The present invention pertains to the general field of opthalmologic surgical devices, and more specifically to the field of devices for performing corneal resectioning and methods therefore.
Numerous ophthalmic surgical procedures, such as for correcting myopia or hyperopia, require one or more steps of resectioning the cornea of the eye. A variety of devices called keratomes have been developed over recent decades to perform such corneal resectioning. Referring to
The representative keratomes described in U.S. Pat. Nos. 5,496,339 issued to Koepnick, and Re. 35,421 issued to Ruiz et al., which are depicted in
However, an applanator impedes access to the eye under surgery. One approach to this problem is to make the applanator pivotable, or otherwise disengageable from contact with the eye, without a need to disengage the entire surgical apparatus from its positioning on the eye.
In order to resection the cornea, a cutting blade must be drawn through the corneal tissue, and both the thickness and the expanse of the corneal tissue which is cut must be carefully controlled. The separated portion of the cornea is typically left attached along one edge to form flap 6 which can easily be replaced over the cornea after the surgery.
Keratomes must have a mechanism by which the knife blade is guided. Proximate to the cutting location, the prior art keratomes all have blades rubbing on guides, or metal rubbing on metal, such as drive gears. Unfortunately, such rubbing can result in shavings being created and entering the surgical site. Referring to
Another drawback of existing keratomes is the inconvenience of maintaining surgical cleanliness. Since parts of the keratome must be in intimate contact with tissues around and including the surgical site, it is necessary to ensure a high degree of cleanliness and sterility. The relatively intricate mechanisms which prior art keratomes position near the surgical site, as described above, have not been well-adapted for ease of cleaning and autoclaving.
Thus, a need exists for an easily used keratome able to perform precise resectioning operations, while facilitating surgical cleanliness by avoiding creation of shavings which might contaminate the surgical site, and by being easily cleaned, sterilized, and replaced.
A keratome in accordance with the present invention enables an opthalmologic surgeon to perform corneal resectioning, separating a flap of corneal tissue for later surgical device near the surgical site.
In accordance with the present invention, the surgical tissue for later replacement, without a need for an applanator, and without any rubbing of parts of the surgical device preferably includes a surgical unit having cutting head elements mounted on a drive assembly, and also includes a control unit and a foot pedal. During surgery, the cutting head elements are in intimate contact with the subject eye, for positioning and cutting. The drive assembly element supports and drives the cutting head elements. The control unit is the preferred source of power and vacuum for the surgical unit, and it supplies power and vacuum according to settings entered by the user. The foot pedal allows the user to give commands to the surgical device without requiring use of hands. The surgical unit is preferably hand-held and easily positioned over the subject eye.
The preferred surgical unit includes three distinct elements. Two of these are “cutting head” elements which must contact the eye during corneal surgery—a positioning ring assembly and a blade fork assembly. These two cutting head elements extend from the third element, a drive assembly, in such a way that interference and rubbing between the cutting/head elements proximal to the surgical site is minimal or entirely absent. Preferably, the two cutting head elements are easily removed and as easily replaced onto the third element, the drive assembly, without a need for tools, so the surgeon can ensure sterility by simply attaching fresh and sterile replacements for the cutting head elements.
In a preferred embodiment of the present invention, a blade fork assembly suspends a cutting blade between the positioning ring and the applanation shoe and guides the cutting blade near to the applanation shoe. The thickness of the cut is preferably controlled by a guide, which is disposed a controlled distance away from the cutting blade. The outer layer of corneal tissue is separated by the blade as it passes between the blade and the guide, so that the thickness of the separated layer is controlled by the spacing between the blade and the guide.
The blade fork assembly is caused to move by the drive assembly, which imparts two distinct movements to the blade fork assembly during cutting action. One movement is a high-speed lateral oscillation, and the other, imparted at the same time, is a slow smooth forward movement. The drive arm impel the blade fork forward as long as it is commanded to do so through the control unit, until the drive arm impinges on an adjustable stop mechanism, thereby causing a clutch to slip and preventing further forward displacement of the drive arm,
The blade assembly is preferably entirely suspended and does not touch any part of the mechanism which is near to the surgical site except indirectly by way of the blade fork drive arm which supports the blade assembly.
