Jumper module with sleeve

Information

  • Patent Grant
  • 12143064
  • Patent Number
    12,143,064
  • Date Filed
    Wednesday, September 27, 2023
    a year ago
  • Date Issued
    Tuesday, November 12, 2024
    2 months ago
Abstract
A system includes a plurality of photovoltaic modules installed on a roof deck and arranged in an array, and at least one jumper module electrically connecting a first subarray and a second subarray of the array. The jumper module includes a first end and a second end, a sleeve extending from the first end to the second end, and at least one electrical cable. The sleeve is sized and shaped to receive the at least one electrical cable. The at least one electrical cable electrically connects the first subarray to the second subarray.
Description
FIELD OF THE INVENTION

The present invention relates to jumper modules for photovoltaic systems and, more particularly, jumper modules for electrically connecting subarrays of photovoltaic modules.


BACKGROUND

Photovoltaic modules can be placed on building roofs (e.g., residential roofs) to generate electricity.


SUMMARY

In some embodiments, a system includes a plurality of photovoltaic modules installed on a roof deck, wherein the plurality of photovoltaic modules are arranged in an array on the roof deck; at least one jumper module electrically connecting a first subarray of the array and a second subarray of the array, wherein the at least one jumper module includes, a first end and a second end opposite the first end, and a sleeve, wherein the sleeve extends from the first end to the second end; and at least one electrical cable, wherein the sleeve is sized and shaped to receive the at least one electrical cable, and wherein the at least one electrical cable electrically connects the first subarray to the second subarray.


In some embodiments, the at least one jumper module includes a headlap portion, wherein the headlap portion extends from the first end to the second end, and wherein the sleeve is attached to the headlap portion. In some embodiments, the sleeve includes a tubular portion having an aperture, and wherein the aperture is sized and shaped to receive the at least one electrical cable. In some embodiments, the at least one jumper module includes a first side lap located at the first end, and wherein the at least one jumper module includes a second side lap located at the second end. In some embodiments, the at least one jumper module includes a first junction box located on the first side lap, wherein the first junction box is electrically connected to the at least one electrical cable. In some embodiments, at least one of the plurality of photovoltaic modules of the first subarray includes a second junction box, wherein the second junction box is electrically connected to the first junction box. In some embodiments, at least one of the plurality of photovoltaic modules of the second subarray includes a third junction box, wherein the third junction box is electrically connected to the first junction box by the at least one electrical cable.


In some embodiments, the at least one of the plurality of photovoltaic modules of the first subarray includes a headlap portion, and wherein one of the at least one jumper module overlays the headlap portion of the at least one of the plurality of photovoltaic modules. In some embodiments, the at least one of the plurality of photovoltaic modules of the first subarray includes a first side lap, and wherein the first side lap of the one of the at least one jumper module is proximate to the first side lap of the at least one of the plurality of photovoltaic modules of the first subarray. In some embodiments, the at least one of the plurality of photovoltaic modules of the first subarray includes a second side lap, and wherein the second side lap of the one of the at least one jumper module is proximate to the second side lap of the at least one of the plurality of photovoltaic modules of the first subarray. In some embodiments, the at least one jumper module includes a plurality of jumper modules, and wherein the first side lap of another one of the plurality of jumper modules overlaps the second side lap of the one of the plurality of jumper modules.


In some embodiments, the first junction box of the another one of the plurality of jumper modules is electrically connected to the at least one electrical cable of the one of the plurality of jumper modules. In some embodiments, the at least one electrical cable includes a first end, a second end opposite the first end of the at least one electrical cable, a first electrical connector at the first end of the at least one electrical cable, and a second electrical connector at the second end of the at least one electrical cable, wherein the first electrical connector extends from the sleeve at the first end of the at least one jumper module, and wherein the second electrical connector extends from the second end of the sleeve at the second end of the at least one jumper module.


In some embodiments, the first electrical connector is electrically connected to the first junction box and the second electrical connector is electrically connected to the third junction box. In some embodiments, at least one of the plurality of photovoltaic modules of the second subarray includes a headlap portion, and wherein the another one of the plurality of jumper modules overlaps the headlap portion of the at least one of the plurality of photovoltaic modules of the second subarray.


In some embodiments, the at least one jumper module includes at least one solar cell, an encapsulant encapsulating the at least one solar cell, wherein the encapsulant includes a first surface and a second surface opposite the first surface, and a frontsheet juxtaposed with the first surface of the encapsulant, wherein the frontsheet includes a glass layer, and a polymer layer attached to the glass layer, and wherein the polymer layer forms an upper surface of the at least one jumper module. In some embodiments, the at least one jumper module includes a backsheet juxtaposed with the second surface of the encapsulant, wherein the backsheet includes a first surface and a second surface opposite the first surface of the backsheet, and wherein the second surface of the backsheet forms a lower surface of the at least one jumper module.


In some embodiments, the backsheet is composed of thermoplastic polyolefin (TPO), and wherein the sleeve is composed of thermoplastic polyolefin (TPO). In some embodiments, the backsheet forms the headlap portion, and wherein the sleeve is attached to the first surface of the headlap portion. In some embodiments, the backsheet forms the headlap portion, and wherein the sleeve is attached to the second surface of the headlap portion.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top plan view of some embodiments of a jumper module for a photovoltaic system;



FIG. 2 illustrates some embodiments of a jumper module sleeve for a jumper module of a photovoltaic system;



FIG. 3 is schematic view of an active portion of the jumper module shown in FIG. 1;



FIG. 4A is a top plan view of a photovoltaic system including the jumper module shown in FIG. 1;



FIG. 4B is a top plan view of some embodiments of a photovoltaic system including a plurality of jumper modules shown in FIG. 1;



FIGS. 5 through 8 illustrate some embodiments of a jumper module for a photovoltaic system; and



FIGS. 9 and 10 illustrate some embodiments of a jumper module for a photovoltaic system.





DETAILED DESCRIPTION

Referring to FIGS. 1 and 2, in some embodiments, a jumper module 10 includes a first end 12, a second end 14 opposite the first end 12, a headlap portion 16 extending from the first end 12 to the second end 14, a reveal portion 18 having at least one solar cell 20, and a first side lap 22 located at the first end 12. In some embodiments, the jumper module 10 is configured to be installed on a roof deck. In some embodiments, the headlap portion 16 includes a first surface 17. In some embodiments, the first surface 17 is opposite the roof deck. In some embodiments, the jumper module 10 includes a second side lap 24 located at the second end 14. In some embodiments, the jumper module 10 is configured to be installed on a roof deck. In some embodiments, the headlap portion 16 includes a first surface 17. In some embodiments, the first surface 17 is opposite the roof deck. In some embodiments, a first junction box 26 is located on the first side lap 22. In some embodiments, a second junction box 28 is located on the first side lap 22. In some embodiments, the jumper module 10 includes a structure, composition and/or function similar to those of one or more embodiments of the jumper modules disclosed in PCT International Patent Publication No. WO 2022/051593, Application No. PCT/US2021/049017, published Mar. 10, 2022, entitled Building Integrated Photovoltaic System, owned by GAF Energy LLC, and U.S. Pat. No. 11,251,744 to Bunea et al., issued Feb. 15, 2022, entitled “Photovoltaic Shingles and Methods of Installing Same,” the contents of each of which are incorporated by reference herein in their entirety.


