The present invention concerns a keg connector for connecting dispensing tube and pressurized gas tube to a keg, typically a beer keg, mounted in a dispensing appliance comprising a tap column. The present keg connector allows easy, reliable and reproducible connection to a beverage keg in a single movement of a dispense tube in fluid communication with a tapping valve mounted in a tapping column and a gas tube in fluid communication with a source of pressurized gas.
Traditionally beer, cider and other fermented beverages are served in public houses, bars, and restaurants directly from a keg connected to a tapping column by a dispense tube. Dispensing of the beverage is driven by a source of pressurized gas in fluid communication with the interior of the keg by means of a gas tube, such as to raise the pressure inside the keg above atmospheric pressure and at a level sufficient for driving the beverage from the keg up to the tapping column via the dispense tube. Beverage flow is controlled by a tapping valve located at the top portion of the column.
In traditional systems, beverage is contained in a keg, leaving an headspace above the liquid which is pressurized with gas, such as CO2. A hollow sword in fluid communication with the dispense tube and comprising an opening at the bottom thereof is immersed in the beverage to allow the liquid to flow out through the dispense tube and tapping valve when open. In this configuration, keg connectors comprising co-axial or adjacent gas and dispense tube connectors are generally used as disclosed e.g., in WO9407791, U.S. Pat. No. 3,545,475, or WO2008101503. A recurrent problem with such traditional kegs, is that since the pressurized gas contacts the beverage, some gas will dissolve into the beverage and affect the taste thereof. It follows that the taste of the beverage may vary from one dispensing to another depending on the pressure inside the keg and filling level of the liquid in the keg.
To avoid contact of the pressurizing gas with the beverage, bag-in-containers comprising an inner, collapsible bladder or bag containing the beverage to be dispensed, which is contained in an outer, more rigid container have been used. Recently, cost effective bag-in-containers have been developed allowing their extensive use in mass consumer goods such as beer kegs, cider kegs, and the like (cf. e.g., EP2146832, EP2148770, WO2010/031764, EP2152494, EP2152494, EP2152486, EP2152486, EP2148771).
Contrary to traditional kegs, the dispense tube and gas tube in bag-in-containers need be connected to separate parts of the keg, the former in fluid communication with the interior of the inner bladder, and the latter with the headspace between the bladder and the outer container. Note that the use of a dispense sword is not mandatory with bag-in-container types of kegs, contrary to conventional kegsTo this effect, bag-in-container type of kegs are usually provided with a closure comprising two separate openings: a dispense opening in contact with the interior of the inner bladder and a gas opening in contact with the headspace between inner bladder and outer container. Examples of closures suitable for bag-in-container types of kegs are disclosed in WO2009/090224, WO2009/090223, WO2012004223. It is clear that with such design the traditional keg connectors discussed above cannot be used. CA2012647 proposes a simple solution by providing a bung provided with two openings with corresponding valves and coupling means for independently coupling a dispense tube and a gas tube. For example, snap fit connections as disclosed in EP0905044 can be used as coupling means. This solution has the inconvenient that each tube must be connected one after the other which is long and tedious and the tubes could be coupled to the wrong opening.
To simplify the coupling operation, WO2011006212, EPO444596, U.S. Pat. No. 4,699,298, U.S. Pat. No. 4,089,444, U.S. Pat. No. 3,905,522, U.S. Pat. No. 3,527,391, and U.S. Pat. No. 3,228,413 propose keg connectors comprising a clamp ring provided with an inner screw thread mating an external screw thread provided in the keg neck or closure. As the clamp ring is being screwed tight, the dispense tip and gas tip of parallel and separate dispense and gas connecting means are driven down through the dispense opening and gas opening provided in the keg closure. The problem with threaded clamp rings is that one is never sure whether the keg connector is fully coupled to the keg or not and also that, since the penetration of the dispense tip and gas tip through the originally sealed dispensing opening and gas opening may require some force, the required force is not always easy to provide by a screwing movement in a generally uncomfortable position. The maximum leverage afforded by a screw type clamp ring is limited to the size of grasp of a human hand, i.e., ca 10-15 cm) which is quite insufficient for the levels of forces required.