In another embodiment of the invention the blade is mounted on the mounting assembly so that it faces rearwardly, that is, toward the drive mechanism. With this reverse mounting and by constructing the drive mechanism to operate in reverse, the blade can be moved from a beginning point away from the drive mechanism, toward the drive mechanism. In this way a corneal flap can be made that begins proximate the nasal side of the cornea with its hinge proximate the temporal side of the cornea with the drive mechanism being positioned at the temporal side of the patients face. Also, in this embodiment a guide member is provided in a substantially fixed relationship to the blade in particular above and forward of the blade edge to define a space which will control the depth of cut and the flap thickness. With the reverse mounting a corneal flap may be created with a temporal hinge by placing the device to begin cutting on the nasal side of the cornea toward the temporal side.
a shows a cornea with a flap of epithelial tissue lifted.
b is a representation of the variation of corneal tissue beginning at the outermost layers.
a shows the prior art keratome of Ruiz et al.
b shows the prior art keratome of Koepnick.
a shows a blade fork assembly with a cam lever securing it to the blade fork drive arm.
b shows a blade fork assembly secured to the blade fork drive arm with a thumb screw.
a shows details of section 8a-8a of
b shows details of section 8b-8b of
c shows an alternative dual blade and guide in a section similar to 8b-8b.
d shows an alternative angled blade and guide in a section similar to 8b-8b.
e shows an alternative blade and bearing guide in a section similar to 8b-8b.
The present invention is described below by examples which include the best mode known, but such description is not to be taken as limiting the invention, which is defined separately in the claims.
Referring to
positioning ring assembly 20 and blade fork assembly 60. Foot pedal 300 communicates user commands to control unit 400 via cable 310, and surgical unit 100 is connected to control unit 400 by electrical cable 410 and vacuum hose 412. Each of these items are discussed in more detail below.
The following describes a preferred embodiment of the invention with reference to
A microprocessor on printed circuit board 460 executes operating firmware which is held in reprogrammable non-volatile memory and can be reprogrammed in the field. The firmware allows the microprocessor system to read switch closures and the rotation of the rotary controls. These electronics translate operator actions into tool control voltages which are applied to the drive unit actuators and can be stored as presets to be recalled as required by the operator. The microprocessor system also interprets the sensors and controls the actuators to maintain vacuum at a level set by the user.
Control unit 400 provides electric control signals to surgical unit 100 via cable 410.
Vacuum pressure for positioning ring assembly 20 is supplied from control unit 400 via vacuum hose 412. Control unit 400 contains vacuum reservoir 422 in which vacuum pressure is established by vacuum pump 420 and released by vacuum release solenoid 426, and the vacuum pressure is sensed by vacuum transducer 424 to give feedback to the control electronics. Electric control for the actuators (not shown) within drive assembly 110 is provided by electronic switches 436-438. Persons skilled in the art will appreciate that there is no limit to the variations by which control unit components may control the surgical unit actuators and vacuum.
Referring to
Positioning ring support 32 preferably has tapered edges to mate with receiving feature 106 in drive assembly 110, with retention feature 34 also mating to a feature (not shown) of drive assembly 110. Positioning ring 30 may be restrained by thumbscrew 114. Blade fork 70 mates to drive arm 140, preferably using spring loaded ball detent assemblies 64 having a spring-loaded ball 62 to mate to drive arm notch 141. The three elements 20, 60 and 110 of surgical unit 100 are each described in more detail below.
a shows blade fork assembly 60 suspending blade 66 and guide 76 from blade fork tines 68. Blade 66 and guide 76 are shown in cross section 8a-8a in
b shows blade fork assembly 60 alternatively secured to blade fork drive arm 140 by thumbscrew 142. Spring loaded ball detent assembly 64 helps establish and hold the positioning of blade fork 70 with respect to drive arm 140. As above, fork tines 68 suspend blade 66 and guide 76, which can be seen in cross section 8b-8b in
Blade fork 70 is preferably composed of titanium but many other materials are suitable, including stainless steel. For a steam sterilizable blade fork, dimensionally stable plastics such as polycarbonate or polysulfone are suitable, and gas or gamma ray sterilization is compatible with additional plastics, such as polypropylene.
