiments, the roof deck 102 has a slope of 1 inch to 3 inches per foot. In some embodiments, the roof deck 102 has a slope of 1 inch to 2 inches per foot. In some embodiments, the roof deck 102 has a slope of 2 inches to 3 inches per foot.
In some embodiments, the photovoltaic system 100 includes an underlayment layer 104 installed on the roof deck 102. In some embodiments, the photovoltaic system 100 includes a plurality of photovoltaic modules 110. In some embodiments, the plurality of photovoltaic modules 110 overlay the underlayment layer 104. In some embodiments, the photovoltaic modules 110 are arranged in an array on the roof deck 102. In some embodiments, the array of the photovoltaic modules 110 includes subarrays S1, S2. In certain embodiments, the array includes more than the two subarrays S1, S2. In some embodiments, the array includes a single array. In some embodiments, each of the subarrays S1, S2 include a plurality of rows R of the photovoltaic modules 110.
In some embodiments, each of the photovoltaic modules 110 includes a reveal portion 112 having a plurality of solar cells 114, a headlap portion 116, and first and second side laps 118, 120. In some embodiments, the first side lap 118 of one of the photovoltaic modules 110 in the subarray S2 overlays the second side lap 120 of an adjacent another one of the photovoltaic modules 110 in the subarray S1 in the same one of the rows R. In some embodiments, the reveal portion 112 of one of the photovoltaic modules 110 in a subarray S1 overlays the headlap portion 116 of an adjacent another one of the photovoltaic modules 110 of the subarray S1. In some embodiments, the overlay of the first and second side laps 118, 120 form at least one wireway 122. In some embodiments, a first junction box 124 is located on the first side lap 118. In some embodiments, a second junction box 126 is located on the first side lap 118.
In some embodiments, the jumper module 10 is installed directly to the roof deck 102. In some embodiments, the jumper module 10 is installed on the roof deck 102 by a plurality of fasteners. In some embodiments, the plurality of fasteners are installed through the headlap portion 16. In some embodiments, the plurality of fasteners includes a plurality of nails. In some embodiments, the plurality of fasteners includes a plurality of screws. In some embodiments, the plurality of fasteners includes a plurality of rivets. In some embodiments, the plurality of fasteners includes a plurality of staples.
In some embodiments, the jumper module 10 is installed on the roof deck 102 by an adhesive. In some embodiments, the adhesive is adhered directly to the roof deck 102. In some embodiments, the adhesive is adhered to an underlayment. In some embodiments, the underlayment is adhered directly to the roof deck 102. In some embodiments, the adhesive is located on a rear surface of the jumper module 10. In some embodiments, the adhesive includes at least one adhesive strip. In some embodiments, the adhesive includes a plurality of adhesive strips. In some embodiments, the plurality of adhesive strips is arranged intermittently. In some embodiments, the adhesive is located proximate to one edge of the jumper module 10. In some embodiments, the adhesive is a peel and stick film sheet. In some embodiments, the peel and stick film sheet includes at least one sheet of film removably attached to the rear surface. In some embodiments, the peel and stick film sheet is composed of EverGuard Freedom HW peel and stick membrane manufactured by GAF. In some embodiments, the adhesive includes polyvinyl butyrate, acrylic, silicone, or polycarbonate. In some embodiments, the adhesive includes pressure sensitive adhesives.
In some embodiments, the photovoltaic module 110 includes a structure, composition, components, and/or function similar to those of one or more embodiments of the photovoltaic modules disclosed in PCT International Patent Publication No. WO 2022/051593, Application No. PCT/US2021/049017, published Mar. 10, 2022, entitled “Building Integrated Photovoltaic System,” owned by GAF Energy LLC, and U.S. Pat. No. 11,251,744 to Bunea et al., issued Feb. 15, 2022, entitled “Photovoltaic Shingles and Methods of Installing Same,” the contents of each of which are incorporated by reference herein in their entirety.
In some embodiments, the system includes a plurality of roofing shingles. In some embodiments, the jumper modules 10 and/or the photovoltaic modules 110 have an appearance that aesthetically match the appearance of the plurality of roofing shingles. In some embodiments, the roofing shingle is a cuttable roofing module. In some embodiments, the roofing shingle is a nailable roofing module. In some embodiments, the roofing shingle is a cuttable roofing module shown and described in U.S. application Ser. No. 17/831,307, filed Jun. 2, 2022, titled “Roofing Module System,” and published under U.S. Patent Application Publication No. 2022-0393637 on Dec. 8, 2022; and/or U.S. application Ser. No. 18/169,718, filed Feb. 15, 2023, titled “Roofing Module System,” and published under U.S. Patent Application Publication No. 2023-0203815 on Jun. 29, 2023, the disclosures of each of which are incorporated by reference herein in their entireties.