U.S. Pat. No. 3,374,927 discloses a keg connector suitable for bag-in-containers, comprising a latch member provided with a handle allowing the keg connector to be coupled to the container. Once the keg connector is firmly coupled to the keg, the tips of dispense and gas connecting means are pressed down by hand to pierce corresponding sealed openings. Although the handle gives leverage which facilitates coupling of the connector, the manual pressing down of the dispense and gas connecting means remains uncomfortable.
The present invention provides a keg connector particularly suitable for bag-in-container types of kegs, which can be coupled very easily to such kegs. This and other advantages of the present invention are presented in continuation.
The present invention is defined in the appended independent claims. Preferred embodiments are defined in the dependent claims. In particular, the present invention concerns a keg connector for fluidly connecting the interior of a bag-in-container type of keg with a dispensing tube connected to a dispensing valve in a tapping column, and with a pressure gas tube connected to a source of pressurized gas, said keg connector comprising a base body and further comprising the following elements:
Characterized in that, coupling and penetration actuating means are a single actuating means suitable for sequentially driving in a single movement:
The single actuating means preferably comprises a lever pivotally mounted on said base body. In a preferred embodiment, as the actuating means are being actuated, e.g., a lever is pivoted about its hinges, until the coupling means have reached their coupled position, the dispense tip and gas tip have moved along the longitudinal axis, Z, by an intermediate distance Z1<Z2, wherein said intermediate distance, Z1, is less than the distance required by the dispense tip and gas tip to penetrate through the corresponding dispense and gas openings of the keg's closure for which the keg connector is designed (i.e., at this stage no fluid communication has been established by the tips with the interior of the keg). This is advantageous, because the penetration of the dispense tip and gas tip into the corresponding dispense and gas opening of the closure require some force, sometimes a seal must be pierced, and it is important that the keg connector be firmly coupled to the container or container closure before a penetration force is applied.
It is advantageous if the coupling means comprises a first and second latches pivotally mounted on hinges disposed on opposite sides of the keg connector base body, one free end of each of said latches ending in a protrusion extending towards each other, such that actuation of the single actuating means varies the distance, D, separating the tips of each protrusion from an uncoupled distance, D0, greater than at least one dimension of the keg's neck or keg's closure for which the keg connector is designed, such that the keg connector can be freely moved in the longitudinal direction, Z, until reaching its coupling position to said keg, to a coupled distance, D1<D0, smaller than a dimension of the keg's neck or keg's closure such that the keg connector is firmly fixed to said keg's neck or keg's closure. The dispense and gas connectors are preferably supported on a support element movable in the longitudinal direction, Z, with respect the keg connector base body, said support element being interconnected with each latch, such that moving the support element along the longitudinal direction, Z, from said retracted position, Z0, to said intermediate position, Z1, drives the latches to pivot about their respective hinges such that the distance between the tips of the latch protrusions is decreased from the uncoupled distance, D0, to the coupled distance, D1. It is further preferred if by moving the support element further along the longitudinal direction, Z, from said intermediate position, Z1, to said connected position, Z2, the coupled distance, D1, between the tips of the latch protrusions does not vary, whilst the dispense tip and gas tip continue their translation along the longitudinal axis, Z until they enter into fluid communication with the interior of the container.
The interconnection between the support element and the latches is preferably in the form of either:
It particular, for pin/slot interconnection types (cf. (b)&(c) supra) it os preferred that each latch comprises in its portion comprised between the two ends, either:
Each latch is preferably pivotally mounted on a hinge. The hinge can be positioned either at or adjacent the latch end opposite the end comprising the protrusion or, in an alternative embodiment, in its intermediate section comprised between the two ends thereof, thus defining a first, lower latch section comprised between the hinge and the end provided with the protrusion, and a second, upper latch section comprised between the hinge and the latch second end. The latter latch geometry allows to provide said second, upper section with a sliding surface having a specific curvature, the second section of each latch being inserted in a slot provided on the support element supporting the dispense and gas connectors, such that as the slots receiving the second portion of each latch move along the longitudinal axis, Z, they slide down the curved surface of the second portion of each latch, the slots and sliding surfaces having a geometry and dimensions such that as the support element has moved from the retracted position, Z0, to the intermediate position, Z1, the tip of the latch protrusions are brought closer together from an uncoupled distance, D0, to a coupled distance, D1, and such that as the support element further moves down from the intermediate position, Z1, to the connected position, Z2, the latches do not pivot anymore. The same design can be used with a pin and bean shaped slot according to embodiments (b) or (c).