In some embodiments, the at least one solar cell 20 includes a plurality of the solar cells 20. In some embodiments, the plurality of solar cells 20 includes two solar cells. In some embodiments, the plurality of solar cells 20 includes three solar cells. In some embodiments, the plurality of solar cells 20 includes four solar cells. In some embodiments, the plurality of solar cells 20 includes five solar cells. In some embodiments, the plurality of solar cells 20 includes six solar cells. In some embodiments, the plurality of solar cells 20 includes seven solar cells. In some embodiments, the plurality of solar cells 20 includes eight solar cells. In some embodiments, the plurality of solar cells 20 includes nine solar cells. In some embodiments, the plurality of solar cells 20 includes ten solar cells. In some embodiments, the plurality of solar cells 20 includes eleven solar cells. In some embodiments, the plurality of solar cells 20 includes twelve solar cells. In some embodiments, the plurality of solar cells 20 includes thirteen solar cells. In some embodiments, the plurality of solar cells 20 includes fourteen solar cells. In some embodiments, the plurality of solar cells 20 includes fifteen solar cells. In some embodiments, the plurality of solar cells 20 includes sixteen solar cells. In some embodiments, the plurality of solar cells 20 includes more than sixteen solar cells.


In some embodiments, the plurality of solar cells 20 is arranged in one row (i.e., one reveal). In another embodiment, the plurality of solar cells 20 is arranged in two rows (i.e., two reveals). In another embodiment, the plurality of solar cells 20 is arranged in three rows (i.e., three reveals). In another embodiment, the plurality of solar cells 20 is arranged in four rows (i.e., four reveals). In another embodiment, the plurality of solar cells 20 is arranged in five rows (i.e., five reveals). In another embodiment, the plurality of solar cells 20 is arranged in six rows (i.e., six reveals). In other embodiments, the plurality of solar cells 20 is arranged in more than six rows. In some embodiments, the at least one solar cell 20 is electrically inactive (i.e., a “dummy” solar cell). In some embodiments, the jumper module 10 does not include the at least one solar cell 20.


Referring to FIG. 3, in some embodiments, the jumper module 10 includes an encapsulant 30 encapsulating the at least one solar cell 20. In some embodiments, the encapsulant 30 includes a first layer 30a having a first surface 32 and a second layer 30b having a second surface 34 opposite the first surface 32. In some embodiments, the jumper module 10 includes a frontsheet 36 juxtaposed with the first surface 32 of the first layer 30a of the encapsulant 30. In some embodiments, the frontsheet 36 includes a glass layer 38. In some embodiments, the frontsheet 36 includes a polymer layer 40 attached to the glass layer 38. In some embodiments, the polymer layer 40 forms an upper surface of the at least one jumper module 10. In some embodiments, the polymer layer 40 is attached to the glass layer 38 by a first adhesive layer 42. In some embodiments, an upper surface 43 of the polymer layer 40 is an upper surface of the jumper module 10. In some embodiments, the upper surface 43 of the polymer layer 40 is textured. In some embodiments, the upper surface 43 of the polymer layer 40 is embossed. In some embodiments, the upper surface 43 of the polymer layer 40 is embossed with a plurality of indentations. In some embodiments, the upper surface 43 of the polymer layer 40 includes a pattern. In some embodiments, the upper surface 43 of the polymer layer 40 includes a printed pattern. In some embodiments, the upper surface 43 of the polymer layer 40 includes an embossed pattern. In some embodiments, the upper surface 43 of the polymer layer 40 includes a textured pattern.


In some embodiments, the jumper module 10 includes a backsheet 44. In some embodiments, the backsheet 44 is juxtaposed with the second surface 34 of the second layer 30b of the encapsulant 30. In some embodiments, the backsheet 44 includes a first surface 46 and a second surface 48 opposite the first surface 46 of the backsheet 44. In some embodiments, the second surface 48 of the backsheet 44 forms a lower surface of the jumper module 10. In some embodiments, the backsheet 44 includes a first layer 50. In some embodiments, the backsheet 44 includes a second layer 52. In some embodiments, the second layer 52 is attached to the first layer 50 by a second adhesive layer 54. In some embodiments, the backsheet 44 includes only one layer. In some embodiments, the backsheet 44 includes only the first layer 50. In some embodiments, the backsheet 44 is composed of a polymer. In some embodiments, the backsheet 44 is composed of thermoplastic polyolefin (TPO). In some embodiments, the backsheet 44 forms the headlap portion 16.


In some embodiments, each of the encapsulant 30, the frontsheet 36, including each of the glass layer 38, the polymer layer 40, and the first adhesive layer 42, and the backsheet 44, including the first layer 50, the second layer 52, and the second adhesive layer 54 of the jumper module 10 includes a structure, composition and/or function of similar to those of more or one of the embodiments of the corresponding components disclosed in PCT International Patent Publication No. WO 2022/051593, Application No. PCT/US2021/049017, published Mar. 10, 2022, entitled Building Integrated Photovoltaic System, owned by GAF Energy LLC, and U.S. Pat. No. 11,251,744 to Bunea et al., issued Feb. 15, 2022, entitled “Photovoltaic Shingles and Methods of Installing Same,” the contents of each of which are incorporated by reference herein in their entirety.


Referring to FIGS. 1 and 2, in some embodiments, the jumper module 10 includes a sleeve 56. In some embodiments, the sleeve 56 is attached to the headlap portion 16. In some embodiments, the sleeve 56 includes a first end 58 and a second end 60 opposite the first end 58. In some embodiments, the sleeve 56 extends from the first end 12 to the second end 14 of the jumper module 10. In some embodiments, the first end 58 of the sleeve 56 is proximate to the first end 12 of the jumper module 10. In some embodiments, the second end 60 of the sleeve 56 is proximate to the second end 60 of the jumper module 10. In some embodiments, the first end 58 and the second end 60 of the sleeve 56 are between the first end 12 and the second end 14 of the jumper module 10.