In some embodiments, the jumper module 10 overlays an uppermost one of the photovoltaic modules 110a in a column of the first subarray S1. In some embodiments, the reveal portion 18 of the jumper module 10 overlays the headlap portion 116 of the photovoltaic module 110a. In some embodiments, the reveal portion 18 of the jumper module 10 overlays a portion of the headlap portion 116 of the photovoltaic module 110a. In some embodiments, the reveal portion 18 of the jumper module 10 overlays the entirety of the headlap portion 116 of the photovoltaic module 110a. In some embodiments, the first side lap 22 of the jumper module 10 aligns with the first side lap 118 of the photovoltaic module 110a. In some embodiments, the first side lap 118 of an uppermost one of the photovoltaic modules 110b in a column of the second subarray S2 overlays the second side lap 24 of the jumper module 10. In some embodiments, the headlap portion 16 of the jumper module 10 is substantially aligned with the headlap portion 116 of the uppermost one of the photovoltaic modules 110b in a column of subarray S2. In some embodiments, the headlap portion 16 of the jumper module 10 is aligned with the headlap portion 116 of the uppermost one of the photovoltaic modules 110b in a column of subarray S2.
In some embodiments, the jumper module 10 electrically connects the first subarray S1 of the photovoltaic modules 110a with the second subarray S2 of the photovoltaic modules 110b. In some embodiments, the first junction box 26 of the jumper module 10 is electrically connected to the at least one electrical cable 66. In some embodiments, the first junction box 26 of the jumper module 10 is electrically connected to the electrical connector 72 of the at least one electrical cable 66. In some embodiments, the first junction box 26 of the jumper module 10 is electrically connected to the electrical connector 72 of the at least one electrical cable 66 by an electrical cable 130. In some embodiments, the first junction box 124 of the uppermost one of the photovoltaic modules 110a of the first subarray S1 is electrically connected to the second junction box 28 of the jumper module 10. In some embodiments, the first junction box 124 of the uppermost one of the photovoltaic modules 110a of the first subarray S1 is electrically connected to the second junction box 28 of the jumper module 10 by an electrical wire 132.
In some embodiments, the first junction box 124 of the uppermost one of the photovoltaic modules 110b of the subarray S2 is electrically connected to the at least one electrical cable 66. In some embodiments, the first junction box 124 of the uppermost one of the photovoltaic modules 110b of the subarray S2 is electrically connected to one of the electrical connector 74 of the at least one electrical cable 66. In some embodiments, the first junction box 124 of the uppermost one of the photovoltaic modules 110b of the subarray S2 is electrically connected to one of the electrical connector 74 of the at least one electrical cable 66 by an electrical wire 134.
In some embodiments, the second junction box 126 of the lowermost one of the photovoltaic modules 110b of the subarray S2 is electrically connected to the at least one electrical cable 66. In some embodiments, the second junction box 126 of the lowermost one of the photovoltaic modules 110b of the subarray S2 is electrically connected to another one of the electrical connector 74 of the at least one electrical cable 66. In some embodiments, the second junction box 126 of the lowermost one of the photovoltaic modules 110b of the subarray S2 is electrically connected to the another one of the electrical connector 74 of the at least one electrical cable 66 by an electrical wire 136.
In some embodiments, the second junction box 126 of the lowermost one of the photovoltaic modules 110a of the subarray S1 is electrically connected to an electronic component 150 of the structure including the roof deck 102. In some embodiments, the at least one electronic component includes at least one of an optimizer, a rapid shutdown device, or an inverter.
Referring to
In some embodiments, at least one electrical cable 266 is located within the sleeve 256. In some embodiments, a first end 268 of the at least one electrical cable 266 extends outwardly from one of the apertures 221. In some embodiments, a second end 270 of the at least one electrical cable 266 opposite the first end 268 extends outwardly from the another one of the apertures 221. In some embodiments, at least one electrical connector 272 is located at the first end 268. In some embodiments, at least one electrical connector 272 includes a plurality of the electrical connectors 272. In some embodiments, at least one electrical connector 274 is located at the second end 270. In some embodiments, at least one electrical connector 274 includes a plurality of the electrical connectors 274. In some embodiments, the plurality of apertures 221 is sealed. In some embodiments, the plurality of apertures 221 is sealed by a sealant. In some embodiments, the plurality of apertures 221 is sealed by grommets.
