Junction box and connector

Information

  • Patent Grant
  • 6736648
  • Patent Number
    6,736,648
  • Date Filed
    Wednesday, October 23, 2002
    21 years ago
  • Date Issued
    Tuesday, May 18, 2004
    20 years ago
Abstract
The junction box housing of a junction box is provided with a strip portion containing portion which contains a lateral edge of a strip portion where a terminal connecting portion of a flexible printed circuit is contained in the inside and a terminal containing hole arranged at the outside of the strip-shaped portion containing portion which contains a first connecting terminal. Thus, the first connecting terminal and the strip portion can be contained in the junction box housing with the terminal connecting portion bent to show an S-shaped profile so that the junction box main body can be made lightweight and low-profiled to realize downsizing.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to a junction box and a connector containing a connecting terminal for electrically connecting a fuse or the like to a wiring circuit. More particularly, the present invention relates to a junction box and a connector that are lightweight and low-profiled so as to promote the trend of down-sizing and allow to freely shift the point of connection with external wiring circuit, while showing a high heat emitting effect.




2. Description of the Related Art




In general, to branch a wiring of a car or the like, a junction box (J/B) has been used for purposes of space saving and cost reduction.

FIG. 23

is a plan view of the junction box,

FIG. 24

is a plan view of a bus bar contained in the junction box,

FIG. 25

is a sectional view of a part VII of

FIG. 23

, and

FIG. 26

is a sectional view of a part VIII of FIG.


23


.




This type of a junction box


101


is constituted of a lower cover


102


, a bus bar


103


attached to the lower cover


102


, and an upper cover


105


which seals the lower cover and bus bar and to which a connector, fuse, and the like are attached. In the junction box


101


, as shown in

FIG. 24

, the bus bar


103


formed, for example, of a pressed/punched metal plate of copper alloy, aluminum alloy, or the like is used to branch the wiring. Moreover, the junction box


101


also includes a function, for example, of a fuse box, when a fuse


107


is incorporated halfway in the wiring circuit constituted by the bus bar


103


.




A connector


107


shown in

FIG. 25

is a connector connected to the wiring circuit constituted of the bus bar


103


. A connector


105




a


can be connected to the connector


107


, when a connecting terminal portion


103




a


formed by bending a tip end of the bus bar


103


upwards by 90° is passed upwards through an upper cover


105


via a through hole


105




b


formed in the cover. Moreover, for a fuse attachment portion


105




c


to which a fuse


108


is attached as shown in

FIG. 26

, a connecting terminal portion


103




d


is formed by bending the tip end of the bus bar


103


with a slit


103




b


formed therein upwards by 90°, and is passed upwards through the upper cover


105


through a through hole


105




d


formed in the cover. Thereby, the connecting terminal portion can directly be connected to a leg


108




a


for connecting the fuse


108


, or can be connected using a so-called female to female (F—F) terminal.




Moreover, as shown in

FIG. 27

, the bus bars


103


and insulation plates (IP)


109


having functions of supporting and insulating the bus bars


103


are alternately superimposed to form a wiring circuit (multilayered wiring circuit)


110


which has a multilayered structure. A junction box


112


structured to contain the multilayered wiring circuit


110


in a housing for entirely protecting the outside of the circuit as shown in

FIG. 28

is frequently used.




However, in the above-described junction box


101


, the bus bar


103


is manufactured by punching the metal plate with a die and the wiring circuit is formed. Therefore, when the bus bars


103


having various shapes are manufactured, different dies are required, and much cost is taken. Moreover, the bus bar


103


is formed of a thick metal, a weight of the junction box


101


therefore increases, and there is a problem that it is difficult to thin the junction box


101


. Furthermore, in the junction box


112


, the number of layers of the multilayered wiring circuit


110


needs to be minimized in order to prevent the weight and cost of the entire junction box from increasing. Additionally, the multilayered wiring circuit


110


having a small number of layers is used in accordance with a connection mode. For this, a circuit is drawn so as to avoid a wiring circuit of another layer and through holes


111


through which the connecting terminal portions


103




a


,


103




d


are passed, and a long circuit needs to be formed. This causes a problem that it is very difficult to lighten and thin the junction box


112


.




Furthermore, since each of these junction boxes


101


,


112


has a part thereof that is integral with it and on which a connector or a fuse is mounted, it inevitably shows certain dimensions and hence is subjected to certain restrictions particularly in terms of the position in a car where it is mounted. Additionally, since it has a structure in which the bus bar


103


is contained in a predetermined cabinet to make it show a rather poor heat emitting performance. Therefore, it is difficult to downsize the junction box and make is lightweight and lowly profiled particularly when it is to be used with a circuit adapted to allow a large electric current to flow. Furthermore, since the part on which a connector or a fuse is mounted is integrally formed with it, the operation of connecting the connector of an external wiring circuit to it will have to be carried out only poorly efficiently to baffle the efforts for improving the efficiency when the part, on which a fuse is mounted, is arranged on the front surface of the instrument panel of a car that is provided with a conventional junction box


101


or


112


for the purpose of improving the servicing efficiency.




BRIEF SUMMARY OF THE INVENTION




The object of the present invention is to provide a junction box and a connector that are lightweight and low-profiled so as to make themselves adapted to downsizing and show an enhanced level of freedom in terms of layout and a high heat emitting performance.