In some embodiments, the sleeve 56 includes a tubular portion 62. In some embodiments, the tubular portion 62 includes an aperture 64. In some embodiments, the aperture 64 extends from the first end 58 to the second end 60 of the sleeve 56. In some embodiments, the tubular portion 62 has a circular-shaped cross-section. In some embodiments, the tubular portion 62 has a square-shaped cross-section. In some embodiments, the tubular portion 62 has a triangular-shaped cross-section. In some embodiments, the tubular portion 62 has a rectangular-shaped cross-section. In some embodiments, the tubular portion 62 has a star-shaped cross-section. In some embodiments, the tubular portion 62 has a cross-shaped cross-section. In some embodiments, the tubular portion 62 has a polygonal-shaped cross-section.


In some embodiments, the aperture 64 has a circular-shaped cross-section. In some embodiments, the aperture 64 has a square-shaped cross-section. In some embodiments, the aperture 64 has a triangular-shaped cross-section. In some embodiments, the aperture 64 has a rectangular-shaped cross-section. In some embodiments, the aperture 64 has a star-shaped cross-section. In some embodiments, the aperture 64 has a cross-shaped cross-section. In some embodiments, the aperture 64 has a polygonal-shaped cross-section.


In some embodiments, the sleeve 56 includes a first flange 65a. In some embodiments, the first flange 65a extends from the tubular portion 62. In some embodiments, the sleeve 56 includes a second flange 65b. In some embodiments, the second flange 65b extends from the tubular portion 62. In some embodiments, the second flange 65b extends from the tubular portion 62 opposite the first flange 65a. In some embodiments, the first flange 65a is planar. In some embodiments, the second flange 65b is planar.


In some embodiments, the sleeve 56 is composed of a polymer. In some embodiments, the sleeve 56 is composed of thermoplastic polyolefin (TPO). In some embodiments, the sleeve 56 is composed of a single ply TPO roofing membrane. In other embodiments, non-limiting examples of TPO membranes are disclosed in U.S. Pat. No. 9,359,014 to Yang et al., which is incorporated by reference herein in its entirety. In another embodiment, the sleeve 56 is composed of polyvinyl chloride (PVC). In some embodiments, the sleeve 56 is composed of polyethylene terephthalate (“PET”). In another embodiment, the sleeve 56 is composed of styrene acrylic copolymer. In some embodiments, the sleeve 56 is composed of ethylene tetrafluoroethylene (“ETFE”). In some embodiments, the sleeve 56 is composed of an acrylic such as polymethyl methacrylate (“PMMA”). In some embodiments, the sleeve 56 is composed of polyvinyl chloride. In some embodiments, the sleeve 56 is composed of ethylene propylene diene ruionomer (EPDM) rubber. In some embodiments, the sleeve 56 includes a flame retardant additive. In some embodiments, the flame retardant additive may be clays, nanoclays, silicas, carbon black, metal hydroxides such as aluminum hydroxide, metal foils, graphite, and combinations thereof. In some embodiments, the sleeve 56 is white in color. In some embodiments, the sleeve 56 is white TPO.


In some embodiments, the sleeve 56 is attached to the first surface 17 of the headlap portion 16. In some embodiments, the first flange 65a and the second flange 65b of the sleeve 56 is attached to the first surface 17 of the headlap portion 16.


In some embodiments, the sleeve 56 and the headlap portion 16 are welded to one another. In some embodiments, the sleeve 56 and the headlap portion 16 are ultrasonically welded to one another. In some embodiments, the sleeve 56 and the headlap portion 16 are heat welded to one another. In some embodiments, the sleeve 56 and the headlap portion 16 are thermally bonded to one another. In some embodiments, the sleeve 56 and the headlap portion 16 are adhered to one another by an adhesive. In some embodiments, the sleeve 56 and the headlap portion 16 are mechanically attached to one another. In some embodiments, the sleeve 56 and the headlap portion 16 are fastened to one another. In some embodiments, the sleeve 56 and the headlap portion 16 are fastened to one another by a fastener. In some embodiments, the fastener may be one or more of a nail, a screw, a rivet, a staple or a bolt. In some embodiments, the sleeve 56 is configured to be attached to the headlap portion 16 prior to installation of the jumper module 10 on a roof deck. In some embodiments, the sleeve 56 is configured to be attached to the headlap portion 16 during installation of the jumper module 10 on a roof deck.


In some embodiments, the sleeve 56 is configured, sized, and shaped to receive at least one electrical cable 66. In some embodiments, the at least one electrical cable 66 is an electrical wire. In some embodiments, the at least one electrical cable 66 is a flat ribbon wire. In some embodiments, the at least one electrical cable 66 includes a plurality of the electrical cables 66. In some embodiments, the at least one electrical cable 66 includes a first end 68 and a second end 70 opposite the first end 68. In some embodiments, at least one electrical connector 72 is located at the first end 68. In some embodiments, the at least one electrical connector 72 includes a plurality of the electrical connectors 72. In some embodiments, at least one electrical connector 74 is located at the second end 70. In some embodiments, the at least one electrical connector 74 includes a plurality of the electrical connectors 74.


In some embodiments, the first end 68 of the at least one electrical cable 66 and the at least one electrical connector 72 extend outwardly from the first end 58 of the sleeve. In some embodiments, the at least one electrical connector 72 extends outwardly from the first end 58 of the sleeve 56. In some embodiments, the second end 70 of the at least one electrical cable 66 and the at least one electrical connector 74 extend outwardly from the second end 60 of the sleeve. In some embodiments, the at least one electrical connector 74 extends outwardly from the second end 60 of the sleeve 56.


Referring to FIGS. 4A through 8, in some embodiments, the jumper module 10 is configured to be a component of a photovoltaic system 100 installed on a roof deck 102. In some embodiments, the roof deck 102 is a steep slope roof deck. As defined herein, a “steep slope roof deck” is any roof deck that is disposed on a roof having a pitch of Y/X, where Y and X are in a ratio of 4:12 to 12:12, where Y corresponds to the “rise” of the roof, and where X corresponds to the “run” of the roof.


In some embodiments, the roof deck 102 may be a sloped roof of a structure. As used herein, a “sloped” roof deck is a roof deck that has a slope less than a slope of a steep slope roof deck, but is not a flat roof deck.


In some embodiments, the roof deck 102 is a component of a commercial roof. In some embodiments, the roof deck 102 has a slope of 3 inches per foot or less. In some embodiments, the roof deck 102 has a slope of 0.25 inch to 3 inches per foot. In some embodiments, the roof deck 102 has a slope of 0.25 inch to 2 inches per foot. In some embodiments, the roof deck 102 has a slope of 0.25 inch to 1 inch per foot. In some embodiments, the roof deck 102 has a slope of 1 inch to 3 inches per foot. In some embodiments, the roof deck 102 has a slope of 1 inch to 2 inches per foot. In some embodiments, the roof deck 102 has a slope of 2 inches to 3 inches per foot.


