The invention relates to a junction between two tool parts, pursuant to the preamble of claim 1.
Junctions of the type being discussed here are known. They serve to connect two tool parts with one another, for example a tool head with a holder that can be a direct part of a machine tool or in turn can be inserted into a machine tool and attached there. It has been proven that in many cases, the positioning of the two tool parts relative to one another is no longer precise after the junction is released and reassembled, so that the degree of repetition accuracy that can be achieved is no longer sufficient.
It is therefore the task of the invention to create a junction of the type stated initially, which avoids this disadvantage.
To accomplish this task, a junction is proposed that demonstrates the characteristics named in claim 1. It is characterized in that a first tool part with a recess and a second tool part with a projection are provided. In this connection, it is provided that the angle of taper of the recess, which is shaped like a hollow cone, and that of the conical projection are almost precisely the same, so that very precise positioning of the two tool parts relative to one another is possible. In addition, it is provided that the projection is structured to be practically non-resilient, and the wall of the first tool part that surrounds the recess is structured to be resilient. The two tool parts are provided with flat surfaces that rest against one another when the parts are connected. As long as the two tool parts have not yet been secured in place, the flat surfaces are at a distance from one another even when the projection has been inserted into the recess. Only once the clamping device has been activated are the two tool parts secured together in such a way that the flat surfaces rest against one another. The wall of the first tool part is expanded as a result of the axial displacement of the two tool parts while they are being secured, so that on the one hand, the outer surface of the projection rests against the inside surface of the recess, and, on the other hand, the two flat surfaces rest against one another. This results in mechanical redundancy. The projection of the second tool part can be structured to be relatively small, so that over all, a very compact junction can be produced.
Further developments are evident from the dependent claims. The invention will be explained in greater detail below, on the basis of the drawing, which shows:
The first tool part shown in
At its opposite front end 6, on the right in
At least one coolant and/or lubricant channel 11 is provided in the wall 9 of the holder 1 that surrounds the recess 7. The holder 1 shown here is provided with four such coolant and/or lubricant channels, which are arranged equidistant from one another and run parallel to the center axis 13 of the holder 1. Concentric to this axis, a feed channel 15 runs through the base element 17 of the holder 1, the feed channel 15 opens into a cavity 5. The feed channel 15 is connected with the coolant and/or lubricant channels 11 by way of distributor channels 19, which can run radial to the center axis 13, so that coolant and/or lubricant can be brought to the second tool part via the feed channel 15, the distributor channels 19, and through the coolant and/or lubricant channels 11.
At the face 21 that lies opposite the conical chuck 3, a first flat surface 23 is provided, which surrounds the opening of the recess 7 in the face 21, and is preferably structured in ring shape.
From the enlargement, the recess 7 is clearly evident; it creates an opening in the face 21 of holder 1 and is structured in hollow conical shape. It becomes narrower towards the left, starting from the face 21. In the base surface 25 of the recess 7, at least one drive surface 27 is provided, which is preferably produced using a so-called erosion process. In the exemplary embodiment of the holder 1 shown here, two drive surfaces that lie opposite one another are provided, arranged parallel to one another, at a distance from the center axis 13.
A recess 26, preferably implemented as a bore, opens into the base surface 25 of the recess 7; it runs concentric to the center axis 13 and is provided with an inside thread 26a.
From the enlargement, it is once again clearly evident that the feed channel 15 is connected, via the distributor channel 19, with the coolant and/or lubricant channels 11, which pass through the face 21 of holder 1, and here open into the first flat surface 23, via the distributor channels 19.
From the top view show in
The top view also shows the two opposite drive surfaces 27, which are arranged at a distance from and parallel to one another and to the center axis 13.
In the explanations for
From the representation according to
It is also essential that the recess 7 and the projection 33 have practically the same angle of taper. The length of the projection 33 is coordinated with the depth of the recess 7 in such a way that a second flat surface 37, which surrounds the projection 33 and runs perpendicular to the center axis 39 of the tool head 31, rests firmly against the first flat surface 23 of the holder 1, when the two tool parts are firmly connected with one another in order to implement the junction.
The projection 33 is provided with a continuation 41 that has at least one contact surface 43. continuation 41 is basically mainly cylindrical in shape. In the exemplary embodiment shown here, two contact surfaces 43 that lie opposite one another and run parallel to one another are provided, resting against the drive surfaces 27 in the assembled state of the junction.
The second tool part shown in
The cross-sectional view shows that a face 49 lies opposite the second flat surface 37, and that at least one, here four coolant and/or lubricant channels 11′ open into the former, running parallel to the center axis 39 of the second tool part and also open into the second flat surface 37.
A recess 51, preferably structured as a bore, is made in the basis element 45 of the second tool part, structured as a tool head 31, and provided with an inside thread 53.