According to an aspect of the invention, the above object is achieved by providing a junction box comprising:




a junction box main body to which an electric component to be connected is attached; and




a cable portion which is constituted of a flexible printed circuit with a circuit portion including a conductor pattern formed on an insulating film, and electrically connects the junction box main body to an outer wiring circuit,




wherein the flexible printed circuit includes a strip portion having a part thereof contained in the junction box main body and a terminal connecting portion extending transversally from a lateral edge of the strip portion at a position to be fitted to the junction box main body,




the junction box main body includes a junction box housing provided with a part fitting port for fitting the electric component and a plate-shaped first connecting terminal to be contained in the junction box housing so as to be connected to the terminal connecting portion of the flexible printed circuit and further to the electric component,




the junction box housing including a strip portion containing portion for containing a strip portion provided with the terminal connecting portion of the flexible printed circuit and a terminal containing hole arranged outside the strip-shaped containing portion containing portion so as to contain the first connecting terminal with its tip end exposed to the outside, and




the lateral edges of the strip portion are contained in the strip portion containing portion with the terminal connecting portion bent to show an S-shaped profile at the lateral edges of the strip-shaped containing portion of the flexible printed circuit.




Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS




The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention.





FIG. 1

is a schematic perspective view of a first embodiment of junction box and connector according to the invention;





FIG. 2

is an exploded schematic perspective view of the cable portion;





FIG. 3

is a schematic partial cross sectional view of the junction box main body where the first connecting terminals are fitted to one of the junction box housings;





FIG. 4

is a schematic partial cross sectional view of the connector portion where the second connecting terminals and the strip portion are fitted to one of the connector housings;





FIG. 5

is a schematic partial cross sectional view of one of the connector housings to which second connecting terminals are fitted;





FIG. 6

is a schematic perspective view of another embodiment of junction box and connector according to the invention;





FIGS. 7A and 7B

are schematic illustrations of the cable portion of the junction box of

FIG. 6

, showing its configuration;





FIGS. 8A through 8C

are also schematic illustrations of the cable portion of the junction box of

FIG. 6

, showing its configuration;





FIGS. 9A through 9C

are also schematic illustrations of the cable portion of the junction box of

FIG. 6

, showing its configuration;





FIGS. 10A and 10B

are also schematic illustrations of the cable portion of the junction box of

FIG. 6

, showing its configuration;





FIG. 11

is a schematic partial cross sectional view of the junction box housing to which first connecting terminals are fitted;





FIG. 12

is a schematic partial cross sectional view of the one of the connector housings to which second connecting terminals are fitted;





FIGS. 13A and 13B

are schematic illustrations of two alternative connector housings having different profiles, showing the connector portion in partial cross section;





FIGS. 14A and 14B

are schematic plan views of an alternative junction box and a schematic plan view of another alternative junction box having an integral structure realized by utilizing the structure of the junction box of

FIG. 14A

;





FIGS. 15A and 15B

are schematic perspective views of still another embodiment of junction box and connector according to the invention;





FIGS. 16A through 16D

are schematic illustrations of various anchoring mechanisms that can be used for a junction box according to the invention;





FIGS. 17A and 17B

are schematic lateral views of still another embodiment of junction box and connectors according to the invention, showing part thereof in cross section;





FIGS. 18A and 18B

are schematic lateral views, showing grommets having different patterns;





FIGS. 19A through 19C

are schematic illustrations of cable portions having different structures;





FIGS. 20A and 20B

are schematic illustrations of cable portions having still different structures;





FIGS. 21A and 21B

are schematic illustrations of instrument panels of automobiles provided with an embodiment of junction box and connector according to the invention;





FIGS. 22A and 22B

are schematic perspective views of still other embodiments of junction box and connector according to the invention;





FIG. 23

is a schematic plan view of a known junction box;





FIG. 24

is a schematic plan view of a bus bar stored in the junction box of

FIG. 23

;





FIG. 25

is a schematic cross sectional view of a portion VII in

FIG. 23

;





FIG. 26

is a schematic cross sectional view of part VIII in

FIG. 23

;





FIG. 27

is a schematic perspective view of a known wiring circuit having a multilayed structure; and





FIG. 28

is a schematic perspective view of a known junction box containing the wiring circuit having a multilayed structure;











DETAILED DESCRIPTION OF THE INVENTION




Now, the present invention will be described by referring to the accompanying drawings that illustrate preferred embodiments of the invention.





FIG. 1

is a schematic perspective view of a first embodiment of junction box and connector according to the invention.




The junction box


1


comprises a junction box main body


10


, a connector portion


20


and a cable portion


30


connecting the junction box main body


10


and the connector portion


20


. The cable portion


30


is formed by laminating a plurality of strip-shaped flexible printed circuits (to be referred to as “FPCs” hereinafter)


30




a


through


30




d


in a non-bonded state and bendable manner.




The junction box main body


10


includes a junction box housing


13


, which is a resin molded member, and a lid body


16


removably fitted to the housing


13


and is arranged at an end of the cable portion


30


. A plurality of fuse attachment portions


14


and a plurality of relay attachment portions


15


for respectively attaching corresponding fuses


11


and relays


12


are formed in two rows in the longitudinal direction of the cable portion


30


on the surface the junction box housing


13


(that corresponds to the front surface of the junction box), which is same as the main surface of the group of FPCs


30




a


through


30




d.






The connector portion


20


comprises connector housings


22




a


,


22




b


, which are resin molded members, and case portions


23




a


,


23




b


adapted to partly contain the connector housings


22




a


,


22




b


and can be divided in a thickness direction of the cable portion


30


and is arranged at the opposite end of the cable portion


30


. The connector housings


22




a


,


22




b


include a plurality of connector engagement portions


25


into which respective plug connectors


21




a


,


21




b


are inserted.