In some embodiments, the photovoltaic system 100 includes an underlayment layer 104 installed on the roof deck 102. In some embodiments, the photovoltaic system 100 includes a plurality of photovoltaic modules 110. In some embodiments, the plurality of photovoltaic modules 110 overlay the underlayment layer 104. In some embodiments, the photovoltaic modules 110 are arranged in an array on the roof deck 102. In some embodiments, the array of the photovoltaic modules 110 includes subarrays S1, S2. In certain embodiments, the array includes more than the two subarrays S1, S2. In some embodiments, the array includes a single array. In some embodiments, each of the subarrays S1, S2 include a plurality of rows R of the photovoltaic modules 110.


In some embodiments, each of the photovoltaic modules 110 includes a reveal portion 112 having a plurality of solar cells 114, a headlap portion 116, and first and second side laps 118, 120. In some embodiments, the first side lap 118 of one of the photovoltaic modules 110 in the subarray S2 overlays the second side lap 120 of an adjacent another one of the photovoltaic modules 110 in the subarray S1 in the same one of the rows R. In some embodiments, the reveal portion 112 of one of the photovoltaic modules 110 in a subarray S1 overlays the headlap portion 116 of an adjacent another one of the photovoltaic modules 110 of the subarray S1. In some embodiments, the overlay of the first and second side laps 118, 120 form at least one wireway 122. In some embodiments, a first junction box 124 is located on the first side lap 118. In some embodiments, a second junction box 126 is located on the first side lap 118.


In some embodiments, the jumper module 10 is installed directly to the roof deck 102. In some embodiments, the jumper module 10 is installed on the roof deck 102 by a plurality of fasteners. In some embodiments, the plurality of fasteners are installed through the headlap portion 16. In some embodiments, the plurality of fasteners includes a plurality of nails. In some embodiments, the plurality of fasteners includes a plurality of screws. In some embodiments, the plurality of fasteners includes a plurality of rivets. In some embodiments, the plurality of fasteners includes a plurality of staples.


In some embodiments, the jumper module 10 is installed on the roof deck 102 by an adhesive. In some embodiments, the adhesive is adhered directly to the roof deck 102. In some embodiments, the adhesive is adhered to an underlayment. In some embodiments, the underlayment is adhered directly to the roof deck 102. In some embodiments, the adhesive is located on a rear surface of the jumper module 10. In some embodiments, the adhesive includes at least one adhesive strip. In some embodiments, the adhesive includes a plurality of adhesive strips. In some embodiments, the plurality of adhesive strips is arranged intermittently. In some embodiments, the adhesive is located proximate to one edge of the jumper module 10. In some embodiments, the adhesive is a peel and stick film sheet. In some embodiments, the peel and stick film sheet includes at least one sheet of film removably attached to the rear surface. In some embodiments, the peel and stick film sheet is composed of EverGuard Freedom HW peel and stick membrane manufactured by GAF. In some embodiments, the adhesive includes polyvinyl butyrate, acrylic, silicone, or polycarbonate. In some embodiments, the adhesive includes pressure sensitive adhesives.


In some embodiments, the photovoltaic module 110 includes a structure, composition, components, and/or function similar to those of one or more embodiments of the photovoltaic modules disclosed in PCT International Patent Publication No. WO 2022/051593, Application No. PCT/US2021/049017, published Mar. 10, 2022, entitled “Building Integrated Photovoltaic System,” owned by GAF Energy LLC, and U.S. Pat. No. 11,251,744 to Bunea et al., issued Feb. 15, 2022, entitled “Photovoltaic Shingles and Methods of Installing Same,” the contents of each of which are incorporated by reference herein in their entirety.


In some embodiments, the system includes a plurality of roofing shingles. In some embodiments, the jumper modules 10 and/or the photovoltaic modules 110 have an appearance that aesthetically match the appearance of the plurality of roofing shingles. In some embodiments, the roofing shingle is a cuttable roofing module. In some embodiments, the roofing shingle is a nailable roofing module. In some embodiments, the roofing shingle is a cuttable roofing module shown and described in U.S. application Ser. No. 17/831,307, filed Jun. 2, 2022, titled “Roofing Module System,” and published under U.S. Patent Application Publication No. 2022-0393637 on Dec. 8, 2022; and/or U.S. application Ser. No. 18/169,718, filed Feb. 15, 2023, titled “Roofing Module System,” and published under U.S. Patent Application Publication No. 2023-0203815 on Jun. 29, 2023, the disclosures of each of which are incorporated by reference herein in their entireties.


In some embodiments, the jumper module 10 overlays an uppermost one of the photovoltaic modules 110a in a column of the first subarray S1. In some embodiments, the reveal portion 18 of the jumper module 10 overlays the headlap portion 116 of the photovoltaic module 110a. In some embodiments, the reveal portion 18 of the jumper module 10 overlays a portion of the headlap portion 116 of the photovoltaic module 110a. In some embodiments, the reveal portion 18 of the jumper module 10 overlays the entirety of the headlap portion 116 of the photovoltaic module 110a. In some embodiments, the first side lap 22 of the jumper module 10 aligns with the first side lap 118 of the photovoltaic module 110a. In some embodiments, the first side lap 118 of an uppermost one of the photovoltaic modules 110b in a column of the second subarray S2 overlays the second side lap 24 of the jumper module 10. In some embodiments, the headlap portion 16 of the jumper module 10 is substantially aligned with the headlap portion 116 of the uppermost one of the photovoltaic modules 110b in a column of subarray S2. In some embodiments, the headlap portion 16 of the jumper module 10 is aligned with the headlap portion 116 of the uppermost one of the photovoltaic modules 110b in a column of subarray S2.


In some embodiments, the jumper module 10 electrically connects the first subarray S1 of the photovoltaic modules 110a with the second subarray S2 of the photovoltaic modules 110b. In some embodiments, the first junction box 26 of the jumper module 10 is electrically connected to the at least one electrical cable 66. In some embodiments, the first junction box 26 of the jumper module 10 is electrically connected to the electrical connector 72 of the at least one electrical cable 66. In some embodiments, the first junction box 26 of the jumper module 10 is electrically connected to the electrical connector 72 of the at least one electrical cable 66 by an electrical cable 130. In some embodiments, the first junction box 124 of the uppermost one of the photovoltaic modules 110a of the first subarray S1 is electrically connected to the second junction box 28 of the jumper module 10. In some embodiments, the first junction box 124 of the uppermost one of the photovoltaic modules 110a of the first subarray S1 is electrically connected to the second junction box 28 of the jumper module 10 by an electrical wire 132.


