The present disclosure relates in general to space-deployable structures, and is particularly directed to a space-deployable boom structure.
The use of tape type elements to form a truss of an outer space self-deployable boom system has been studied for some time. A significant challenge has been to stow or fold up the members of the self-deployable boom system in an orderly and predictable fashion. Space self-deployable booms typically include a plurality of longerons that are interlinked with diagonal elements. Generally the diagonal elements have been configured in a “zig zag” configuration in the past. Such a configuration unfortunately does not provide a predictable or orderly transition between a stowed state and expanded state of the boom system.
In view of the foregoing, there is a need for an improved outer space self-deployable boom system that transitions between a stowed state and an expanded state in an orderly and predictable manner.
Disclosed is an outer space deployable boom system that is formed of a plurality of interconnected longeron members that are linked by diagonal members and batten frames. The diagonal members are arranged in a unique K-type configuration that provides a predictable and orderly folding dynamic as the boom system transitions from a stowed state to a deployed state, as described in detail below. The longerons of the boom system are formed of a plurality of modularly-linked longeron members. The modular aspect of the longeron members permits easy and quick replacement of a portion of the boom system and also permits the use of different materials for different longeron members, though the longeron members could be composed of one continuous tape. This can be used to achieve a desired profile coefficient of thermal expansion (CTE) for the entire boom system by tailoring the CTE of each longeron member in a manner that balances the CTE of the whole boom system.
In one aspect, there is disclosed a spacecraft boom system, comprising: at least one bay formed by a pair of opposed battens that are longitudinally interconnected by opposed longeron structures such that the longeron structures and the battens connect at four corners of a side of the bay; a first diagonal member having a first end connected to a first corner of the bay and a second end connected to a longeron structure opposite the first corner of the bay but not located at any corner of the bay; a second diagonal member having a first end connected to a second corner of the bay opposite the first corner and a second end connected to the same longeron structure as the second end of the first diagonal member, wherein the second end of the second diagonal member is not located at any corner of the bay; wherein the boom system is adapted to transition from a collapsed, stowable configuration to an elongated configuration.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Disclosed is an outer space deployable boom system that is formed of a plurality of interconnected longeron members that are linked by diagonal members and batten frames. The diagonal members are arranged in a unique K-type configuration that provides a predictable and orderly folding dynamic as the boom system transitions from a stowed state to a deployed state, as described in detail below. In this regard, the disclosed boom system has purely axial expansion kinematics along the longitudinal axis of the system. The design does not rotate or “ratchet” back and forth about the primary deployment axis (the longitudinal axis). It is a purely axial expansion. The disclosed embodiment has relevant shear and torsion stiffness during deployment which significantly improves predictability, despite still exhibiting low out-of-plane rotational (gimbal) stiffness.
The longerons of the boom system are formed of a plurality of modularly-linked longeron members. The modular aspect of the longeron members permits easy and quick replacement of a portion of the boom system and also permits the use of different materials for different longeron members, though the longeron members could be composed of one continuous tape. This can be used to achieve a desired profile coefficient of thermal expansion (CTE) for the entire boom system by tailoring the CTE of each longeron member in a manner that balances the CTE of the whole boom system. The foregoing is described in more detail below.
The boom system 105 includes a plurality of bays that are structurally and sequentially coupled to one another along the length of the boom system 105. It should be appreciated that the boom system 105 can include any number of bays. Furthermore, the boom system 105 may self-extend into a variety of shapes that include, but are not limited to, a linear shape, an elongated planer shape, and a non-elongated planer shape. Consequently, the boom system 105 is able to support and extend a plurality of components that may include, for example, a solar array assembly, an antenna array assembly, a quadrifilar antenna, or various other structures. Some exemplary shapes are described herein.
Moreover, it should be appreciated that the system is not limited to the specific embodiment shown in the figures. For example, any of the longitudinal or diagonal members can be a rigid element over a portion of its length with a discrete hinge element at either end that joins to the batten frame. This would make the entire structure a collection of rigid elements connected by discrete, localized hinges.