This application is a Section 111(a) application relating to and claiming the benefit of commonly owned, U.S. Provisional Patent Application Ser. No. 63/411,269, filed Sep. 29, 2022, entitled “JUMPER MODULE WITH SLEEVE,” the contents of which are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1981467 | Radtke | Nov 1934 | A |
3156497 | Lessard | Nov 1964 | A |
3581779 | Gilbert, Jr. | Jun 1971 | A |
4258948 | Hoffmann | Mar 1981 | A |
4349220 | Carroll et al. | Sep 1982 | A |
4499702 | Turner | Feb 1985 | A |
4636577 | Peterpaul | Jan 1987 | A |
5167579 | Rotter | Dec 1992 | A |
5437735 | Younan et al. | Aug 1995 | A |
5590495 | Bressler et al. | Jan 1997 | A |
5642596 | Waddington | Jul 1997 | A |
6008450 | Ohtsuka et al. | Dec 1999 | A |
6033270 | Stuart | Mar 2000 | A |
6046399 | Kapner | Apr 2000 | A |
6201180 | Meyer | Mar 2001 | B1 |
6220329 | King et al. | Apr 2001 | B1 |
6308482 | Strait | Oct 2001 | B1 |
6320114 | Kuechler | Nov 2001 | B1 |
6320115 | Kataoka et al. | Nov 2001 | B1 |
6336304 | Mimura et al. | Jan 2002 | B1 |
6341454 | Koleoglou | Jan 2002 | B1 |
6407329 | Iino et al. | Jun 2002 | B1 |
6576830 | Nagao et al. | Jun 2003 | B2 |
6928781 | Desbois et al. | Aug 2005 | B2 |
6972367 | Federspiel et al. | Dec 2005 | B2 |
7138578 | Komamine | Nov 2006 | B2 |
7155870 | Almy | Jan 2007 | B2 |
7178295 | Dinwoodie | Feb 2007 | B2 |
7487771 | Eiffert et al. | Feb 2009 | B1 |
7587864 | McCaskill et al. | Sep 2009 | B2 |
7678990 | McCaskill et al. | Mar 2010 | B2 |
7678991 | McCaskill et al. | Mar 2010 | B2 |
7748191 | Podirsky | Jul 2010 | B2 |
7819114 | Augenbraun et al. | Oct 2010 | B2 |
7824191 | Podirsky | Nov 2010 | B1 |
7832176 | McCaskill et al. | Nov 2010 | B2 |
8118109 | Hacker | Feb 2012 | B1 |
8168880 | Jacobs et al. | May 2012 | B2 |
8173889 | Kalkanoglu et al. | May 2012 | B2 |
8210570 | Nagle | Jul 2012 | B1 |
8276329 | Lenox | Oct 2012 | B2 |
8312693 | Cappelli | Nov 2012 | B2 |
8319093 | Kalkanoglu et al. | Nov 2012 | B2 |
8333040 | Shiao et al. | Dec 2012 | B2 |
8371076 | Jones et al. | Feb 2013 | B2 |
8375653 | Shiao et al. | Feb 2013 | B2 |
8404967 | Kalkanoglu et al. | Mar 2013 | B2 |
8410349 | Kalkanoglu et al. | Apr 2013 | B2 |
8418415 | Shiao et al. | Apr 2013 | B2 |
8438796 | Shiao et al. | May 2013 | B2 |
8468754 | Railkar et al. | Jun 2013 | B2 |
8468757 | Krause et al. | Jun 2013 | B2 |
8505249 | Geary | Aug 2013 | B2 |
8512866 | Taylor | Aug 2013 | B2 |
8513517 | Kalkanoglu et al. | Aug 2013 | B2 |
8586856 | Kalkanoglu et al. | Nov 2013 | B2 |
8601754 | Jenkins et al. | Dec 2013 | B2 |
8629578 | Kurs et al. | Jan 2014 | B2 |
8646228 | Jenkins | Feb 2014 | B2 |
8656657 | Livsey et al. | Feb 2014 | B2 |
8671630 | Lena et al. | Mar 2014 | B2 |
8677702 | Jenkins | Mar 2014 | B2 |
8695289 | Koch et al. | Apr 2014 | B2 |
8713858 | Xie | May 2014 | B1 |
8713860 | Railkar et al. | May 2014 | B2 |