FIG. 2

is an exploded schematic perspective view of the cable portion


30


. While the cable portion


30


may be made to have a single FPC, superimposed upon one another in non-bonded state a plurality of FPCs in this embodiment.




Each of the FPCs


30




a


,


30




b


,


30




c


,


30




d


of the cable portion


30


comprises a circuit portion


32


produced by forming a pattern of a conductor material such as copper foil on a base film


31


typically made of insulating film of polyethyleneterephthalate (PET), polyethylenenaphthalate (PEN), polyimide (PI) or the like. If necessary, the circuit portion


32


is protected by a cover layer (not shown).




Each of the FPCs


30




a


through


30




d


is provided at the lateral edges of the strip portion


33


thereof with a plurality of terminal connecting portions


34


having a predetermined length and extending transversally. The tip end of each of the terminal connecting portions


34


is connected to a metal-made and plate-shaped first connecting terminal


39




a


contained in the junction box housing


13


and constituting a part of the junction box main body


10


or a second connecting terminal


39




b


contained in the connection housing


22




a


(or


22




b


) and constituting a part of the connector portion


20


. In this embodiment, the first connecting terminal


39




a


is a so-called fork terminal to be connected to fuses


11


and relays


12


, while the second connecting terminal


39




b


is a so-called male connecting terminal to be connected to a female connecting terminal (not shown) of the plug connector


21




a


or


21




b


. Alternatively, the terminal connecting portions


34


may be arranged only at one of the lateral edges of the strip portions


33


. The first and second connecting terminals


39




a


,


39




b


are provided with respective engagement holes


39




c


that are to be engaged respectively with lance mechanisms disposed in the junction box housing


13


and the connector housings


22




a


(or


22




b


) as will be described greater detail hereinafter.




The first and second connecting terminals


39




a


,


39




b


are mounted respectively on the corresponding terminal connecting portions


34


so as to tightly adhere to the circuit portions


32


arranged on the terminal connecting portions


34


and bonded to the circuit portions


32


typically by means of resistance welding and hence to the terminal portions


34


. After connecting the first and second connecting terminals


39




a


,


39




b


to the terminal connecting portion


34


, the FPCs


30




a


through


30




d


are laid one on the other to produce a complete cable portion


30


. Note that the terminal connecting portions


34


of the FPCs


30




a


through


30




d


are arranged in such a way that the first and second connecting terminals


39




a


,


39




b


are located at positions that properly correspond to the positional arrangement for connecting terminals of the junction box housing


13


and the connector housings


22




a


(


22




b


).




After forming the cable portion


30


by laying the strip-shaped FPCs


30




a


through


30




d


, a resin molded portion


37


is formed and sealed by molding hot melt resin for the bonding portion of each of the connecting terminals


39




a


(


39




b


) and the bonding portion of the corresponding connecting terminal portion


34


to improve the reliability of the connection of the bonding portions. Then, the first connecting terminals


39




a


are fitted to the junction box housing


13


while the second connecting terminals


39




b


are fitted to the connector housings


22




a


(


22




b


). The terminal connecting portions


34


connected to the first connecting terminals


39




a


may be bent in such a way that the first connecting terminals


39




a


are housed in respective right terminal positions in the junction box housing


13


, while they extend perpendicularly relative to the surface where the circuit portion


32


is formed in the cable portion


30


. The terminal connecting portions


34


connected to the second connecting terminals


39




b


may not be bent at all.





FIG. 3

is a schematic partial cross sectional view of the junction box main body


10


where the first connecting terminals


39




a


are fitted to the junction box housing


13


.

FIG. 4

is a schematic partial cross sectional view of the connector portion


20


where the second connecting terminals


39




b


and the strip portion


33


are fitted to the connector housing


22




a


(or


22




b


).




As shown in

FIG. 3

, the junction box housing


13


of the junction box main body


10


has a plurality of terminal containing holes


24




a


, or terminal containing portions, for respectively containing the first connecting terminals


39




a


that are inserted into it with the exposed tip ends thereof and lance portions


26




a


, or lance mechanisms, to be engaged respectively with the engagement holes


39




c


of the first connecting terminals


39




a


so as to rigidly secure the first connecting terminals


39




a


in the junction box housing


13


. The terminal containing holes


24




a


and the lance portions


26




a


are arranged respectively at predetermined positions. The FPCs


30




a


through


30




d


of the cable portion


30


are contained in the junction box housing


13


with the surfaces thereof that form the circuit portions


32


arranged flat and the terminal connecting portion


34


bent in a perpendicular direction.




On the other hand, as shown in

FIG. 4

, the connector housing


22




a


(


22




b


) of the connector portion (not shown) is provided with a connector engagement portion


25


for receiving connectors (not shown) of outer wiring circuits and the plug connector


21




a


(


21




b


), a plurality of terminal containing holes


24




b


for respectively containing the second connecting terminals


39




b


that are inserted into it with the tip ends thereof projecting into the connector engagement portion


25


, a strip-shaped portion containing portion


28


for receiving the FPCs


30




a


through


30




d


of the cable portion


30


in the direction of the lateral edges of the strip portion


33


with the terminal connecting portions


34


bent to show an S-shape profile and connected to the second connecting terminals


39




b


inserted into and contained in the respective terminal containing holes


24




b


and insertion holes


27


for receiving the second connecting terminals


39




b


and the cable portion


30


so as to insert them into the connector housing


22




a


(


22




b


). In each of the terminal containing holes


24




b


(and hence outside the strip-shaped portion containing portion


28


), a lance portion


26




b


, or a lance mechanism, to be engaged with the engagement hole


39




c


of the corresponding second connecting terminal


39




b


and rigidly securing the second connecting terminal


39




b


in the connector housing


22




a


(


22




b


) is formed so as to extend from the inner wall side of the corresponding insertion hole


27


toward the inside.