In some embodiments, the first junction box 124 of the uppermost one of the photovoltaic modules 110b of the subarray S2 is electrically connected to the at least one electrical cable 66. In some embodiments, the first junction box 124 of the uppermost one of the photovoltaic modules 110b of the subarray S2 is electrically connected to one of the electrical connector 74 of the at least one electrical cable 66. In some embodiments, the first junction box 124 of the uppermost one of the photovoltaic modules 110b of the subarray S2 is electrically connected to one of the electrical connector 74 of the at least one electrical cable 66 by an electrical wire 134.


In some embodiments, the second junction box 126 of the lowermost one of the photovoltaic modules 110b of the subarray S2 is electrically connected to the at least one electrical cable 66. In some embodiments, the second junction box 126 of the lowermost one of the photovoltaic modules 110b of the subarray S2 is electrically connected to another one of the electrical connector 74 of the at least one electrical cable 66. In some embodiments, the second junction box 126 of the lowermost one of the photovoltaic modules 110b of the subarray S2 is electrically connected to the another one of the electrical connector 74 of the at least one electrical cable 66 by an electrical wire 136.


In some embodiments, the second junction box 126 of the lowermost one of the photovoltaic modules 110a of the subarray S1 is electrically connected to an electronic component 150 of the structure including the roof deck 102. In some embodiments, the at least one electronic component includes at least one of an optimizer, a rapid shutdown device, or an inverter.


Referring to FIG. 4B, in some embodiments, the photovoltaic system 100 includes a plurality of jumper modules 10. In some embodiments, the uppermost module of the subarray S1 is a first one 10a of the jumper modules 10. In some embodiments, the uppermost module of the subarray S2 is a second one 10b of the jumper modules 10. In some embodiments, the first side lap 22 of the second one 10b of the jumper modules 10 overlaps the second side lap 24 of the first one 10a of the jumper modules 10. In some embodiments, the second one 10b of the jumper modules 10 is electrically connected to the at least one electrical cable 66 of the first one 10a of the jumper modules 10. In some embodiments, the second one 10b of the jumper modules 10 overlaps the headlap portion 116 of an uppermost one of the photovoltaic modules 110b of the second subarray S2.



FIGS. 9 and 10 illustrate an embodiment of a jumper module 210. In some embodiments, the jumper module 210 has a structure and function similar to those of the jumper module 10 with certain differences. In some embodiments, the jumper module 210 includes a first end 212, a second end 214 opposite the first end 212, a headlap portion 216 extending from the first end 212 to the second end 214, and a reveal portion 218. In some embodiments, the headlap portion 216 includes a first surface 217 and a second surface 219 opposite the first surface 217. In some embodiments, the first surface 217 is a front surface of the jumper module 210. In some embodiments, the second surface 219 is a rear surface of the jumper module 210. In some embodiments, the jumper module 210 includes a sleeve 256. In some embodiments, the sleeve 256 is attached to the second surface 219. In some embodiments, a plurality of apertures 221 is located in the first surface 217. In some embodiments, one of the plurality of apertures 221 is located proximate to the first end 212 and another of the plurality of apertures 221 is located proximate to the second end 214.


In some embodiments, at least one electrical cable 266 is located within the sleeve 256. In some embodiments, a first end 268 of the at least one electrical cable 266 extends outwardly from one of the apertures 221. In some embodiments, a second end 270 of the at least one electrical cable 266 opposite the first end 268 extends outwardly from the another one of the apertures 221. In some embodiments, at least one electrical connector 272 is located at the first end 268. In some embodiments, at least one electrical connector 272 includes a plurality of the electrical connectors 272. In some embodiments, at least one electrical connector 274 is located at the second end 270. In some embodiments, at least one electrical connector 274 includes a plurality of the electrical connectors 274. In some embodiments, the plurality of apertures 221 is sealed. In some embodiments, the plurality of apertures 221 is sealed by a sealant. In some embodiments, the plurality of apertures 221 is sealed by grommets.

Claims
  • 1. A system, comprising: a plurality of photovoltaic modules installed on a roof deck, wherein each of the plurality of photovoltaic modules includes a headlap portion, anda plurality of solar cellswherein the plurality of photovoltaic modules are arranged in an array on the roof deck,wherein the array includes a first subarray and a second subarray,wherein the first subarray includes a first plurality of the photovoltaic modules arranged in a first column comprising a first plurality of rows,wherein the second subarray includes a second plurality of the photovoltaic modules arranged in a second column comprising a second plurality of rows, wherein the first subarray is horizontally adjacent to the second subarray;at least one jumper module installed on the roof deck and electrically connecting the first subarray of the array and the second subarray of the array wherein the jumper module is structurally distinct from the plurality of photovoltaic modules,wherein a first one of the at least one jumper module overlays the headlap portion of an uppermost one of the first plurality of photovoltaic modules,wherein the at least one jumper module includes an exterior surface,a first end and a second end opposite the first end, anda sleeve, wherein the sleeve is on the exterior surface,wherein the sleeve extends from the first end to the second end; andat least one electrical cable, wherein the sleeve is sized and shaped to receive the at least one electrical cable, andwherein the at least one electrical cable electrically connects the first subarray to the second subarray, andwherein the sleeve of the at least one jumper module is a separate component from the at least one cable.
  • 2. The system of claim 1, wherein the at least one jumper module includes a headlap portion, wherein the headlap portion extends from the first end to the second end, and wherein the sleeve is attached to the headlap portion.
  • 3. The system of claim 2, wherein the sleeve includes a tubular portion having an aperture, and wherein the aperture is sized and shaped to receive the at least one electrical cable.
  • 4. The system of claim 2, wherein the at least one jumper module includes a first side lap located at the first end, and wherein the at least one jumper module includes a second side lap located at the second end.
  • 5. The system of claim 4, wherein the at least one jumper module includes a first junction box located on the first side lap, wherein the first junction box is electrically connected to the at least one electrical cable.
  • 6. The system of claim 5, wherein at least one of the plurality of photovoltaic modules of the first subarray includes a second junction box, wherein the second junction box is electrically connected to the first junction box.
  • 7. The system of claim 6, wherein at least one of the plurality of photovoltaic modules of the second subarray includes a third junction box, wherein the third junction box is electrically connected to the first junction box by the at least one electrical cable.
  • 8. The system of claim 7, wherein the at least one of the plurality of photovoltaic modules of the first subarray includes a first side lap, and wherein the first side lap of the one of the at least one jumper module is proximate to the first side lap of the at least one of the plurality of photovoltaic modules of the first subarray.
  • 9. The system of claim 8, wherein the at least one of the plurality of photovoltaic modules of the first subarray includes a second side lap, and wherein the second side lap of the one of the at least one jumper module is proximate to the second side lap of the at least one of the plurality of photovoltaic modules of the first subarray.
  • 10. The system of claim 7, wherein the at least one jumper module includes a plurality of jumper modules, and wherein the first side lap of another one of the plurality of jumper modules overlaps the second side lap of the one of the plurality of jumper modules.
  • 11. The system of claim 10, wherein the first junction box of the another one of the plurality of jumper modules is electrically connected to the at least one electrical cable of the one of the plurality of jumper modules.
  • 12. The system of claim 11, wherein the at least one electrical cable includes a first end, a second end opposite the first end of the at least one electrical cable, a first electrical connector at the first end of the at least one electrical cable, and a second electrical connector at the second end of the at least one electrical cable, wherein the first electrical connector extends from the sleeve at the first end of the at least one jumper module, and wherein the second electrical connector extends from the second end of the sleeve at the second end of the at least one jumper module.
  • 13. The system of claim 12, wherein the first electrical connector is electrically connected to the first junction box and the second electrical connector is electrically connected to the third junction box.
  • 14. The system of claim 11, wherein at least one of the plurality of photovoltaic modules of the second subarray includes a headlap portion, and wherein the another one of the plurality of jumper modules overlaps the headlap portion of the at least one of the plurality of photovoltaic modules of the second subarray.
  • 15. The system of claim 2, wherein the at least one jumper module includes at least one solar cell,an encapsulant encapsulating the at least one solar cell, wherein the encapsulant includes a first surface and a second surface opposite the first surface, anda frontsheet juxtaposed with the first surface of the encapsulant, wherein the frontsheet includes a glass layer, anda polymer layer attached to the glass layer, andwherein the polymer layer forms an upper surface of the at least one jumper module.
  • 16. The system of claim 15, wherein the at least one jumper module includes a backsheet juxtaposed with the second surface of the encapsulant, wherein the backsheet includes a first surface and a second surface opposite the first surface of the backsheet, and wherein the second surface of the backsheet forms a lower surface of the at least one jumper module.
  • 17. The system of claim 16, wherein the backsheet forms the headlap portion, wherein the first surface of the headlap portion includes the exterior surface, and wherein the sleeve is attached to the first surface of the headlap portion.
  • 18. The system of claim 16, wherein the backsheet forms the headlap portion, wherein the second surface of the headlap portion includes the exterior surface, and wherein the sleeve is attached to the second surface of the headlap portion.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Section 111(a) application relating to and claiming the benefit of commonly owned, U.S. Provisional Patent Application Ser. No. 63/411,269, filed Sep. 29, 2022, entitled “JUMPER MODULE WITH SLEEVE,” the contents of which are incorporated herein by reference in its entirety.

