'KAZAKHSTANSKIY' ALLOY FOR STEEL DEOXIDATION AND ALLOYING

Information

  • Patent Application
  • 20110044845
  • Publication Number
    20110044845
  • Date Filed
    September 18, 2008
    16 years ago
  • Date Published
    February 24, 2011
    13 years ago
Abstract
The invention relates to ferrous metallurgy, in particular to producing an alloy for reducing, doping and modifying steel. The invention makes it possible to improve the quality of the steel treated with the inventive alloy owing to the deep reduction and modification of non-metallic impurities and the simultaneous microalloying of steel with barium, titanium and vanadium. Barium, titanium and vanadium are added into the inventive alloy, which contains aluminium, silicium, calcium, carbon and iron, with the following component ratio, in mass %: 45.0-63.0 silicium, 10.0-25.0 aluminium, 1.0-10.0 calcium, 1.0-10.0 barium, 0.3-0.5 vanadium, 1.0-10.0 titanium, 0.1-1.0 carbon, the rest being iron.
Description

The innovation falls under the area of ferrous metallurgy, particularly, under processes of creating alloy for deoxidization, alloying and inoculation of steel.


Technical result that is being achieved is quality improvement of treated steel through the alloy being claimed due to deep deoxidization and modification of nonmetallics and simultaneous microalloying of steel by barium, titanium and vanadium.







According to the invention, barium, vanadium and titanium are added to the alloy that contains aluminum, silicium, calcium, carbon and iron, with the following correlation of components, mass. %:


















Silicium
45.0-63.0



Aluminum
10.0-25.0



Calcium
 1.0-10.0



Barium
 1.0-10.0



Vanadium
0.3-5.0



Titanium
 1.0-10.0



Carbon
0.1-1.0



Iron
balance.










The innovation falls under the area of ferrous metallurgy, particularly, under processes of creating alloy for deoxidization, alloying and inoculation of steel.


There is an alloy that is known for deoxidization and alloying of steel custom-characterc. 990853, USSR, class C22C 35/00. publishedcustom-character 1983. #3); makeup, mass %: 30,0-49,0-silicium; 6,0-20,0 calcium; 4,0-20,0 vanadium; 1,0-10,0 manganese; 1,5-4,0 titanium; 1,5-5,0 magnesium; 0,3-0,8 aluminum; 0,5-1,5 phosphorus; balance is iron.


Disadvantage of this alloy is the presence of phosphorus which negatively effects quality of steel, particularly this can result in cold brittleness. Lower content of silicium and aluminum in the alloy does not ensure sufficient deoxidization of steel. For a greater recovery of alloying elements of this alloy it is necessary to deoxidize steel with aluminum first. Otherwise a custom-character pacxocustom-character of alloy will be required.


The closest in makeup to the claimed alloy is alloy for steel deoxidization and alloying (patent of RK # 3231, cl. C22C 35/00, published on 15.03.96, report #1) which contains the following components, mas. %: 15,0-30,0 aluminum; 45,0-55,0 silicium; 1,0-3,0 calcium; 0,1-0,3 magnesium; 0,1-0,8 carbon; balance is iron. The alloy is made by coke reduction of coal ashes. Technical and chemical compositions of charging materials are presented in Chart 1.