The present invention also concerns a beverage dispensing device comprising:
wherein the dispense tube and gas tube are coupled to the keg by means of a keg connector as defined supra.
For a fuller understanding of the nature of the present invention, reference is made to the following detailed description taken in conjunction with the accompanying drawings in which:
As illustrated in
The beverage dispensing device of the present invention also comprises a source of pressurized gas (7) connected by a gas tube (6) in fluid communication with the interior of the keg, in particular the headspace (8hd) comprised between the inner bladder (8in) and the outer container (8out) for bag-in-container types of kegs. The source of pressurized gas (7) is used to increase the pressure inside the keg, above atmospheric pressure, in order to drive the flow of beverage (100) through the dispense opening (44). A dispense tube (4) coupled to the dispense opening (44) ensures fluid communication between the interior of the keg, in particular the interior of the inner bladder (8in) containing the beverage (100) for bag-in-container types of kegs, and ambient atmosphere at its opposite end (4c). In order to control the flow of beverage out of the dispensing tube end (4c), the dispense tube (4) is coupled to a tapping valve (3) located at the top portion of a tapping column (2) of any type commonly used in public houses, bars, and restaurants. The beverage dispensing device of the present invention is characterized in that the dispense tube (4) and gas tube (6) are coupled to the keg (8) by means of a particular keg connector (1) described more in detail in continuation.
A keg connector according to the present invention is particularly suitable for connecting a dispense tube (4) and gas tube (6) to a bag-in-container type of keg in a very simple, easy, and reliable manner.
It is important that the coupling means (5) be in their coupled position before the dispense tip (4b) and gas tip (6b) have engaged the corresponding dispense and gas openings (44, 66) with any significant force to either tear open a seal or to force the passage through a resilient sealing ring (not shown). If this happened before the coupling means (5) were in their coupled position, the keg connector would risk to be disengaged from the keg neck (8a) or keg closure (88). For this reason it is preferable that, as the coupling means (5) reaches their coupled position, the dispense tip (4b) and gas tip (6b) have moved along the longitudinal axis, Z, by an intermediate distance Z1<Z2, wherein said intermediate distance, Z1, is less than the distance required by the dispense tip (4b) and gas tip (6b) to penetrate through the corresponding dispense and gas openings (44, 66) of the keg's closure (88) for which the keg connector is designed. Thereafter, the coupling means maintain their coupled position, and the dispense and gas tips (4b, 6b) continue their translation along the longitudinal direction, Z, from their intermediate position, Z1, to their connected position, Z2, to establish fluid communication with the interior of the keg.
In a preferred embodiment, the coupling means comprises a first and second latches (5) pivotally mounted on hinges (5a) disposed on opposite sides of the keg connector base body (1a), one free end of each of said latches ending in a protrusion (5b) extending towards each other. The protrusions (5b) have a geometry suitable for mating a surface of the keg neck they are designed for. Upon actuation of the single actuating means (15) the distance, D, separating the tips of each protrusion (5b) is varied from an uncoupled distance, D0, greater than at least one dimension of the keg's neck or keg's closure for which the keg connector is designed, such that the keg connector can be freely moved in the longitudinal direction, Z, until reaching its coupling position to said keg, to a coupled distance, D1<D0, smaller than a dimension of the keg's neck or keg's closure such that the keg connector is firmly fixed to said keg's neck or keg's closure.
The dispense and gas connectors (4a, 6a) are preferably supported on a support element (13) movable in the longitudinal direction, Z, with respect to the keg connector base body (1a). Said support element (13) is interconnected with each latch (5), such that by moving the support element (13) along the longitudinal direction, Z, from said retracted position, Z0, to said intermediate position, Z1, the latches (5) are driven to pivot about their respective hinges (5a) such that the distance between the tips of the latch protrusions (5b) is decreased from the uncoupled distance, D0, to the coupled distance, D1. Upon moving the support element (13) further along the longitudinal direction, Z, from said intermediate position, Z1, to said connected position, Z2, the distance between the tips of the latch protrusions remains substantially constant at their coupled distance value, D1.
