This invention relates to a junction box assembly, such as an electrical connection box assembly mounted on a vehicle or the like.
In various assembly processes, such as automobile assembly processes, many cable connections must be made, e.g., within the electrical system of a vehicle. Connections are often made using connectors, such as plug-in-type connectors.
Force multiplying technology has been applied to connectors to reduce the actual force that must be applied by a human operator to connect connectors together. For example, U.S. Pat. No. 6,500,015 and U.S. Patent application Publication No. US 2003/0211764 disclose systems in which rotating levers, also called cams, with cam grooves are provided on a first connector, and a mating corresponding connector is provided with follower pins that interact with the cam grooves. The cams also include a connection pin provided at an end of the cam opposite from an end containing the cam groove. This connection pin interacts with a connection groove provided in a holder that holds the first connector. When the two connectors are pushed together, the cams, follower pins and connection pins provide a force multiplying effect, which reduces the force required to push the connectors together.
However, as systems are designed that require even more conductors per connector, and/or the ganging together of even more connectors for simultaneous assembly to mating connectors, it is desirable to provide systems and methods for further reducing assembly forces, to reduce the occurrence and/or severity of assembly operator fatigue.
Embodiments of this invention address this need by providing a plurality of cam levers that each multiply the manual force applied. A pair of cam levers may act on a common point, resulting in a force multiplying effect double that of a single cam lever acting at that point. A detent system may be provided to hold the cam levers in a pre-staged state and/or to hold the cam levers in place in an assembled state.
These and other objects, advantages and salient features of the invention are described in or apparent from the following description of embodiments.
Exemplary embodiments will be described with reference to the accompanying drawings, in which like numerals represent like parts, and wherein:
Embodiments of this invention produce a force-multiplying effect to make it easier for an assembly operator to couple connectors together.
The junction box housing 10 also includes at least one pin 14 projecting from one side wall of the junction box housing 10 toward an opposing side wall, and preferably includes two such pins, projecting from opposing side walls as depicted in
The junction box housing 10 may include shoulder portions 16 at each corner of the junction box housing 10, and recesses 18 provided surrounding the pins 14.
Cam levers 24 and 26 are rotatably attached to the connector assembly 20 via a rotation shaft 23. The cam lever 26 includes a cam groove 268, and the cam lever 24 includes a cam groove 248. When the cam levers 24 and 26 are in an upward position, open end portions of the cam grooves 248 and 268 align to form an opening 50 through which the pin 14 of the junction box housing 10 may laterally slide.
The levers 24 and 26 are held in the upward position by a detent system. For example, as shown in
When the detent opening 266 and the detent protrusion 242 are aligned, the detent protrusion 242 projects into the detent opening 266, thereby holding the cam lever 24 in a fixed position relative to the cam lever 26. Additionally, a detent opening 244 formed in the cam lever 24 can be engaged with a detent protrusion 28 formed on the connector assembly 20, thereby holding the cam lever 24 in a predetermined position with respect to the connector assembly 20, as shown in
The connector assembly 22 may also include a detent protrusion 29. Operation involving the detent protrusion 29 will be described hereafter.
After being placed in the state of initial engagement shown in
In the position shown in
A cover 60 may then be attached to the open end of the junction box housing 10, and locked by any suitable locking mechanism, such as a snap lock device or the like (not shown). The cover may include tabs 62, which rest against the cam levers 24 and 26 when the cover is locked in place, thereby providing a secondary lock that prevents the cam levers from accidentally lifting upward in a disengaging direction.
While the invention has been described in conjunction with specific embodiments, these embodiments should be viewed as illustrative and not limiting. Various changes, substitutes, improvements or the like are possible within the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2430011 | Gillentine | Nov 1947 | A |
5035634 | Hasircoglu et al. | Jul 1991 | A |
6254414 | Sawayanagi et al. | Jul 2001 | B1 |
6500015 | Fukamachi et al. | Dec 2002 | B1 |
6739889 | Daggett et al. | May 2004 | B1 |
20030124884 | Katsumata et al. | Jul 2003 | A1 |
20030211764 | Fukamachi et al. | Nov 2003 | A1 |