8733038 | Kalkanoglu et al. | May 2014 | B2 |
8776455 | Azoulay | Jul 2014 | B2 |
8789321 | Ishida | Jul 2014 | B2 |
8793940 | Kalkanoglu et al. | Aug 2014 | B2 |
8793941 | Bosler et al. | Aug 2014 | B2 |
8826607 | Shiao et al. | Sep 2014 | B2 |
8835751 | Kalkanoglu et al. | Sep 2014 | B2 |
8863451 | Jenkins et al. | Oct 2014 | B2 |
8898970 | Jenkins et al. | Dec 2014 | B2 |
8925262 | Railkar et al. | Jan 2015 | B2 |
8943766 | Gombarick et al. | Feb 2015 | B2 |
8946544 | Jabos et al. | Feb 2015 | B2 |
8950128 | Kalkanoglu et al. | Feb 2015 | B2 |
8959848 | Jenkins et al. | Feb 2015 | B2 |
8966838 | Jenkins | Mar 2015 | B2 |
8966850 | Jenkins et al. | Mar 2015 | B2 |
8994224 | Mehta et al. | Mar 2015 | B2 |
9032672 | Livsey et al. | May 2015 | B2 |
9153950 | Yamanaka et al. | Oct 2015 | B2 |
9166087 | Chihlas et al. | Oct 2015 | B2 |
9169646 | Rodrigues et al. | Oct 2015 | B2 |
9170034 | Bosler et al. | Oct 2015 | B2 |
9178465 | Shiao et al. | Nov 2015 | B2 |
9202955 | Livsey et al. | Dec 2015 | B2 |
9212832 | Jenkins | Dec 2015 | B2 |
9217584 | Kalkanoglu et al. | Dec 2015 | B2 |
9270221 | Zhao | Feb 2016 | B2 |
9273885 | Rordigues et al. | Mar 2016 | B2 |
9276141 | Kalkanoglu et al. | Mar 2016 | B2 |
9331224 | Koch et al. | May 2016 | B2 |
9356174 | Duarte et al. | May 2016 | B2 |
9359014 | Yang et al. | Jun 2016 | B1 |
9412890 | Meyers | Aug 2016 | B1 |
9528270 | Jenkins et al. | Dec 2016 | B2 |
9605432 | Robbins | Mar 2017 | B1 |
9711672 | Wang | Jul 2017 | B2 |
9755573 | Livsey et al. | Sep 2017 | B2 |
9786802 | Shiao et al. | Oct 2017 | B2 |
9831818 | West | Nov 2017 | B2 |
9912284 | Svec | Mar 2018 | B2 |
9923515 | Rodrigues et al. | Mar 2018 | B2 |
9938729 | Coon | Apr 2018 | B2 |
9991412 | Gonzalez et al. | Jun 2018 | B2 |
9998067 | Kalkanoglu et al. | Jun 2018 | B2 |
10027273 | West et al. | Jul 2018 | B2 |
10115850 | Rodrigues et al. | Oct 2018 | B2 |
10128660 | Apte et al. | Nov 2018 | B1 |
10156075 | McDonough | Dec 2018 | B1 |
10187005 | Rodrigues et al. | Jan 2019 | B2 |
10256765 | Rodrigues et al. | Apr 2019 | B2 |
10284136 | Mayfield et al. | May 2019 | B1 |
10454408 | Livsey et al. | Oct 2019 | B2 |
10530292 | Cropper et al. | Jan 2020 | B1 |
10560048 | Fisher et al. | Feb 2020 | B2 |
10563406 | Kalkanoglu et al. | Feb 2020 | B2 |
D879031 | Lance et al. | Mar 2020 | S |
10579028 | Jacob | Mar 2020 | B1 |
10784813 | Kalkanoglu et al. | Sep 2020 | B2 |
D904289 | Lance et al. | Dec 2020 | S |
11012026 | Kalkanoglu et al. | May 2021 | B2 |
11177639 | Nguyen et al. | Nov 2021 | B1 |
11217715 | Sharenko | Jan 2022 | B2 |
11251744 | Bunea | Feb 2022 | B1 |
11258399 | Kalkanoglu et al. | Feb 2022 | B2 |
11283394 | Perkins et al. | Mar 2022 | B2 |
11309828 | Sirski et al. | Apr 2022 | B2 |
11394344 | Perkins et al. | Jul 2022 | B2 |
11424379 | Sharenko et al. | Aug 2022 | B2 |
11431280 | Liu et al. | Aug 2022 | B2 |