The strip portions


33


of the FPCs


30




a


through


30




d


of the cable portion


30


are mostly contained within the connector housing


22




a


(


22




b


) in such a way that the transversal direction a of the connector housing


22




a


(


22




b


) rectangularly intersects the transversal direction b of the strip portions


33


of the cable portion


30


. With this arrangement, the length HL that includes the length of the connector housing


22




a


(


22




b


) and the width of the cable portion


30


can be minimized. A complete junction box


1


as shown in

FIG. 1

is produced by fitting the cable portion


30


to the housings


13


and


22




a


(


22




b


) and subsequently fitting the lid body


16


and the case portion


23


to the housings.




A connector housing


22




a


(


22




b


) having connector engagement portions


25


, terminal containing holes


24




b


, lance portions


26




b


and insertion holes


37


as shown in

FIG. 5

may alternatively be used so that the strip portions


33


of the FPCs


30




a


through


30




d


of the cable portion


30


may not be mostly contained within the connector housing


22




a


(


22




b


). If such is the case, while the length HL is replaced by a longer length HL


2


that is equal to the sum of the length of the connector housing


22




a


(


22




b


) and the width of the cable portion


30


, the connector portion


20


will still be satisfactorily downsized as it is sufficiently lightweight and low-profiled. Still alternatively, the junction box housing


13


may be made same as the connector housing


22




a


(


22




b


) and the terminal connecting portions


34


of the cable portion


30


may be bent to show an S-shape profile to contain the strip portion


33


in a strip-shaped portion containing portion


28


formed in the junction box housing


13


, although not shown in the drawing.




The first connecting terminals


39




a


and the second connecting terminals


39




b


can be made to conform to the profile of the junction box


1


by bending the terminal connecting portions


34


in a desired manner and shifting the positional arrangement of the connecting terminals


39




a


,


39




b


to a great advantage of improving the degree of design freedom. Then, it is possible to extremely reduce the height of the connector portion


20


shown in

FIG. 1

if compared with conventional junction boxes to remarkably reduce the required space.





FIG. 6

is a perspective view showing the appearance of another junction box and connector according to the embodiment of the present invention.




A junction box


1


′ of this example is different from the junction box


1


according to the above-described embodiment in that a cable portion


30


′ is branched into two in a superimposition direction of the FPCs


30




a


to


30




d


, two connector portions


20




a


,


20




b


are disposed on branched ends, and the fuse attachment portion


14


and relay attachment portion


15


of a junction box main body


10


′ are inserted into opposite side edges of the cable portion


30


′ from opposite sides in each row. In the embodiment, each of the connector portions


20




a


,


20




b


includes the connector engagement portion


25


only in one side edge of the cable portion


30


′.





FIGS. 7A

to


11


B are diagrams showing the constitution of the cable portion


30


′ of this example.




First, as shown in

FIG. 7A

, the strip FPC


30




a


constituting a part of the cable portion


30


′ is constituted by disposing the patterned/formed circuit portion


32


on the base film


31


formed of the insulating film such as PET, PEN and PI. Additionally, as not shown, the cover layer is formed on the constitution if necessary. A plurality of terminal connecting portions


34


are formed to extend in the short direction of the strip portion


33


by the desired length from opposite side edges of the strip portion


33


of the FPC


30




a


. For example, first and second connecting terminals


39




a


,


39




b


having metal plate shapes are connected to the tip ends of the terminal connecting portions


34


. In this example, the terminal connecting portions


34


on one side are formed to be longer than the terminal connecting portions


34


on the other side. Additionally, the terminal connecting portions


34


may also be formed only on one side edge of the strip portion


33


. Moreover, in the first and second connecting terminals


39




a


,


39




b


, the engagement holes


39




c


engaged with the lance mechanism disposed, for example, in a junction box housing


13




a


(


13




b


) or the connector housing


22




a


(


22




b


) are formed.




As shown in

FIG. 7B

, each connecting terminal


39




a


(


39




b


) is disposed on the terminal connecting portion


34


so as to adhere to the circuit portion


32


on the terminal connecting portion


34


. Thereafter, the terminal is subjected to the resistance welding by a pair of electrodes


38




a


,


38




b


of a series welding apparatus (not shown) allowed to abut on the terminal from above the connected portion with the circuit portion


32


, bonded to the circuit portion


32


and connected to the terminal connecting portion


34


. Additionally, since the resistance welding is a known technique, the description thereof is omitted. Additionally, the connecting terminal


39




a


(


39




b


) may also be connected to the terminal connecting portion


34


by other methods such as ultrasonic welding, laser welding and soldering. When the terminals are connected to the portions in these connection methods, a high connection reliability can be secured.




Subsequently, as shown in

FIGS. 8A and 8B

, the strip FPC


30




a


(


30




b


) formed by connecting the connecting terminals


39




a


(


39




b


) to the terminal connecting portions


34


in the method is superimposed to constitute the cable portion


30


′.

FIG. 8A

is a top plan view showing the cable portion


30


′ constituted by superimposing the FPCs


30




a


,


30




b


upon each other,

FIG. 8B

is a partial side view of the cable portion


30


′, and

FIG. 8C

is a partial sectional view of the cable portion


30


′. In this case, the terminal connecting portions


34


constituting the FPCs


30




a


,


30




b


constituting the cable portion


30


′ may be disposed and formed in the desired positions of the side edges of the strip portion


33


so that the connecting terminal


39




a


(


39




b


) is disposed in a predetermined position corresponding to the connecting terminal arrangement position of the junction box housing


13




a


(


13




b


) or the connector housing


22




a


(


22




b


).




