This invention relates to an adjustable and efficient system for loading items onto the roof of a vehicle. More specifically, it relates to a system that can easily raise and lower a kayak from the roof of a vehicle to a more manageable loading/unloading height.
While kayaks are easily maneuvered in the water, handling them on land can be quite difficult. The average recreational kayak is between six and twelve feet long, and weighs between forty and eighty pounds. Loading one of these recreational kayaks onto the roof of a motor vehicle can be extremely difficult, especially when the vehicle is tall. Further difficulty arises when an individual attempts to load or unload a kayak without assistance. Such circumstances have an increased risk of injury, especially if the individual is returning from a fatiguing day of kayaking.
Accordingly, what is needed is an adjustable and efficient system for securing and lifting a kayak from a manageable height to the roof of the vehicle. However, in view of the art considered as a whole at the time the present invention was made, it was not obvious to those of ordinary skill in the field of this invention how the shortcomings of the prior art could be overcome.
All referenced publications are incorporated herein by reference in their entirety. Furthermore, where a definition or use of a term in a reference, which is incorporated by reference herein, is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.
While certain aspects of conventional technologies have been discussed to facilitate disclosure of the invention, Applicants in no way disclaim these technical aspects, and it is contemplated that the claimed invention may encompass one or more of the conventional technical aspects discussed herein.
The present invention may address one or more of the problems and deficiencies of the prior art discussed above. However, it is contemplated that the invention may prove useful in addressing other problems and deficiencies in a number of technical areas. Therefore, the claimed invention should not necessarily be construed as limited to addressing any of the particular problems or deficiencies discussed herein.
In this specification, where a document, act or item of knowledge is referred to or discussed, this reference or discussion is not an admission that the document, act or item of knowledge or any combination thereof was at the priority date, publicly available, known to the public, part of common general knowledge, or otherwise constitutes prior art under the applicable statutory provisions; or is known to be relevant to an attempt to solve any problem with which this specification is concerned.
The long-standing but heretofore unfulfilled need for an adjustable and efficient system for securing and lifting a kayak from a manageable height to the roof of a vehicle is now met by a new, useful, and nonobvious invention.
The novel structure includes a mounting platform attachable to the roof of the vehicle and a first rotating arm structure secured to the mounting platform. The system preferably includes a second rotating arm structure, but can operate with any number of arm structures. In an embodiment, each rotating arm structure includes a first, second, and third arm member. The proximal end of the first arm member is connected a rotational axle incorporated into at a lateral side of the mounting platform and a distal end is pivotally interconnected with a proximal end of the second arm member. A proximal end of the third arm is pivotally secured to the mounting platform and a distal end of the third arm is pivotally secured to the distal end of the second arm member.
The system further includes a, preferably J-shaped, support slidably secured to the second arm member. The support is adapted to slide along the extent of the second arm member so that the support can extend closer to the ground for loading a kayak or other items onto the support. An embodiment of the J-shaped support includes a width adjusting mechanism to alter a distance of a free end of the J-shaped from the body of the J-shaped support. As a result, the support can act as a clamp to secure the kayak or other items therein.
A motor is in communication with the rotational axle and adapted to rotate the rotational axle. Consequently, a user can easily transition the system between a stored configuration and a loading configuration by controlling the rotation of the axle.
An embodiment includes a plurality of trusses extending between the second arm member in the first rotating arm structure and the second arm member in the second rotating arm structure. The trusses increase the structural support and rigidity of the system at the location in which the most weight is imposed on the system.
An embodiment includes a front rotating arm structure (located towards the front of the vehicle) and a rear rotating arm structure (located near the rear of the vehicle). Both rotating arm structures have a first arm member and a second arm member, where a proximal end of the first arm member is rotationally fixed to the rotational axle and the distal end is rotationally connected to a proximal end of the second arm member. The distal end of the second arm member is connected to the support. A pair of linear guides are rotationally disposed on the mounting platform to guide the second arms as they cantilever over a predetermined loading side of the vehicle when the system transitions into a loading position. The loading position is achieved when the first arms are rotated towards the predetermined loading side of the vehicle such that the distal ends of the first arm members are located near the guides. The movement of the first arm member causes the distal end of the second arm member to cantilever over the predetermined side of the mounting platform placing the support closer to a ground than when the system is in the stored position. The stored position is achieved when the first arm is rotated away from the predetermined loading side of the mounting platform and the distal end of the second arm member and the support are positioned over the roof of the vehicle.
These and other important objects, advantages, and features of the invention will become clear as this disclosure proceeds.