11431281 | Perkins et al. | Aug 2022 | B2 |
11444569 | Clemente et al. | Sep 2022 | B2 |
11454027 | Kuiper et al. | Sep 2022 | B2 |
11459757 | Nguyen et al. | Oct 2022 | B2 |
11486144 | Bunea et al. | Nov 2022 | B2 |
11489482 | Peterson et al. | Nov 2022 | B2 |
11496088 | Sirski et al. | Nov 2022 | B2 |
11508861 | Perkins et al. | Nov 2022 | B1 |
11512480 | Achor et al. | Nov 2022 | B1 |
11527665 | Boitnott | Dec 2022 | B2 |
11545927 | Abra et al. | Jan 2023 | B2 |
11545928 | Perkins et al. | Jan 2023 | B2 |
11658470 | Nguyen et al. | May 2023 | B2 |
11661745 | Bunea et al. | May 2023 | B2 |
11689149 | Clemente et al. | Jun 2023 | B2 |
11705531 | Sharenko et al. | Jul 2023 | B2 |
11728759 | Nguyen et al. | Aug 2023 | B2 |
11732490 | Achor et al. | Aug 2023 | B2 |
11811361 | Farhangi et al. | Nov 2023 | B1 |
11824486 | Nguyen et al. | Nov 2023 | B2 |
11824487 | Nguyen et al. | Nov 2023 | B2 |
11843067 | Nguyen et al. | Dec 2023 | B2 |
20020053360 | Kinoshita et al. | May 2002 | A1 |
20020129849 | Heckeroth | Sep 2002 | A1 |
20030101662 | Ullman | Jun 2003 | A1 |
20030132265 | Villela et al. | Jul 2003 | A1 |
20030217768 | Guha | Nov 2003 | A1 |
20040000334 | Ressler | Jan 2004 | A1 |
20040244827 | Hatsukaiwa et al. | Dec 2004 | A1 |
20050030187 | Peress et al. | Feb 2005 | A1 |
20050115603 | Yoshida et al. | Jun 2005 | A1 |
20050144870 | Dinwoodie | Jul 2005 | A1 |
20050178428 | Laaly et al. | Aug 2005 | A1 |
20050193673 | Rodrigues et al. | Sep 2005 | A1 |
20060042683 | Gangemi | Mar 2006 | A1 |
20060046084 | Yang et al. | Mar 2006 | A1 |
20070074757 | Mellott | Apr 2007 | A1 |
20070181174 | Ressler | Aug 2007 | A1 |
20070193618 | Bressler et al. | Aug 2007 | A1 |
20070249194 | Liao | Oct 2007 | A1 |
20070295385 | Sheats et al. | Dec 2007 | A1 |
20080006323 | Kalkanoglu et al. | Jan 2008 | A1 |
20080035140 | Placer et al. | Feb 2008 | A1 |
20080315061 | Placerl. et al. | Feb 2008 | A1 |
20080078440 | Lim et al. | Apr 2008 | A1 |
20080185748 | Kalkanoglu | Aug 2008 | A1 |
20080271774 | Kalkanoglu et al. | Nov 2008 | A1 |
20080302030 | Stancel et al. | Dec 2008 | A1 |
20090000222 | Kalkanoglu et al. | Jan 2009 | A1 |
20090014057 | Croft et al. | Jan 2009 | A1 |
20090014058 | Croft et al. | Jan 2009 | A1 |
20090019795 | Szacsvay et al. | Jan 2009 | A1 |
20090044850 | Kimberley | Feb 2009 | A1 |
20090114261 | Stancel et al. | May 2009 | A1 |
20090133340 | Shiao et al. | May 2009 | A1 |
20090159118 | Kalkanoglu et al. | Jun 2009 | A1 |
20090178350 | Kalkanoglu | Jul 2009 | A1 |
20090229652 | Mapel et al. | Sep 2009 | A1 |
20090275247 | Richter | Nov 2009 | A1 |
20100019580 | Croft et al. | Jan 2010 | A1 |
20100095618 | Edison et al. | Apr 2010 | A1 |
20100101634 | Frank et al. | Apr 2010 | A1 |
20100116325 | Nikoonahad | May 2010 | A1 |
20100131108 | Meyer | May 2010 | A1 |
20100139184 | Williams et al. | Jun 2010 | A1 |