CHART 1







Technical makeup and chemical compositions of coal ash and coke









Chemical Makeup, %


















Material
C10, %
Ac, %
Wc, %
Vc, %
SiO2
Fe2O3
Al2O8
CaO
MgO
SO3
TiO2





















Coal
13.02
82.5
1.2
4.48
58.6
10.2
22.0
2.25
1.5
0.2
0.99


ash


Coke
62.0
31.0
0.41
7.0
60.02
8.0
22.7
2.6
1.65
1.7
1.0









Disadvantage of this alloying (of the prototype) process is that qualitative characteristics of steel treated with this type of alloy are not high enough as this makeup of alloy does not deoxidizes steel sufficiently and as a result the steel made has low characteristics. Increase of the amount of oxygen in steel treated with the known alloy (the prototype) that amounts to 0,0036% facilitates increase of residual amounts of oxide inclusions (up to 0,097% in steel. This is a result of a lower content of calcium which is a modifying element, which does not allow to remove nonmetallics more fully and reduce their amount lower than 0,0082%. Moreover, use of coke and coal ashes in the make up of charging mixture negatively effects the melting process in a form of increased agglomerating of charging materials on the surface of electric furnace top and leads to trouble in process fume extraction. Fusible ash begins to flash off intensively and results in premature slag-making; poor gas permeability and ejection of main elements into gaseous phase through high-temperature gas runouts. Power consumption rate in alloy-making is 11,0-11,6 mW-hour/t. meanwhile calcium content does not exceed 3,9%.


The aggregate of the above-mentioned disadvantages facilitates decrease of qualitative characteristics of steel being melted, particularly, impact hardness (−40oC) does not exceed 0,88 mJ/m2.


The accomplished technical result is improvement in quality of steel treated with claimed alloy due to deep deoxidization and inoculation of nonmetallic inclusions and simultaneous microalloying of steel with barium, titanium and vanadium.


The essence of the invention being offered is as follows:


The alloy for deoxidization, alloying and inoculation of steel that contains aluminum, silicium, calcium, carbon and iron, additionally contains barium, vanadium and titanium in the following correlation, in mas. %:


















Silicium
45.0-63.0



Aluminum
10.0-25.0



Calcium
 1.0-10.0



Barium
 1.0-10.0



Vanadium
0.3-5.0



Titanium
 1.0-10.0



Carbon
0.1-1.0



Iron
balance.










The content of deoxidizing elements in the makeup of alloy within specified limits allows to lower the amount of oxygen in steel volume 1,4-1,8-fold in comparison to the known alloy (the prototype). That allowed to raise beneficial use of vanadium up to 90%. Recovery of manganese from silicomanganese into steel was raised by 9-12% reaching 98,8% due to a deep deoxidization and oxygen shielding by active calcium, barium, aluminum and silicium. Barium and calcium within the specified limits, besides deoxidization, also play a role of active desulphurizers; dephosphorizing agents and conditioning agents for nonmetallic inclusions (NI), increasing their smelting capacity due to complexity, significantly reduce total amount of NI in steel. In the presence of calcium, barium and titanium residual sulfur and oxide is inoculated into fine oxysulfides and complex oxides with equal distribution in scope of steel without development of stringers and of their pileups. Amount of residual oxide nonmetallic inclusions reduced by 1,16-1,35 times than in steel treatment with alloy (the prototype).


Microalloying with vanadium and titanium in contrast to the use of the known alloy (the prototype) significantly improves mechanical properties of treated steel. Thus, impact hardness at (−40oC) has reached the values of 0,92-0,94 mJ/m2.


Proposed alloy increases transfer of manganese into steel during its treatment both with manganese-containing concentrates in direct alloying, and from ferroalloys. Manganese extraction was raised by 0,3-0,5%; amount of oxide inclusions reduced by 20%; impact hardness became 0,04-0,06 mJ/m2 higher than 10,9 mW/h. In the process of alloy melting, as opposed to the known alloy (the prototype) a high-ash carbonaceous rock and splint coal are used. Carbonaceous rock contains 50-65% ashes, in which the amount of siliciume oxide and aluminum oxide is not less than 90%, contains sufficient amounts of natural carbon for reducing processes, which is technological and economically feasible. Splint coal additives that have the properties of charge debonder, improve gas permeability of upper layers of the shaft top and extraction of process gas. Power consumption in alloying of the claimed alloy is 8,7% lower compared to when using the known alloy (the prototype).


The alloy is made of high-ash coal-mining coal wastes with addition of low-intensify splint coal; lime; barium ore; vanadium-containing quartzite and ilmenite concentrate. Use of coke is eliminated. Specific power consumption is 10,0—the prototype.