After a plurality of FPCs


30




a


,


30




b


are superimposed to form the cable portion


30


′ in this manner, as shown in

FIGS. 9A

to


9


C, the connected portion of each connecting terminal


39




a


(


39




b


) to the terminal connecting portion


34


is sealed by the resin molded portion


37


. In this case, a certain number of connecting portions are collectively resin-molded at once as shown in

FIG. 9A

, the desired terminal arrangement state of the connecting terminals


39




a


(


39




b


) can be realized without separating bonding the strip portions


33


of the FPCs


30




a


,


30




b


having the non-bonded states. Moreover, since the strip portions


33


of the FPCs


30




a


,


30




b


are not attached, it is possible to flexibly move the respective FPCs


30




a


,


30




b


.

FIG. 9A

is a top plan view showing the cable portion


30


′ to which the resin mold is applied,

FIG. 9B

is a partial side view of the cable portion


30


′, and

FIG. 9C

is a partial sectional view of the cable portion


30


′.




Additionally, as shown in

FIG. 10A

, for example, the terminal connecting portions


34


formed on one side edge of the strip portion


33


of the cable portion


30


′ formed in this manner are folded back on the side of the terminal connecting portions


34


formed in the other side edge. The terminal connecting portions


34


and connecting terminals


39




a


(


39




b


) may also be disposed on one side edge of the cable portion


30


′ in a concentrated manner. As shown in

FIG. 10B

, for example, only the terminal connecting portions


34


formed on one side edge of the cable portion


30


′ to be contained in the connector portion


20




a


(


20




b


) of the cable portion


30


′ may also be folded back toward the terminal connecting portions


34


formed on the other side edge to constitute the cable portion


30


′. When the terminal connecting portions


34


and connecting terminals


39




a


(


39




b


) are arranged on one side edge, the entire height and width of the junction box can be suppressed. When only some of the terminal connecting portions


34


and connecting terminals


39




a


(


39




b


) are disposed on one side edge, as in the junction box


1


′ of this example, the height of one structure of the junction box main body


10


′ or the connector portion


20




a


(


20




b


) is suppressed, and the connection is possible from an upward/downward direction in the other structure. Moreover, when the cable portion


30


′ in the state shown in

FIGS. 8A and 8B

is used, a width c of the junction box main body


10


′ and a width d of the connector portion


20




a


(


20




b


) are reduced. In this case, a structure in which the connection from the upward/downward direction is possible both in the junction box main body and connector portion can be realized.





FIG. 11

is a partially sectional view showing that the first connecting terminals are attached to the junction box housings


13




a


,


13




b


of the junction box main body


10


′, and

FIG. 12

is a partially sectional view showing that the second connecting terminals


39




b


are attached to the connector housing


22




a


(


22




b


) of the connector portion


20




a


(


20




b


).




As shown in

FIG. 11

, in the junction box housing


13




a


(


13




b


) of the junction box main body


10


′, the terminal containing holes


24




a


through which the first connecting terminals


39




a


are passed and in which the terminals having tip ends exposed are contained, and the lance portions


26




a


as the lance mechanism which are engaged with the engagement holes


39




c


of the first connecting terminals


39




a


and lock/fix the first connecting terminals


39




a


in both the junction box housings


13




a


,


13




b


are formed in the predetermined positions. The junction box housings


13




a


,


13




b


are locked by a lock mechanism (not shown). When the mechanism is unlocked, the housings can be vertically divided in the structure. The FPCs


30




a


,


30




b


constituting the cable portion


30


′ are contained in the junction box housings


13




a


,


13




b


while the surfaces with the circuit portions


32


formed thereon are longitudinally disposed and the terminal connecting portions


34


are extended as such from the opposite side edges.




On the other hand, as shown in

FIG. 12

, in the connector housing


22




a


(


22




b


), there are formed: the connector engagement portion


25


which is engaged with the connector of the outer wiring circuit; a plurality of terminal containing holes


24




b


through which the second connecting terminals


39




b


are passed and in which the terminals having the tip ends projected in the connector engagement portion


25


are contained; and the insertion hole


27


into which the cable portion


30


′ having the second connecting terminals


39




b


passed through the terminal containing holes


24




b


is inserted in the side edge direction of the strip portion


33


. In a plurality of terminal containing holes


24




b


, the lance portions


26




b


, engaged with the engagement holes


39




c


of the second connecting terminals


39




b


, for locking/fixing the second connecting terminals


39




b


in the connector housing


22




a


(


22




b


) are formed. The terminal connecting portions


34


of the FPCs


30




a


,


30




b


constituting the cable portion


30


′ are contained in the insertion hole


27


in the connector housing


22




a


(


22




b


) so that the terminal connecting portions constitute the predetermined connecting terminal arrangement positions in a state shown in FIG.


12


. Additionally, since a cover layer


30




a




1


is disposed on the circuit portion


32


of the FPC


30




a


, the circuit portion is structured not to have a short circuit with the circuit portion


32


of the folded-back terminal connecting portion


34


of the FPC


30




b.