US Referenced Citations (292)
Number Name Date Kind
1981467 Radtke Nov 1934 A
3156497 Lessard Nov 1964 A
3581779 Gilbert, Jr. Jun 1971 A
4258948 Hoffmann Mar 1981 A
4349220 Carroll et al. Sep 1982 A
4499702 Turner Feb 1985 A
4636577 Peterpaul Jan 1987 A
5167579 Rotter Dec 1992 A
5437735 Younan et al. Aug 1995 A
5590495 Bressler et al. Jan 1997 A
5642596 Waddington Jul 1997 A
6008450 Ohtsuka et al. Dec 1999 A
6033270 Stuart Mar 2000 A
6046399 Kapner Apr 2000 A
6201180 Meyer Mar 2001 B1
6220329 King et al. Apr 2001 B1
6308482 Strait Oct 2001 B1
6320114 Kuechler Nov 2001 B1
6320115 Kataoka et al. Nov 2001 B1
6336304 Mimura et al. Jan 2002 B1
6341454 Koleoglou Jan 2002 B1
6407329 Iino et al. Jun 2002 B1
6576830 Nagao et al. Jun 2003 B2
6928781 Desbois et al. Aug 2005 B2
6972367 Federspiel et al. Dec 2005 B2
7138578 Komamine Nov 2006 B2
7155870 Almy Jan 2007 B2
7178295 Dinwoodie Feb 2007 B2
7487771 Eiffert et al. Feb 2009 B1
7587864 McCaskill et al. Sep 2009 B2
7678990 McCaskill et al. Mar 2010 B2
7678991 McCaskill et al. Mar 2010 B2
7748191 Podirsky Jul 2010 B2
7819114 Augenbraun et al. Oct 2010 B2
7824191 Podirsky Nov 2010 B1
7832176 McCaskill et al. Nov 2010 B2
8118109 Hacker Feb 2012 B1
8168880 Jacobs et al. May 2012 B2
8173889 Kalkanoglu et al. May 2012 B2
8210570 Nagle Jul 2012 B1
8276329 Lenox Oct 2012 B2
8312693 Cappelli Nov 2012 B2
8319093 Kalkanoglu et al. Nov 2012 B2
8333040 Shiao et al. Dec 2012 B2
8371076 Jones et al. Feb 2013 B2
8375653 Shiao et al. Feb 2013 B2
8404967 Kalkanoglu et al. Mar 2013 B2
8410349 Kalkanoglu et al. Apr 2013 B2
8418415 Shiao et al. Apr 2013 B2
8438796 Shiao et al. May 2013 B2
8468754 Railkar et al. Jun 2013 B2
8468757 Krause et al. Jun 2013 B2
8505249 Geary Aug 2013 B2
8512866 Taylor Aug 2013 B2
8513517 Kalkanoglu et al. Aug 2013 B2
8586856 Kalkanoglu et al. Nov 2013 B2
8601754 Jenkins et al. Dec 2013 B2
8629578 Kurs et al. Jan 2014 B2
8646228 Jenkins Feb 2014 B2
8656657 Livsey et al. Feb 2014 B2
8671630 Lena et al. Mar 2014 B2
8677702 Jenkins Mar 2014 B2
8695289 Koch et al. Apr 2014 B2
8713858 Xie May 2014 B1
8713860 Railkar et al. May 2014 B2
8733038 Kalkanoglu et al. May 2014 B2
8776455 Azoulay Jul 2014 B2
8789321 Ishida Jul 2014 B2
8793940 Kalkanoglu et al. Aug 2014 B2
8793941 Bosler et al. Aug 2014 B2
8826607 Shiao et al. Sep 2014 B2
8835751 Kalkanoglu et al. Sep 2014 B2
8863451 Jenkins et al. Oct 2014 B2
8898970 Jenkins et al. Dec 2014 B2
8925262 Railkar et al. Jan 2015 B2
8943766 Gombarick et al. Feb 2015 B2
8946544 Jabos et al. Feb 2015 B2
8950128 Kalkanoglu et al. Feb 2015 B2
8959848 Jenkins et al. Feb 2015 B2
8966838 Jenkins Mar 2015 B2
8966850 Jenkins et al. Mar 2015 B2
8994224 Mehta et al. Mar 2015 B2
9032672 Livsey et al. May 2015 B2
9153950 Yamanaka et al. Oct 2015 B2
9166087 Chihlas et al. Oct 2015 B2
9169646 Rodrigues et al. Oct 2015 B2
9170034 Bosler et al. Oct 2015 B2
9178465 Shiao et al. Nov 2015 B2
9202955 Livsey et al. Dec 2015 B2
9212832 Jenkins Dec 2015 B2
9217584 Kalkanoglu et al. Dec 2015 B2
9270221 Zhao Feb 2016 B2
9273885 Rordigues et al. Mar 2016 B2
9276141 Kalkanoglu et al. Mar 2016 B2
9331224 Koch et al. May 2016 B2
9356174 Duarte et al. May 2016 B2
9359014 Yang et al. Jun 2016 B1
9412890 Meyers Aug 2016 B1
9528270 Jenkins et al. Dec 2016 B2
9605432 Robbins Mar 2017 B1
9711672 Wang Jul 2017 B2
9755573 Livsey et al. Sep 2017 B2
9786802 Shiao et al. Oct 2017 B2
9831818 West Nov 2017 B2
9912284 Svec Mar 2018 B2
9923515 Rodrigues et al. Mar 2018 B2
9938729 Coon Apr 2018 B2
9991412 Gonzalez et al. Jun 2018 B2
9998067 Kalkanoglu et al. Jun 2018 B2
10027273 West et al. Jul 2018 B2
10115850 Rodrigues et al. Oct 2018 B2
10128660 Apte et al. Nov 2018 B1
10156075 McDonough Dec 2018 B1
10187005 Rodrigues et al. Jan 2019 B2
10256765 Rodrigues et al. Apr 2019 B2
10284136 Mayfield et al. May 2019 B1
10454408 Livsey et al. Oct 2019 B2
10530292 Cropper et al. Jan 2020 B1