20100146878 | Koch et al. | Jun 2010 | A1 |
20100159221 | Kourtakis et al. | Jun 2010 | A1 |
20100170169 | Railkar et al. | Jul 2010 | A1 |
20100186798 | Tormen et al. | Jul 2010 | A1 |
20100242381 | Jenkins | Sep 2010 | A1 |
20100313499 | Gangemi | Dec 2010 | A1 |
20100325976 | DeGenfelder et al. | Dec 2010 | A1 |
20100326488 | Aue et al. | Dec 2010 | A1 |
20100326501 | Zhao et al. | Dec 2010 | A1 |
20110030761 | Kalkanoglu et al. | Feb 2011 | A1 |
20110036386 | Browder | Feb 2011 | A1 |
20110036389 | Hardikar et al. | Feb 2011 | A1 |
20110048507 | Livsey et al. | Mar 2011 | A1 |
20110058337 | Han et al. | Mar 2011 | A1 |
20110061326 | Jenkins | Mar 2011 | A1 |
20110100436 | Cleereman et al. | May 2011 | A1 |
20110104488 | Muessig et al. | May 2011 | A1 |
20110132427 | Kalkanoglu et al. | Jun 2011 | A1 |
20110168238 | Metin et al. | Jul 2011 | A1 |
20110239555 | Cook et al. | Oct 2011 | A1 |
20110302859 | Crasnianski | Dec 2011 | A1 |
20110314753 | Farmer et al. | Dec 2011 | A1 |
20120034799 | Hunt | Feb 2012 | A1 |
20120060434 | Jacobs | Mar 2012 | A1 |
20120060902 | Drake | Mar 2012 | A1 |
20120085392 | Albert et al. | Apr 2012 | A1 |
20120137600 | Jenkins | Jun 2012 | A1 |
20120176077 | Oh et al. | Jul 2012 | A1 |
20120212065 | Cheng et al. | Aug 2012 | A1 |
20120233940 | Perkins et al. | Sep 2012 | A1 |
20120240490 | Gangemi | Sep 2012 | A1 |
20120260977 | Stancel | Oct 2012 | A1 |
20120266942 | Komatsu et al. | Oct 2012 | A1 |
20120279150 | Pislkak et al. | Nov 2012 | A1 |
20120282437 | Clark et al. | Nov 2012 | A1 |
20120291848 | Sherman et al. | Nov 2012 | A1 |
20130008499 | Verger et al. | Jan 2013 | A1 |
20130014455 | Grieco | Jan 2013 | A1 |
20130118558 | Sherman | May 2013 | A1 |
20130193769 | Mehta et al. | Aug 2013 | A1 |
20130247988 | Reese et al. | Sep 2013 | A1 |
20130284267 | Plug et al. | Oct 2013 | A1 |
20130306137 | Ko | Nov 2013 | A1 |
20140090697 | Rodrigues et al. | Apr 2014 | A1 |
20140150843 | Pearce et al. | Jun 2014 | A1 |
20140173997 | Jenkins | Jun 2014 | A1 |
20140179220 | Railkar et al. | Jun 2014 | A1 |
20140182222 | Kalkanoglu et al. | Jul 2014 | A1 |
20140208675 | Beerer et al. | Jul 2014 | A1 |
20140254776 | O'Connor et al. | Sep 2014 | A1 |
20140266289 | Della Sera et al. | Sep 2014 | A1 |
20140311556 | Feng et al. | Oct 2014 | A1 |
20140352760 | Haynes et al. | Dec 2014 | A1 |
20140366464 | Rodrigues et al. | Dec 2014 | A1 |
20150089895 | Leitch | Apr 2015 | A1 |
20150162459 | Lu et al. | Jun 2015 | A1 |
20150340516 | Kim et al. | Nov 2015 | A1 |
20150349173 | Morad et al. | Dec 2015 | A1 |
20160105144 | Haynes et al. | Apr 2016 | A1 |
20160142008 | Lopez et al. | May 2016 | A1 |
20160254776 | Rodrigues et al. | Sep 2016 | A1 |
20160276508 | Huang et al. | Sep 2016 | A1 |
20160359451 | Mao et al. | Dec 2016 | A1 |
20170159292 | Chihlas et al. | Jun 2017 | A1 |
20170179319 | Yamashita et al. | Jun 2017 | A1 |