Example. Makeup of the alloy being charged was melted in an ore-smelting furnace with transformer power 0,2 MBA. Chemical and technical compositions of used charging materials are represented in Charts 2 and 3.









CHART 2







Technical analysis of carbonaceous rock and coal









Content, %












Material
Ac
Vc
W
C12
S















Carbonaceous rock
57.6-59.8
16.0
4.0
20.0-22.4
0.05


Coal
4.0
40.1
10.7
55.9
0.36
















CHART 3







Chemical analysis of charging material









Content, %

















Material
SiO2
Al2O3
Fe2O3
CaO
MgO
TiO2
BaO
V
S
P




















Carbonaceous
57.6
34.2
5.72
0.7
0.4
1.2


0.05
0.015


rock


Coal
53.5
27.1
8.35
6.19
3.89




0.012


Vanadium-
94.3
1.1
1.2
0.4
0.3


0.8

0.15


containing


quartzite


Barium ore
35.7
1.0
1.0
2.0


44.0

8.57
0.02


Ilmenite
7.4
3.4
16.8
2.2
1.7
59.7

3.0
0.01
0.015


concentrate


Lime
0.2
0.3
1.5
92.0
5.95



0.02
0.03









As a result of test procedures it was established that the least specific power consumption; stable furnace operation and better gas permeability of furnace mouth comply with melting of the offered alloy composition. That excludes carbide forming and improves technological properties of furnace mouth and as a result—its operation.


Evaluation of deoxidizing and alloying capacity of the claimed and of the known (prototype) alloys was performed in the open coreless induction furnace IST-0,1 (capacity 100 kg) in melting of low-alloyed steel grades (17GS, 15GUT). Scrap metal with 0,03-0,05% of carbon and up to 0,05% of manganese was used as a metal charge. After obtaining metallic melt and bringing it up to the temperature up to 1630-1650oC the metal was poured into a ladle. Deoxidization with the claimed alloy and alloy (the prototype) was performed in a ladle together with silicomanganese SMn 17 based on obtaining up to 1,4% of manganese in steel. Manganese extraction rate into alloy was determined by chemical composition of metal samples. Metal was ladled into ingots that later were rolled into 10-12 mm sheets. Results of deoxidization and alloying are shown in Chart 4.


The claimed alloy was used in steel treatment in experimental production when steel was treated with alloys # 5-9 (Chart 4). In these productions the maximal recovery of manganese from silicomanganese into steel was 96,0-98,9% which is 9-12% higher than in using prototype alloy. Increase of manganese extraction can be explained by fuller steel deoxidization due to high content of silicium and aluminum and presence of calcium, barium and titanium in the claimed alloy. Oxygen content in experimental steel treated with alloys #5-9 was reduced by 1,4-1,8 times to the values of 0,002-0,0026%, than in steel treated with prototype alloy—0,003-0,0036% correspondingly.


In order to evaluate qualities and mechanical properties of obtained metal amount of nonmetallic inclusions was determined according to GOST 1778-70. During deoxidization with the claimed alloy nonmetallic inclusions were smaller and of globular form, with no alumina stringers or accumulations of oxides, unlike in using the alloy (the prototype). This is provided because of calcium and barium in the content of the alloy, which, apart from desulphurizing and dephosphorizing capacity also display inoculating properties that are analogical to capillary active substances, which is evident from oxides coagulation into easily fusible complexes that are easy to remove from steel volume. Content of residual oxide NI was reduced to 0,007-0,0075% compared to deoxidization with the known alloy (the prototype), which amounted to 0,0084-0,0097%. Microalloying with vanadium and titanium in the claimed alloy have allowed to increase the impact hardness, moldability and hardness of experimental steel. The impact hardness at (−40oC) increased to 0,92-0,94 mJ/m2 versus 0,82-0,88 mJ/m2; flow limit (σT)—490-510 mPa; percentage extension (σ5)—35-37%; ultimate resistance (σB)—610-629 mPa. Obtained correlation of components in the claimed alloy complies with the optimal and allows to use it for deoxidization and alloying of semikilled and low-alloy grades of steel, ensuring even formation of easily fusible complex NI that are easily removed from steel volume, and transforming residual NI into finely dispersed and of optimal globular shape. Accepted limits of components ratio in the alloy are rational. Particularly, decrease in concentration of calcium, barium, vanadium and titanium lower than established limit in the alloy does not ensure the desired effect of deoxidization; alloying and inoculation of residual NI in steel treatment. Thus, steel treatment with alloy obtained in melting #3 with low content of silicium, calcium and barium, in spite of high content of aluminum and titanium does not deoxidize steel sufficiently; contains high amount of alumina and oxide NI stringers, and mechanical properties are at the level of steel treated with alloy (prototype).