With the above-described attachment structure of the connecting terminal


39




b


to the connector housing


22




a


(


22




b


), as shown in

FIGS. 13A and 13B

, when the connector housing


22




a


(


22




b


) is just replaced with a housing having a different shape, the connector portion


20




a


(


20




b


) can inexpensively be realized in accordance with various connector shapes. For example, a height h


1


of an outer wall constituting the connector engagement portion


25


of the connector housing


22




a


(


22




b


) shown in

FIG. 13A

is different from a height h


2


of the outer wall constituting the connector engagement portion


25


of the connector housing


22




a


(


22




b


) shown in FIG.


13


B. Therefore, without changing the fold-back modes of the connecting terminals


39




b


and terminal connecting portions


34


, cable portion


30


′ and case portion


23




a


(


23




b


), it is possible to connect the connectors (outer connectors) of different types of outer wiring circuits, plug connectors


21




a


,


21




b


, and the like in accordance with the respective heights h


1


, h


2


. Thereby, it is possible to provide the junction box


1


for various connectors while the cost is suppressed.




Additionally, the junction box


1


of this example includes a structure in which the junction box main body


10


′ is connected to the first and second connector portions


20




a


,


20




b


via the cable portion


30


′ including a plurality of flexible strip FPCs


30




a


to


30




d


. Therefore, as shown in

FIG. 14A

, of course, the junction box main body


10


′ and the connector portion


20




a


(


20




b


) may be formed with different housings and connected to each other so that the respective housings can freely be moved via the cable portion


30


′. Moreover, as shown in

FIG. 14B

, the junction box main body


10


′ and connector portion


20




a


(


20




b


) are arranged in one housing


36


, the cable portion


30


′ is contained in a connecting state of the junction box main body


10


′ to the first and second connector portions


20




a


,


20




b


in the housing


36


, and a junction box


1


″ having an integral structure may be formed. When the cable portion


30


′ having flexibility is used, various types of junction boxes having different shapes can easily be realized at a low cost.




Moreover, not only the integral structure shown in

FIG. 14B

but also an integral structure shown in

FIGS. 15A and 15B

may be used.





FIGS. 15A and 15B

show perspective views of the appearance of the junction box according to another embodiment of the present invention.




That is, in the integral structure of this example, as shown in

FIG. 15A

, a junction box


1


A in which a junction box main body


10


A is connected to a connector portion


20


A via a cable portion


30


A is integrally fixed via a fixing mechanism


70


(


70




a


,


70




b


) disposed in predetermined positions of the junction box main body


10


A and connector portion


20


A. The fixing mechanism


70


includes hooks


70




a


formed on a part of the lower surface of the junction box main body


10


A, and hook engagement portions


70




b


formed in a part of a side part of the connector portion


20


A.

FIG. 15B

shows that the hooks


70




a


formed on the junction box main body


10


A are inserted in the hook engagement portions


70




b


formed in the connector portion


20


A and both the main body and connector portion are integrally locked/fixed. As the fixing mechanism


70


, for example, mechanisms shown in

FIG. 16

are considered.




That is, as shown in

FIGS. 16A and 16B

, a metal bracket


40


is formed on the side surface of the housing or the case portion of either the junction box main body


10


A or the connector portion


20


A by an insert mold. A bracket engagement portion


41


to be engaged with the metal bracket


40


is formed in the side surface of the other housing. When the bracket is engaged with the bracket engagement portion, the junction box main body


10


A and connector portion


20


A are fixed by this fixing mechanism.




Moreover, as shown in

FIG. 16B

, a so-called anchor clip


42


is formed on the side surface of either one housing of the junction box main body


10


A or the connector portion


20


A by integral molding. An anchor clip fixing portion


43


including a hole to be engaged with the anchor clip


42


is formed in the side surface of the other housing. The anchor clip


42


is inserted in the anchor clip fixing portion


43


so that the junction box main body


10


A and connector portion


20


A are fixed by this fixing mechanism.




Furthermore, as shown in

FIG. 16C

, a rib


44


having a T-shaped section is formed on the side surface of one housing of either the junction box main body


10


A or the connector portion


20


A by the integral molding. A rib fixing portion


45


including a trench structure into which the rib


44


is slid, inserted and engaged is formed in the side surface of the other housing. The rib


44


is inserted into the rib fixing portion


45


, and the junction box main body


10


A and connector portion


20


A are fixed by the fixing mechanism.




Additionally, as shown in

FIG. 16D

, a fixing protrusion


46


is formed in any one of the junction box main body


10


A and connector portion


20


A, and a lock piece


47


to be engaged with the protrusion


46


is formed in the other one. The protrusion is engaged with the piece so that the junction box main body


10


A and connector portion


20


A are fixed by the fixing mechanism. When these above-described fixing mechanisms


70


are formed beforehand in the housings of the junction box main body


10


A and connector portion


20


A, the modes of the junction box


1


A including an independent structure and integrally coupled structure can easily be selected in a design stage. This makes it possible to enhance a freedom degree of layout of the junction box


1


A. Additionally, other various fixing mechanisms for fixing the junction box main body


10


A and connector portion


20


A are considered, but the description thereof is omitted here. Moreover, needless to say, the above-described fixing mechanism


70


may also be used to fix a plurality of formed connector portions to one another.





FIGS. 17A and 17B

show a side view and partially sectional view showing the junction box according to still another embodiment of the present invention.