The invention accordingly comprises the features of construction, combination of elements, and arrangement of parts that will be exemplified in the disclosure set forth hereinafter and the scope of the invention will be indicated in the claims.
For a fuller understanding of the invention, reference should be made to the following detailed description, taken in connection with the accompanying drawings, in which:
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings, which form a part thereof, and within which are shown by way of illustration specific embodiments by which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the invention.
The present invention is a loading system, attachable to the roof of a vehicle, that can lower from the roof of the vehicle to allow a user to easily secure and raise a kayak, or other item(s), onto the roof of the vehicle where it is stored for transport. As shown in
Referring to
In an embodiment, each arm structure 104 includes first arm member 110 having proximal end 110a rotationally fixed to rotating axle 108. Distal end 110b of first arm member 110 is pivotally secured to proximal end 112a of second arm member 112. The pivotal connection between proximal end 112a of second arm member 112 and distal end 110b of first arm member 110 allows the two arm members to rotate with respect to each other in a plane parallel to their respective extents. In an embodiment having two or more arm structures, trusses 114 may extend between second arm members 112 of each arm structure to increase the structural support where kayak 116 is loaded onto kayak supports 106. It should be noted that each embodiment in the provided figures depicts a system employing dual arm structures interconnected via trusses 114. It is considered, however, that the system may use a single arm structure 104 extending between the mounting platform 102 and kayak support(s) 106.
Referring now to
As best illustrated in
Kayak supports 106 are attached to second arm members 112 and/or trusses 114 extending between the two or more arm structures 104. As most clearly illustrated in
In an embodiment, kayak supports 106 may have an adjustable structure, such that kayak supports 106 can alter the size of the valley. These kayak supports 106 are adaptable to handle several different sized kayaks and can also act as a clamp for securing the kayak in the valley as depicted by arrow 109 in
An important feature of this system is the ability to transition between a loading configuration and a stored configuration.
Transitioning from the loading position back to the stored position is accomplished by reversing the process. First arm 110 is rotated in the clockwise direction, when viewed from the rear of the vehicle, which forces second arm 112 up and away from the ground.
In an embodiment, as shown in
As first arm member 110 is rotated from right to left in a counter-clockwise direction, based on the orientation of the arm structure as shown, second arm 112 is pulled leftwards (or what would be towards the port side of a vehicle if shown). In turn, distal end 112b of second arm 112 is pulled towards the port side of mounting platform 102 and third arm 122 similarly rotates in a counter-clockwise direction.
The embodiment in
As shown mostly clearly in
The advantages set forth above, and those made apparent from the foregoing description, are efficiently attained. Since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matters contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention that, as a matter of language, might be the to fall therebetween.
This nonprovisional application is a continuation of and claims priority to provisional application No. 62/195,043, entitled “KAYAK LOADING SYSTEM,” filed Jul. 21, 2015 by the same inventor.
Number | Name | Date | Kind |
---|---|---|---|
4907934 | Holladay | Mar 1990 | A |
5297912 | Levi | Mar 1994 | A |
5360150 | Praz | Nov 1994 | A |
5398778 | Sexton | Mar 1995 | A |
5850891 | Olms | Dec 1998 | A |
5884824 | Spring, Jr. | Mar 1999 | A |
6092972 | Levi | Jul 2000 | A |
6099231 | Levi | Aug 2000 | A |
6158638 | Szigeti | Dec 2000 | A |
6179543 | Adame | Jan 2001 | B1 |
6315181 | Bradley | Nov 2001 | B1 |
6360930 | Flickenger | Mar 2002 | B1 |
6427889 | Levi | Aug 2002 | B1 |
6561396 | Ketterhagen | May 2003 | B2 |
6764268 | Levi | Jul 2004 | B2 |
7048490 | Henderson | May 2006 | B2 |
7513730 | Goyanko | Apr 2009 | B2 |
7549831 | Hendley | Jun 2009 | B2 |
7780050 | Tucker | Aug 2010 | B2 |
9193304 | Svaldi | Nov 2015 | B2 |
9327654 | Richter | May 2016 | B2 |
9346409 | Pfaeffli | May 2016 | B2 |
9796340 | Bharucha | Oct 2017 | B2 |
20080035688 | Malone | Feb 2008 | A1 |
20090145940 | Bukowiec | Jun 2009 | A1 |
20140169918 | Buller | Jun 2014 | A1 |
20140205419 | Svaldi et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2596229 | Feb 2008 | CA |
Number | Date | Country | |
---|---|---|---|
62195043 | Jul 2015 | US |