20170179726 | Garrity et al. | Jun 2017 | A1 |
20170237390 | Hudson et al. | Aug 2017 | A1 |
20170331415 | Koppi et al. | Nov 2017 | A1 |
20180094438 | Wu et al. | Apr 2018 | A1 |
20180097472 | Anderson et al. | Apr 2018 | A1 |
20180115275 | Flanigan et al. | Apr 2018 | A1 |
20180254738 | Yang et al. | Sep 2018 | A1 |
20180294765 | Friedrich et al. | Oct 2018 | A1 |
20180351502 | Almy et al. | Dec 2018 | A1 |
20180367089 | Stutterheim et al. | Dec 2018 | A1 |
20190030867 | Sun et al. | Jan 2019 | A1 |
20190081436 | Onodi et al. | Mar 2019 | A1 |
20190123679 | Rodrigues et al. | Apr 2019 | A1 |
20190253022 | Hardar et al. | Aug 2019 | A1 |
20190305717 | Allen et al. | Oct 2019 | A1 |
20200109320 | Jiang | Apr 2020 | A1 |
20200144958 | Rodrigues et al. | May 2020 | A1 |
20200220819 | Vu et al. | Jul 2020 | A1 |
20200224419 | Boss et al. | Jul 2020 | A1 |
20200343397 | Hem-Jensen | Oct 2020 | A1 |
20210083619 | Hegedus | Mar 2021 | A1 |
20210115223 | Bonekamp et al. | Apr 2021 | A1 |
20210159353 | Li et al. | May 2021 | A1 |
20210211093 | Cassagne | Jul 2021 | A1 |
20210301536 | Baggs et al. | Sep 2021 | A1 |
20210343886 | Sharenko et al. | Nov 2021 | A1 |
20220029037 | Nguyen et al. | Jan 2022 | A1 |
20220149213 | Mensink et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
2829440 | May 2019 | CA |
700095 | Jun 2010 | CH |
202797032 | Mar 2013 | CN |
217150978 | Aug 2022 | CN |
1958248 | Nov 1971 | DE |
1039361 | Sep 2000 | EP |
1837162 | Sep 2007 | EP |
1774372 | Jul 2011 | EP |
2446481 | May 2012 | EP |
2784241 | Oct 2014 | EP |
3772175 | Feb 2021 | EP |
10046767 | Feb 1998 | JP |
2002-106151 | Apr 2002 | JP |
2001-098703 | Oct 2002 | JP |
2017-027735 | Feb 2017 | JP |
2018053707 | Apr 2018 | JP |
20090084060 | Aug 2009 | KR |
10-1348283 | Jan 2014 | KR |
10-2019-0000367 | Jan 2019 | KR |
10-2253483 | May 2021 | KR |
2026856 | Jun 2022 | NL |
2010151777 | Dec 2010 | WO |
2011049944 | Apr 2011 | WO |
2015133632 | Sep 2015 | WO |
2018000589 | Apr 2018 | WO |
2019201416 | Oct 2019 | WO |
2020-159358 | Aug 2020 | WO |
2021-247098 | Dec 2021 | WO |
2022051593 | Mar 2022 | WO |
Entry |
---|
Sunflare, Procducts: “Sunflare Develops Prototype for New Residential Solar Shingles”; 2019 << sunflaresolar.com/news/sunflare-develops-prototype-for-new-residential-solar-shingles>> retrieved Feb. 2, 2021. |
RGS Energy, 3.5KW Powerhouse 3.0 system installed in an afternoon; Jun. 7, 2019 <<facebook.com/RGSEnergy/>> retrieved Feb. 2, 2021. |
Tesla, Solar Roof <<tesla.com/solarroof>> retrieved Feb. 2, 2021. |
“Types of Roofing Underlayment”, Owens Corning Roofing; <<https://www.owenscorning.com/en-us/roofing/tools/how-roofing-underlayment-helps-protect-your-home>> retrieved Nov. 1, 2021. |
Number | Date | Country | |
---|---|---|---|
20240113658 A1 | Apr 2024 | US |
Number | Date | Country | |
---|---|---|---|
63411269 | Sep 2022 | US |