As shown in

FIG. 17A

, a junction box


1


B includes a structure in which the junction box main body


10


is connected to the connector portion


20




a


(


20




b


) via the cable portion


30


(not shown), and the exposed portion of the cable portion


30


from the junction box main body


10


and connector portion


20




a


(


20




b


) is covered with a grommet


48


B. As shown in

FIG. 17B

, the grommet


48


B is formed of the above-described materials such as silicon rubber and ethylene propylene rubber (EPDM), has high flexibility and durability, and therefore constitutes a so-called bellows shape. Opposite ends


48




a


of the grommet


48


have engagement structures engaged with opening peripheral edges


48




b


of insertion ports of the cable portion


30


into the junction box main body


10


and connector portion


20




a


(


20




b


), and are attached/fixed to the junction box main body


10


and connector portion


20




a


(


20




b


). The grommet


48


B attached in this manner can effectively prevent the moisture and dust from entering the junction box main body


10


and connector portion


20




a


(


20




b


) as described above, and can effectively protect the circuit portions


32


of the respective FPCs constituting the cable portion


30


in the exposed state between the main body and portion from damage and breakage. Therefore, the durability of the junction box


1


B can be enhanced.




Additionally, for the grommet


48


B, instead of the bellows shape, for example, a tubular shape including the above-described square section (rectangular section), or a cylindrical shape including a circular shape may be used as shown in FIG.


18


A. Moreover, when it is unnecessary to cover or protect the exposed portion of the cable portion


30


, as shown in

FIG. 18B

, the grommet


48


engaged with the opening peripheral edges


48




b


of the insertion ports of the junction box main body


10


and connector portion


20




a


(


20




b


) and constituted as a packing for effectively closing the insertion ports and preventing the entrance of the moisture may be used to constitute the junction box


1


B.




Additionally, as the above-described cable portion


30


, as shown in

FIGS. 19A

to


19


C, a cable portion


30


B may also be used including a structure in which the strip portions


33


are folded back and superimposed in order to shorten a circuit width e of the circuit portion


32


. In this case, for example, as shown in

FIG. 19A

, a center line


33




a


is determined which connects the vicinity of the center of the short direction of the strip portion


33


of the FPC


30




a


constituting the cable portion


30


B in the longitudinal direction. As shown in

FIG. 19B

, the strip portion


33


of the FPC


30




a


is bent and superimposed along the center line


33




a


so that the surfaces with the circuit portions


32


(or the surfaces with the base film


31


) formed thereon are disposed opposite to each other. As shown in

FIG. 19C

, the FPC


30




a


is superimposed onto the FPC


30




b


with a strip portion


33


′ formed beforehand thereon with a circuit width which meets a circuit width e′ of the folded FPC


30




a


, and the cable portion


30


B is formed. When the entire circuit width of the cable portion


30


B is reduced in this manner, the entire height and width of the junction box


1


applying this cable portion


30


B can be suppressed, and the junction box


1


can efficiently be miniaturized. Moreover, the FPC


30




a


having the folded strip portion


33


is set beforehand, for example, in a power supply circuit (power distribution circuit). As a result, a circuit area can be enlarged. Therefore, the FPC which has high radiating properties and whose circuit width can be adapted to the circuit width of another FPC or shortened can be used as the power distribution circuit.




Moreover, as shown in

FIG. 20A

, the FPCs


30




a


,


30




b


constituting the cable portion


30


B are first superimposed upon each other. Thereafter, the strip portions


33


of the respective FPCs


30




a


,


30




b


are folded so that the center line


33




a


of each strip portion


33


is positioned in the vertical direction with respect to the circuit formed surface of the circuit portion


32


(so that the center line is a bottom side of a portion folded in a trough shape or an apex of a portion folded in a mountain shape). As shown in

FIG. 20B

, a part of the folded strip portion


33


is further folded, and the cable portion


30


B having a short circuit width may also be realized.




Additionally, the junction box


1


of the present invention is used in a mode in which the junction box main body


10


is connected to a plurality of connector portions


20


in independent states via the cable portion


30


. In this case, for example, an application method shown, for example, in

FIGS. 21A and 21B

can be realized. That is,

FIGS. 21A and 21B

show diagrams of a state in which the junction box


1


is disposed in an instrument panel of a car,

FIG. 21A

shows the instrument panel for use in a so-called right-side steering wheel mounted car, and

FIG. 21B

shows the instrument panel for use in a so-called left-side steering wheel mounted car.




For example, with an instrument panel


50




a


of the right-side steering wheel mounted car shown in

FIG. 28A

, and an instrument panel


50




b


of a left-side steering wheel mounted car shown in

FIG. 21B

, the arrangement position of the junction box main body


10


is set in the vicinity of a steering wheel. The first connector portion


20




a


is disposed on the right as facing the instrument panel


50




a


or


50




b


and the second connector portion


20




b


is disposed in the middle of the instrument panel


50




a


or


50




b


. Then, the arrangement position of the connector portion


20




a


(


20




b


) can be set in common to the right and left side steering wheel mounted cars. Therefore, a common harness can be used, the number of components can be decreased, and the cost can be reduced. As described above, according to the arrangement structure using the junction box


1


, the attachment positions of the junction box main body


10


and connector portion


20




a


(


20




b


) can easily be changed, and the arrangement positions can freely be determined. Therefore, a large design change is not accompanied. Even in this case, it is possible to enhance the freedom degree of layout and broaden wiring design, and the like.




Additionally, in the above-described embodiment, several examples of the mode of the junction box


1


have been described, but the present invention is not limited to these examples. Examples of the mode include various modes of junction boxes such as: a junction box


1


C constituted of a combination of a junction box main body


10


C, connector portion


20




a


(


20




b


) and cable portion


30


C as shown in

FIG. 22A

; and a junction box


1


D constituted of a combination of a junction box main body


10


D, connector portion


20


D and cable portion


30


D as shown in FIG.


22


B.




Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.