From
From the rear view of the second flat surface 37 of the second tool part, structured as a tool head 31 here, as show in
In the first tool part, structured as a holder 1, the drive surfaces 27 and the coolant and/or lubricant channels 11 are arranged in a defined position relative to one another. This also holds true analogously for the contact surfaces 43 and the coolant and/or lubricant channels 11′ of the second tool part, structured as a tool head 31. Therefore, when the projection 33 of the tool head 31 is inserted into the recess 7 of the holder 1, the drive surfaces 27 and the contact surfaces 43 rest against one another, so that it is ensured that the coolant and/or lubricant channels 11 in the holder 1 align with the coolant and/or lubricant channels 11′ in the tool head 31. In addition, the drive and contact surfaces 27, 43 serve to prevent rotation of the two tool parts relative to one another, and therefore twisting of the junction.
During assembly of the junction, in other words when the two tool parts are joined together, first the projection 33 is inserted into the recess 7. The size of the projection 33 is selected in such a way that after insertion of the projection into the recess there is a slight distance between the flat surfaces 23 and 37, for example on the order of {fraction (2/100)} mm.
In order to ensure that the two tool parts 1 and 31 are securely fixed in place in the area of the junction, a clamping device is provided, which includes a clamping screw. This is brought into engagement with the inside thread 26a in the holder 1 and with the inside thread 53 in the tool head 31, and tightened. When the clamping screw is tightened, a relative axial movement of the two tool parts relative to one another takes place, where the projection 33, which is practically non-resilient, expands the recess 7, i.e. the wall 9 that surrounds the recess 7 of the first tool part. The axial displacement of the two tool parts relative to one another has the result that the flat surfaces 23 and 37 rest firmly against one another. At the same time, the outside of the projection 33 also rests firmly against the inner surface of the recess 7, so that there is mechanical redundancy, with the result that the tool parts are secured in extremely stable manner, and thus a junction. In addition, there is a high level of repetition accuracy.
The angle of taper of the recess 7 and that of the projection 33 are practically identical, as stated before. Preferably, an angle of taper is selected that results in self-locking of the tool parts that are inserted into one another. The angle of taper therefore lies in a range of about 5° or less.
Preferably, a clamping screw is used that has two thread regions that are oriented in opposite directions, namely a right-hand thread and a left-hand thread, and is structured as a differential screw. If this clamping screw is turned in a first direction, the two tool parts 1 and 31 are rigidly secured with one another. If the clamping screw is turned in the opposite direction, the claiming effect on the tool parts in the region of the junction is released, and the projection 33 is pushed out of the recess 7. Since the angle of taper of the recess 7 and that of the projection 33 lie in a range of self-locking, there is a significant advantage that results from the fact that the clamping screw has two opposite thread regions, so that when the clamping screw is turned in the release direction, the two tool parts are pressed apart, overcoming the self-locking effect.
The clamping screw can be accessible through an opening in the face 49 of the second tool part and/or through the cavity 5 and the feed channel 15 in the first tool part.
When the clamping screw, which is not shown in
In spite of its small dimensions, the projection 33 is structured to be very stable and practically cannot be deformed, at least not in the radial direction. In comparison, the wall 9 of the holder 1, which surrounds the recess 7, is slightly resilient, so that the projection 33 is firmly secured in the recess 7 when the screw is tightened. The largest external diameter of the projection 33 here is about 1 to 6 μm, preferably 1.5 to 4 μm, particularly 2 to 3 μm larger than the largest internal diameter of the recess 7.
It can be easily seen that the projection 33 of the second tool part, structured as a tool head 31 here, can be relatively small, and that nevertheless, a very stable connection between the tool parts can be achieved, where the precise alignment of the parts relative to one another, as has been discussed, can be guaranteed. The precise alignment of the tool parts relative to one another can be achieved, in particular by structuring the two flat surfaces 23 and 37 as circumferential and preferably as ring surfaces, so that precise contact and alignment of the parts occurs all around the region of the junction.
From the explanations relating to the junction shown in
Number | Date | Country | Kind |
---|---|---|---|
100 48 910 | Oct 2000 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1746716 | Sasse | Feb 1930 | A |
2383688 | Seiter | Aug 1945 | A |
3041898 | Better | Jul 1962 | A |
3139800 | Clarkson et al. | Jul 1964 | A |
3320833 | Andreasson | May 1967 | A |
4099889 | Vig | Jul 1978 | A |
4557642 | Dudas et al. | Dec 1985 | A |
4621960 | Tollner | Nov 1986 | A |
4748879 | von Haas | Jun 1988 | A |
4945793 | von Haas | Aug 1990 | A |
5026224 | Andersson et al. | Jun 1991 | A |
5163790 | Vig | Nov 1992 | A |
5244322 | Schweizer et al. | Sep 1993 | A |
Number | Date | Country |
---|---|---|
24 54 146 | May 1976 | DE |
31 36 147 | Mar 1983 | DE |
33 14 591 | Oct 1984 | DE |
35 32 891 | Mar 1987 | DE |
41 23 966 | Jan 1993 | DE |
42 11 034 | Oct 1993 | DE |
0015248 | Sep 1980 | EP |
0285704 | Oct 1988 | EP |
Number | Date | Country | |
---|---|---|---|
20020067965 A1 | Jun 2002 | US |