10560048 Fisher et al. Feb 2020 B2
10563406 Kalkanoglu et al. Feb 2020 B2
D879031 Lance et al. Mar 2020 S
10579028 Jacob Mar 2020 B1
10784813 Kalkanoglu et al. Sep 2020 B2
D904289 Lance et al. Dec 2020 S
11012026 Kalkanoglu et al. May 2021 B2
11177639 Nguyen et al. Nov 2021 B1
11217715 Sharenko Jan 2022 B2
11251744 Bunea Feb 2022 B1
11258399 Kalkanoglu et al. Feb 2022 B2
11283394 Perkins et al. Mar 2022 B2
11309828 Sirski et al. Apr 2022 B2
11394344 Perkins et al. Jul 2022 B2
11424379 Sharenko et al. Aug 2022 B2
11431280 Liu et al. Aug 2022 B2
11431281 Perkins et al. Aug 2022 B2
11444569 Clemente et al. Sep 2022 B2
11454027 Kuiper et al. Sep 2022 B2
11459757 Nguyen et al. Oct 2022 B2
11486144 Bunea et al. Nov 2022 B2
11489482 Peterson et al. Nov 2022 B2
11496088 Sirski et al. Nov 2022 B2
11508861 Perkins et al. Nov 2022 B1
11512480 Achor et al. Nov 2022 B1
11527665 Boitnott Dec 2022 B2
11545927 Abra et al. Jan 2023 B2
11545928 Perkins et al. Jan 2023 B2
11658470 Nguyen et al. May 2023 B2
11661745 Bunea et al. May 2023 B2
11689149 Clemente et al. Jun 2023 B2
11705531 Sharenko et al. Jul 2023 B2
11728759 Nguyen et al. Aug 2023 B2
11732490 Achor et al. Aug 2023 B2
11811361 Farhangi et al. Nov 2023 B1
11824486 Nguyen et al. Nov 2023 B2
11824487 Nguyen et al. Nov 2023 B2
11843067 Nguyen et al. Dec 2023 B2
20020053360 Kinoshita et al. May 2002 A1
20020129849 Heckeroth Sep 2002 A1
20030101662 Ullman Jun 2003 A1
20030132265 Villela et al. Jul 2003 A1
20030217768 Guha Nov 2003 A1
20040000334 Ressler Jan 2004 A1
20040244827 Hatsukaiwa et al. Dec 2004 A1
20050030187 Peress et al. Feb 2005 A1
20050115603 Yoshida et al. Jun 2005 A1
20050144870 Dinwoodie Jul 2005 A1
20050178428 Laaly et al. Aug 2005 A1
20050193673 Rodrigues et al. Sep 2005 A1
20060042683 Gangemi Mar 2006 A1
20060046084 Yang et al. Mar 2006 A1
20070074757 Mellott Apr 2007 A1
20070181174 Ressler Aug 2007 A1
20070193618 Bressler et al. Aug 2007 A1
20070249194 Liao Oct 2007 A1
20070295385 Sheats et al. Dec 2007 A1
20080006323 Kalkanoglu et al. Jan 2008 A1
20080035140 Placer et al. Feb 2008 A1
20080315061 Placerl. et al. Feb 2008 A1
20080078440 Lim et al. Apr 2008 A1
20080185748 Kalkanoglu Aug 2008 A1
20080271774 Kalkanoglu et al. Nov 2008 A1
20080302030 Stancel et al. Dec 2008 A1
20090000222 Kalkanoglu et al. Jan 2009 A1
20090014057 Croft et al. Jan 2009 A1
20090014058 Croft et al. Jan 2009 A1
20090019795 Szacsvay et al. Jan 2009 A1
20090044850 Kimberley Feb 2009 A1
20090114261 Stancel et al. May 2009 A1
20090133340 Shiao et al. May 2009 A1
20090159118 Kalkanoglu et al. Jun 2009 A1
20090178350 Kalkanoglu Jul 2009 A1
20090229652 Mapel et al. Sep 2009 A1
20090275247 Richter Nov 2009 A1
20100019580 Croft et al. Jan 2010 A1
20100095618 Edison et al. Apr 2010 A1
20100101634 Frank et al. Apr 2010 A1
20100116325 Nikoonahad May 2010 A1
20100131108 Meyer May 2010 A1
20100139184 Williams et al. Jun 2010 A1
20100146878 Koch et al. Jun 2010 A1
20100159221 Kourtakis et al. Jun 2010 A1
20100170169 Railkar et al. Jul 2010 A1
20100186798 Tormen et al. Jul 2010 A1
20100242381 Jenkins Sep 2010 A1
20100313499 Gangemi Dec 2010 A1
20100325976 DeGenfelder et al. Dec 2010 A1
20100326488 Aue et al. Dec 2010 A1
20100326501 Zhao et al. Dec 2010 A1
20110030761 Kalkanoglu et al. Feb 2011 A1
20110036386 Browder Feb 2011 A1
20110036389 Hardikar et al. Feb 2011 A1
20110048507 Livsey et al. Mar 2011 A1
20110058337 Han et al. Mar 2011 A1
20110061326 Jenkins Mar 2011 A1
20110100436 Cleereman et al. May 2011 A1
20110104488 Muessig et al. May 2011 A1
20110132427 Kalkanoglu et al. Jun 2011 A1
20110168238 Metin et al. Jul 2011 A1
20110239555 Cook et al. Oct 2011 A1
20110302859 Crasnianski Dec 2011 A1
20110314753 Farmer et al. Dec 2011 A1
20120034799 Hunt Feb 2012 A1
20120060434 Jacobs Mar 2012 A1
20120060902 Drake Mar 2012 A1
20120085392 Albert et al. Apr 2012 A1
20120137600 Jenkins Jun 2012 A1