The single actuating means (15) is preferably a lever, pivotally mounted on the base body (1a) of the keg connector with a hinge (15a). It is preferably interconnected with the support element (13) supporting the dispense and gas connectors (4a, 6a) such that pivoting the lever up or down about its hinge (15a) drives the support element up or down with respect to the base body (1a) along the longitudinal direction, Z, between its retracted position, Z0 and its coupled position, Z2, passing by its intermediate position, Z1. The connection between the lever (15) and the base body (1a) is preferably of the type of a pin (13a) engaged in a bean shaped slot, so that the rotational movement of the lever about its hinge (15a) can be translated into a rectilinear translation of the support element (13) along the Z-direction. Other connection types can be envisages, such as a hinged rod, as long as it permits to transmit a linear motion to the support element (13). Guiding means (not shown) such as rails, or mating protrusion/groove systems can be provided to guide along the longitudinal direction, Z, the translation of the support element with respect to the base body (1a). A lever is advantageous, because it allows the application of considerable forces with little efforts from an operator. This is important because, on the one hand, high forces may be required for the coupling because the keg is pressurized and tight sealing elements and coupling forces are required to maintain the system gas tight and, on the other hand, the operator is often in an uncomfortable position, crouched under the counter in often dark and noisy environments.
As explained supra, the rotational movement of the lever (15) about its hinge (15a) drives the linear movement along axis Z of the support element (13) with respect to the base body (1a) through the connection (13a) between them. In a preferred embodiment, the support element (13) is interconnected with the latches (5) such that the linear translation up and down along the longitudinal direction, Z, between the retracted position, Z0, and the intermediate position, Z1, of the support element (13) drives the pivoting of the latches (5) from their uncoupled position, D0, when the support element is at its retracted position, Z0, to its coupled position, D1, when the support element is at its intermediate position, Z1. The connection between the latches (5) and the support body (13) is also such that moving the latter along the Z-direction between its intermediate position, Z1, and its connected position, Z2, does not affect the position of the latches (5) anymore, which maintain their coupled configuration, D1.
The interconnection between the support element (13) and the latches (5) can be in the form of either:
The geometries of the bean shaped slots or sliding surfaces are such that the linear movement of the support element (13) with respect to the base body (1a) along the longitudinal axis, Z, generates the desired pivoting movement of the latches. For example, in the embodiments illustrated in
In the embodiment of
The embodiment of
In the embodiments of
In an alternative configuration, an embodiment thereof being illustrated in
An embodiment of dispense connector (4a) connected at one end to a dispense tube (4) and provided at the other end with a dispense tip (4b) is illustrated in
The dispense and gas connectors (4a, 6a) can be coupled to the keg connector (1) and, in particular, to the support element (13) by any quick, fluid tight, and reversible means. In particular, snap fittings are preferred, but bayonets, screw nuts, or a system of latch or securing pin can also be used. In a preferred embodiment, neither the keg base body (1a) nor the dispense and gas connectors (4a, 6a) comprise any sealing element. This is possible provided the closure (88) comprises appropriate sealing elements at the dispense and gas openings (44, 66) thereof. Examples of closures comprising such sealing elements are disclosed in WO2009/090224, which content is incorporated herein by reference.
The keg connector (1) of the present invention allows the fast and reliable connection to a keg (8), in particular to a bag-in-container keg, of a dispense tube (4) and a gas tube (6). With a single move of the actuation means, in particular of a lever (15), the keg connector is firmly fixed to the keg neck (8a), preferably provided with a collar, or to the keg closure (88). This easy to use keg connector is particularly suitable for kegs which are stored under the counter with no easy access, or for specialty beers being stored in kegs of smaller dimensions which must be changed more often than large, e.g., 50 l kegs.
Number | Date | Country | Kind |
---|---|---|---|
12188108.0 | Oct 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/071310 | 10/11/2013 | WO | 00 |