This invention relates to flat panel antennas and, more specifically, a flat panel antenna having a hybrid waveguide and printed circuit structure.
The use of flat panel antennas for man pack and fly away application is of increasing interest in the marketplace. The flat form factor makes it more easily transportable and configured for use than a conventional parabolic reflector. The disadvantage of a flat panel antenna is that it suffers performance degradation when compared to their parabola-based antenna counterparts, mainly in radiation pattern degradation and increased loss through the printed circuits and subsequent feed network.
Accordingly, there exists a need for a flat panel antenna having a hybrid waveguide and printed circuit structure for limiting radiation pattern degradation.
In accordance with one form of the present invention, a flat panel antenna for satellite communications is provided, the flat panel antenna including a printed circuit board (PCB) including a plurality of patches and a feed network; a waveguide manifold including a transmit feed network on one side and a receive feed network on the opposite side; a transition region on the transmit feed network wherein a waveguide input port transitions to a ridged waveguide for compact dimension; a transition region on the transmit feed network wherein the waveguide input port transitions to the ridged waveguide for compact dimension; an integrated transmit reject filter on the receive feed network; and wherein the flat panel antenna is operable to provide right hand circular polarization TX and left-hand circular polarization RX.
In accordance with another form of the present invention, a printed circuit board (PCB) and waiveguide manifold assembly for satellite communications, the PCB and waveguide assembly including a top cover layer with integrated radome; a PCB layer including a plurality of patches and a feed network; a waveguide manifold layer; an adhesive between the PCB layer and the waveguide manifold layer; a bottom cover; an adhesive between the waveguide manifold layer and the bottom cover; a transition region on the transmit feed network wherein a waveguide input port transitions to a ridged waveguide for compact dimension; a transition region on the transmit feed network wherein the waveguide input port transitions to the ridged waveguide for compact dimension; an integrated transmit reject filter on the receive feed network; and wherein the flat panel antenna is operable to provide right hand circular polarization TX and left-hand circular polarization RX.
For a fuller understanding of the nature of the present invention, reference should be made to the following detailed description, taken in conjunction with the accompanying drawings in which:
Like reference numerals refer to like parts throughout the several views of the drawings.
While implementations are described herein by way of example, those skilled in the art will recognize that the implementations are not limited to the examples or drawings described. It should be understood that the drawings and detailed description thereto are not intended to limit implementations to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope as defined by the appended claims. The headings used herein are for organizational purposes only and are not meant to be used to limit the scope of the description or the claims. As used throughout this application, the word “may” is used in a permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.e., meaning must). Similarly, the words “include,” “including,” and “includes” mean including, but not limited to.
The following detailed description is of the best currently contemplated modes of carrying out exemplary embodiments of the invention. The description is not to be taken in a limiting sense but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims. Referring to the several views of the drawings, the flat panel antenna is shown and described herein and is generally indicated as 10.
The flat panel antenna 10 described herein includes the following attributes: (a) interleaved TX and RX aperture; wherein the TX and RX antennas both utilize the full size of the physical antenna (i.e., not ½ TX and ½ RX only); (b) based on a hybrid waveguide and printed circuit structure; (c) uses a two-level distribution mechanism to provide both TX and RX feeds (at the waveguide manifold level) in a means that is easy to manufacture and consists of minimal parts; (d) uses low loss printed circuit board material with an integrated radome; (e) uses a simplified PCB feed network within the printed circuit sub array that does not require any vias for changes between printed circuit layers; (f) uses a novel waveguide to PCB transition that provides a coupling mechanism from the macro level waveguide feed network into the localized sub array for both TX and RX stripline feed networks; (g) uses novel TX and RX printed patch antennas; (h) has an integrated transmit reject filter in the waveguide manifold; (i) uses ridged waveguide on the waveguide manifolds—transitioning from standard sized waveguide; and (j) right hand circular polarization TX and left-hand circular polarization RX.
Referring to
The flat panel antenna 10 utilizes the combination of printed circuit board 12 and waveguide manifold 18, which is beneficial for several reasons including, but not limited to: (a) PCBs 12 can be used to make complex printed patch antennas with methods to improve bandwidth and axial ratio to optimize antenna performance; (b) these printed materials can be quite lossy at Ka band, and thus the localized feed network in the PCB 12 is kept to a minimum length; (c) it is easy to iterate the PCB artwork to tune antenna performance; (d) low layer count PCBs are typically less costly than high layer count, and do not require complicated layer changing vias; (e) the waveguide manifold 18 can be used for macro level RF distribution; and (f) the waveguide feed network is far less lossy when compared to PCB losses. PCB losses of high frequency material—1 dB/inch in manufacturing, waveguide losses may be on the order of 0.10 dB/inch.
Referring to
Referring now to
Referring to
From the foregoing description of various embodiments of the invention, it will be apparent that many modifications may be made therein. It is understood that these embodiments of the invention are exemplifications of the invention only and that the invention is not limited thereto.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/849,657 filed on May 17, 2020.
Number | Date | Country | |
---|---|---|---|
62849657 | May 2019 | US |