20120176077 Oh et al. Jul 2012 A1
20120212065 Cheng et al. Aug 2012 A1
20120233940 Perkins et al. Sep 2012 A1
20120240490 Gangemi Sep 2012 A1
20120260977 Stancel Oct 2012 A1
20120266942 Komatsu et al. Oct 2012 A1
20120279150 Pislkak et al. Nov 2012 A1
20120282437 Clark et al. Nov 2012 A1
20120291848 Sherman et al. Nov 2012 A1
20130008499 Verger et al. Jan 2013 A1
20130014455 Grieco Jan 2013 A1
20130118558 Sherman May 2013 A1
20130193769 Mehta et al. Aug 2013 A1
20130247988 Reese et al. Sep 2013 A1
20130284267 Plug et al. Oct 2013 A1
20130306137 Ko Nov 2013 A1
20140090697 Rodrigues et al. Apr 2014 A1
20140150843 Pearce et al. Jun 2014 A1
20140173997 Jenkins Jun 2014 A1
20140179220 Railkar et al. Jun 2014 A1
20140182222 Kalkanoglu et al. Jul 2014 A1
20140208675 Beerer et al. Jul 2014 A1
20140254776 O'Connor et al. Sep 2014 A1
20140266289 Della Sera et al. Sep 2014 A1
20140311556 Feng et al. Oct 2014 A1
20140352760 Haynes et al. Dec 2014 A1
20140366464 Rodrigues et al. Dec 2014 A1
20150089895 Leitch Apr 2015 A1
20150162459 Lu et al. Jun 2015 A1
20150340516 Kim et al. Nov 2015 A1
20150349173 Morad et al. Dec 2015 A1
20160105144 Haynes et al. Apr 2016 A1
20160142008 Lopez et al. May 2016 A1
20160254776 Rodrigues et al. Sep 2016 A1
20160276508 Huang et al. Sep 2016 A1
20160359451 Mao et al. Dec 2016 A1
20170159292 Chihlas et al. Jun 2017 A1
20170179319 Yamashita et al. Jun 2017 A1
20170179726 Garrity et al. Jun 2017 A1
20170237390 Hudson et al. Aug 2017 A1
20170331415 Koppi et al. Nov 2017 A1
20180094438 Wu et al. Apr 2018 A1
20180097472 Anderson et al. Apr 2018 A1
20180115275 Flanigan et al. Apr 2018 A1
20180254738 Yang et al. Sep 2018 A1
20180294765 Friedrich et al. Oct 2018 A1
20180351502 Almy et al. Dec 2018 A1
20180367089 Stutterheim et al. Dec 2018 A1
20190030867 Sun et al. Jan 2019 A1
20190081436 Onodi et al. Mar 2019 A1
20190123679 Rodrigues et al. Apr 2019 A1
20190253022 Hardar et al. Aug 2019 A1
20190305717 Allen et al. Oct 2019 A1
20200109320 Jiang Apr 2020 A1
20200144958 Rodrigues et al. May 2020 A1
20200220819 Vu et al. Jul 2020 A1
20200224419 Boss et al. Jul 2020 A1
20200343397 Hem-Jensen Oct 2020 A1
20210083619 Hegedus Mar 2021 A1
20210115223 Bonekamp et al. Apr 2021 A1
20210159353 Li et al. May 2021 A1
20210211093 Cassagne Jul 2021 A1
20210301536 Baggs et al. Sep 2021 A1
20210343886 Sharenko et al. Nov 2021 A1
20220029037 Nguyen et al. Jan 2022 A1
20220149213 Mensink et al. May 2022 A1
Foreign Referenced Citations (29)
Number Date Country
2829440 May 2019 CA
700095 Jun 2010 CH
202797032 Mar 2013 CN
217150978 Aug 2022 CN
1958248 Nov 1971 DE
1039361 Sep 2000 EP
1837162 Sep 2007 EP
1774372 Jul 2011 EP
2446481 May 2012 EP
2784241 Oct 2014 EP
3772175 Feb 2021 EP
10046767 Feb 1998 JP
2002-106151 Apr 2002 JP
2001-098703 Oct 2002 JP
2017-027735 Feb 2017 JP
2018053707 Apr 2018 JP
20090084060 Aug 2009 KR
10-1348283 Jan 2014 KR
10-2019-0000367 Jan 2019 KR
10-2253483 May 2021 KR
2026856 Jun 2022 NL
2010151777 Dec 2010 WO
2011049944 Apr 2011 WO
2015133632 Sep 2015 WO
2018000589 Apr 2018 WO
2019201416 Oct 2019 WO
2020-159358 Aug 2020 WO
2021-247098 Dec 2021 WO
2022051593 Mar 2022 WO
Non-Patent Literature Citations (4)
Entry
Sunflare, Procducts: “Sunflare Develops Prototype for New Residential Solar Shingles”; 2019 << sunflaresolar.com/news/sunflare-develops-prototype-for-new-residential-solar-shingles>> retrieved Feb. 2, 2021.
RGS Energy, 3.5KW Powerhouse 3.0 system installed in an afternoon; Jun. 7, 2019 <<facebook.com/RGSEnergy/>> retrieved Feb. 2, 2021.
Tesla, Solar Roof <<tesla.com/solarroof>> retrieved Feb. 2, 2021.
“Types of Roofing Underlayment”, Owens Corning Roofing; <<https://www.owenscorning.com/en-us/roofing/tools/how-roofing-underlayment-helps-protect-your-home>> retrieved Nov. 1, 2021.
Related Publications (1)
Number Date Country
20240113658 A1 Apr 2024 US
Provisional Applications (1)
Number Date Country
63411269 Sep 2022 US