With reference to
In the illustrated embodiment shown
With reference still to
The structural configuration of a single bay is now described with reference again to
With reference still to
The opposite ends of each batten longeron member 215 are connected to a respective diagonal-longeron fitting member 220 that provides a connection to a diagonal member 230. In this regard, each diagonal-longeron fitting member 220 has a diagonally-extending connector 235 (
The diagonal members 230 are connected to the longeron members and to the batten frames in a unique manner that provides predictable and orderly folding and unfolding of the boom system 105. This is described in more detail with reference to
In a similar manner, a first end of the diagonal member 230b connects to a lower batten frame 225b at a connection location 515, which is near the corner connection between the batten frame 225b and the batten longeron member 215b. A second end of the diagonal members 230b connects to the diagonal-longeron fitting member 220b at a connection location 520 opposite the corner where the first end is connected. Note that the connection location 520 is downwardly offset from the mid-way location 515 of the bay. The connection location 520 can be positioned at the mid-way location or it can be offset a variety of distances, such as is shown in
The diagonal members 230 thus form a K-shaped configuration looking toward a side of the bay system 105, as shown in
As mentioned, the interconnected longeron members provide the boom system 105 with a modular configuration. The various longeron members are consecutively and removably attached to one another along their lengths such that the end of one longeron member is attached to an end of a successive, adjacent longeron member. The means of attachment can vary. For example, a hinge structure can be used to attach the longeron members to one another to permit a predetermined movement therebetween, such as to encourage folding of the longeron members relative to one another. Alternately, screws, bolts, staples, or any other attachment means can be used to attach the longeron members to one another. It should be appreciated that the modular aspect of the boom system does not necessarily have to be employed in combination with the K-shaped configuration of the diagonal members. Each can be employed independently or in combination with the other in a boom system.
The modular configuration of the interconnected longeron members has several advantages. For example, the modular configuration permits localized repair of a portion of the boom system 105 should the portion of the boom system become damaged. With reference again to
Another advantage of the modular configuration of the modular longeron members is that it permits localized tuning of the coefficient of thermal expansion (CTE) of the boom system 105. Each longeron member can be made of a material that has a predetermined CTE with the CTEs varying based on a desired profile of thermal expansion for the boom system as a whole. The longeron members can be made of various materials with different CTEs to enable the collective CTE of the boom system to balance or to differ in a predetermined manner. This can provide dimensional stability to the boom system.
The longeron members can be manufactured of various materials. In one embodiment, the longeron members are manufactured of fiber-reinforced polymers although it should be appreciated that the material can vary. In an embodiment, the CTE of a particular longeron member is in the range of −1 μin/in-K to +10 μin/in-K. although the CTE can vary.
As mentioned, the longeron members can have a curved cross-sectional shape. This is described in more detail with reference to
In an embodiment, the orientation of the curvature of the longeron members alternates between consecutive longeron members. Thus, a first longeron member may have a convex side that points in a first direction. The next consecutive longeron member may have a convex side that points in the opposite direction. In this manner, the orientation of the longeron members alternates or flip-flops moving consecutively along the longeron members that are positioned along the length of an entire longeron structure 115 of the boom system 105.
For example, as shown in
With reference again to
The predictability in folding/unfolding provided by the K-configuration is particularly suited for self-deployable structures that deploy without a secondary motorized system to aid or cause deployment. Previous designs exhibit very low stiffness in essentially every degree of freedom, which causes predictability concerns and chaotic deployment behavior. The disclosed boom system can optionally be used in conjunction with various mechanical and/or electro-mechanical systems to transition the boom system from the stowed state to the deployed state. In an exemplary embodiment, the truss boom system employs a jack screw or elevator screw system for deployment from the stowed to the deployed state. An exemplary elevator screw system is described in U.S. Pat. No. 6,970,143, which is incorporated herein by reference in its entirety.
Although embodiments of various methods and devices are described herein in detail with reference to certain versions, it should be appreciated that other versions, embodiments, methods of use, and combinations thereof are also possible. Therefore the spirit and endoscope of the appended claims should not be limited to the description of the embodiments contained herein.
This application claims priority of U.S. Provisional Patent Application Ser. No. 60/874,871, filed Dec. 13, 2006 and U.S. Provisional Patent Application Ser. No. 60/967,159, filed Aug. 30, 2007. Priority of the aforementioned filing dates is hereby claimed and the disclosures of the Provisional Patent Applications are hereby incorporated by reference in its entirety.
This invention was made with U.S. Government support under Contract No. FA945306C0039 (3118). The U.S. Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
60874871 | Dec 2006 | US | |
60967159 | Aug 2007 | US |