At the same time exceeding the acceptable limits of concentration of these elements is unreasonable as it increases specific power consumption in the process of obtaining the alloy being claimed and positive properties that result from its application are not very different from declared limits in their makeup.


Thus, compared to prototype, due to additional content of barium, vanadium and titanium in the alloy, the invention that is being offered allows to:

    • perform deeper steel deoxidization;
    • significantly reduce the content of nonmetallic inclusions;
    • inoculate residual nonmetallic inclusions into favorable complexes equally distributed in steel volume;
    • increase the rate of manganese extraction into steel;
    • increase impact hardness of steel;


      moreover, economical feasibility of alloying, is in the use of inexpensive high-ash carbonaceous rocks, excluding the use of expensive coke.


Results of experimental productions of 17GS and 15GUT grades steel had shown high effectiveness of the claimed alloy.









CHART 4







Technical and Economic Indicators of Steel-Making, Deoxidization and Alloying Process









Steel Treatment









Impact












Alloy-making


hardness,













Specific power

Mn

AH













# of
Constitution of alloy, %
consumption,
Content in steel, %
Extraction
Amount of
(−40o),





















Melting
Si
Al
Ca
Ba
V
Ti
C
Fe
mW/hour
Mn
O
rate, %
Oxides, %
mJ/m2










On Prototype





















1
45
15
1.0



0.10
38.8
11.0
1.12
0.0036
95.7
0.0097
0.82


2
55
30
3.0



0.8
10.9
11.6
1.11
0.003
98.3
0.0084
0.88







On Claimed alloy





















3
43.5
26.2
0.5
0.2
0.2
11.0
1.35
Balance
12.2
0.09
0.0045
88.5
0.0098
0.84


4
42.1
6.5
11.0
11.2
5.4
2.1
1.2
Balance
12.8
0.78
0.0039
94.0
0.0095
0.85


5
52.5
17.1
1.7
4.3
2.6
7.4
0.15
Balance
10.2
1.31
0.0024
98.5
0.0072
0.93


6
55.0
16.2
10.0
1.0
4.7
2.2
0.11
Balance
10.4
1.29
0.0022
98.7
0.0070
0.94


7
63.0
10.0
1.0
2.55
5.0
10.0
0.1
Balance
10.1
1.30
0.0023
98.8
0.0072
0.92


8
50.0
22.0
3.0
10.0
0.3
2.3
0.31
Balance
10.0
1.35
0.0020
98.6
0.0072
0.94


9
45.0
25.0
5.4
4.3
4.4
1.0
1.0
Balance
10.9
1.38
0.0026
98.5
0.0075
0.94


10
64.1
6.7
0.7
0.32
0.27
4.37
0.07
Balance
12.4
0.75
0.0037
85.0
0.0091
0.69


11
66.2
9.2
0.1
1.5
0.25
0.16
0.08
Balance
13.0
0.72
0.0058
82.4
0.0098
0.86








Claims
  • 1. Alloy for steel deoxidization and alloying containing aluminum, silicium, calcium, carbon and iron, distinct by the fact that it also contains barium, vanadium and titanium with the following correlation of the components, mas. %:
Priority Claims (1)
Number Date Country Kind
2008/0409.1 Apr 2008 KZ national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/KZ08/00004 9/18/2008 WO 00 10/14/2010