Claims
  • 1. A junction box comprising:a junction box main body to which an electric component to be connected is attached; and a cable portion which is constituted of a flexible printed circuit with a circuit portion including a conductor pattern formed on an insulating film, and electrically connects the junction box main body to an outer wiring circuit, wherein said flexible printed circuit includes a strip portion having a part thereof contained in said junction box main body and a terminal connecting portion extending transversally from a lateral edge of said strip portion at a position to be fitted to said junction box main body, said junction box main body includes a junction box housing provided with a part fitting port for fitting said electric component and a plate-shaped first connecting terminal to be contained in said junction box housing so as to be connected to the terminal connecting portion of said flexible printed circuit and further to said electric component, said junction box housing including a strip-shaped portion containing portion for containing a strip portion provided with said terminal connecting portion of said flexible printed circuit and a terminal containing hole arranged outside the strip-shaped containing portion containing portion so as to contain said first connecting terminal with its tip end exposed to the outside, and the lateral edges of said strip portion are contained in said strip portion containing portion with said terminal connecting portion bent to show an S-shaped profile at the lateral edges of the strip-shaped containing portion of said flexible printed circuit.
  • 2. The junction box according to claim 1, wherein said junction box housing is provided at the outside of the strip-shaped portion containing portion with a lance mechanism for rigidly securing said first connecting terminal to the inside.
  • 3. The junction box according to claim 1, wherein said plurality of flexible printed circuits of said cable portion are superimposed upon one another in a non-bonded state so that said terminal connecting portions of the respective flexible printed circuits are arranged in positions with the first connecting terminal of said junction box main body.
  • 4. The junction box according to claim 1, whereinsaid first connecting terminal is connected to said terminal connecting portion by resistance welding, ultrasonic wave welding, laser welding or soldering.
  • 5. The junction box according to claim 1, whereina plurality of terminal connecting portions are formed on said flexible printed circuit and extended form the lateral edges of said strip portion.
  • 6. The junction box according to claim 1, whereinthe connecting portion of said first connecting terminal and said terminal connecting portion is sealed by a molded piece of resin.
  • 7. A connector comprising:a cable portion including a flexible printed circuit having a circuit portion of a conductor pattern formed on an insulating film; and a connector portion configured to connect the cable portion and an outer connector of an outer wiring circuit, wherein said flexible printed circuit includes a strip portion partly contained in said connector portion and a terminal connecting portion extending transversally from a lateral edge of said strip portion at a position to be fitted to said connector portion, wherein said connector portion includes a connector housing for receiving said outer connector and a plate-shaped second connecting terminal contained in said connector housing so as to be connected to the terminal connecting portion of said flexible printed circuit and also to said outer connector, said connector housing includes a strip-shaped portion containing portion for containing in the inside the lateral edge of the strip portion provided with the terminal connecting portion of said flexible printed circuit and a terminal containing hole arranged outside of the strip-shaped portion containing portion so as to contain said second connecting terminal with its front end exposed to the outside, and said lateral edge of said strip portion is contained in said strip-shaped portion containing portion with said terminal connecting portion bent to show an S-shaped profile at the lateral edges of the strip portion of said flexible printed circuit.
  • 8. The connector according to claim 7, wherein said connector housing is provided at the outside of said strip-shaped portion containing section with a lance mechanism for rigidly securing said second connecting terminal to the inside.
  • 9. The connector according to claim 7, wherein said second connecting terminal is connected to said terminal connecting portion by resistance welding, ultrasonic wave welding, laser welding or soldering.
  • 10. The connector according to claim 7, wherein a plurality of terminal connecting portions are formed on said flexible printed circuit and extended form the lateral edges of said strip portion.
  • 11. The connector according to claim 7, wherein said plurality of flexible printed circuits of said cable portion are superimposed upon one another in a non-bonded state so that said terminal connecting portions of the respective flexible printed circuits are arranged in positions with the second connecting terminal of said connector portion arranged therein.
  • 12. The connector according to claim 7, wherein the connecting portion of said second connecting terminal and said terminal connecting portion is sealed by a molded piece of resin.
  • 13. The connector according to claim 10, wherein said flexible printed circuit is formed by bending at least one of the terminal connecting portions formed at the respective lateral edges of said strip portion toward the opposite lateral edge.
  • 14. The connector according to claim 7, whereinsaid connector portion is removably fitted to said connector housing; said connector portion further comprising a case portion which contains at least a part of said flexible printed circuit in the inside.
Priority Claims (2)
Number Date Country Kind
2001-326149 Oct 2001 JP
2001-326155 Oct 2001 JP
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is based upon and claims the benefit of priority from the prior Japanese Patent Applications No. 2001-326149, filed Oct. 24, 2001; and No. 2001-326155, filed Oct. 24, 2001, the entire contents of both of which are incorporated herein by reference.

US Referenced Citations (12)
Number Name Date Kind
4689718 Maue et al. Aug 1987 A
4767357 Hasircoglu Aug 1988 A
5004426 Barnet Apr 1991 A
5908322 Seki Jun 1999 A
5913689 Kato Jun 1999 A
6224397 Nakamura May 2001 B1
6261105 Uezono Jul 2001 B1
6325640 Kasai Dec 2001 B1
6437986 Koshiba Aug 2002 B1
6552274 Nakamura Apr 2003 B1
20030076650 Momota et al. Apr 2003 A1
20030077927 Momota et al. Apr 2003 A1
Foreign Referenced Citations (5)
Number Date Country
10-243526 Sep 1998 JP
2845082 Oct 1998 JP
11-41753 Feb 1999 JP
11-46426 Feb 1999 JP
3236802 Sep 2001 JP