Blade 66 is preferably sapphire or similar crystalline materials, which is hard and strong and desirably transparent for the best visibility as the cutting operation progresses. Alternatively, and particularly for disposable versions, the blade may be surgical stainless steel or other suitable material.
The overall position of blade 66 and guide 76 with respect to positioning ring 30 is established by the combined positioning of blade 66 and guide 76 in blade fork assembly 60, by the relative positioning of drive arm 140 to positioning ring mounting features 106 (
a shows details of section 8a-8a of
The perimeter of the cross-section of guide 76 is advantageously small, preferably less than 2 mm or less than 6 mm. A small cross-sectional perimeter conveys several advantages: it reduces the frictional interaction between the guide and the cornea, it localizes a deformation 5 (
b shows section 8b-8b, an arrangement of blade and guide for the blade fork assembly 60 shown in
c shows, in a cross section similar to that of 8a-8a (
In
e differs from
Referring to
As discussed with regard to blade fork assembly 60, a variety of materials may be used for positioning ring 20. The choice depends on whether sterility is to be ensured by reuse of the element in conjunction with a sterilization method, or by using sterile disposable elements. Suitable materials include metals, such as stainless steel, and plastics, such as polycarbonate, polysulfone, polypropylene or others.
Referring to
Drive arm 140 preferably includes portions of its top and bottom surface which are made closely parallel to each other and a controlled distance apart (the top and bottom surfaces are those most distal from the center of drive arm 140 in the direction parallel to the pivot axis of pivot assembly 196, with the top surface being the farther from positioning ring 30). Drive arm 140 top and bottom surfaces are preferably flat to within 0.005 mm over their travel range of 1.5 cm, and are slidably captured by bearing surfaces 136 and 138 of drive assembly head 112. The bearing surfaces limit top-to-bottom play of drive arm 140 to preferably 0.01 mm or even more preferably to 0.05 mm.
Drive assembly head 112 holds positioning ring assembly 20 and blade fork drive arm 140 such that blade fork assembly 60 is maintained a known distance away from positioning ring 30 as the blade fork travels. The distance between blade 66 and applanation shoe 50 is preferably controlled to within +/−0.5 mm, or more preferably within +/−0.25 mm.
Oscillation is imparted to drive arm 140 by slider 176 which oscillates in a direction perpendicular to the page. Slider 176 interferes with the edges of a groove in drive arm 140, while the groove allows drive arm 140 to travel in and out of drive assembly 110. Slider 176 receives oscillation drive from oscillation motor 170 via shaft 172 and eccentric pin 174. Eccentric pin 174 rides in a slot in slider 176 which absorbs the vertical component of eccentric pin 174, but transmits the lateral motion.
Corneal flaps may be hinged in more than one place. In particular the hinge may be nasal, temporal, superior or inferior. The apparatus and methods described above are useful for nasal, superior and inferior hinge locations, but can not be easily, if at all, used to create a flap that is temporally hinged. This is because the bulk of the drive mechanism will likely be misaligned due to the patient's nose preventing proper positioning of the apparatus. The modified method and apparatus now described will allow the basic concepts of the invention be applied to enable a corneal flap with temporal hinging to be created. To accomplish a temporally hinged corneal flap, the cut must commence proximate the nasal side of the cornea and proceed toward the temporal side of the corner. This is accomplished by mounting the blade to face in the reverse direction and the guide similarly to be repositioned above and in front of the blade and to equip the drive mechanism to operate in the reverse direction, that is, the blade assembly will be moved during the cutting action from a point away from the drive mechanism, toward the drive mechanism. In this way while the drive mechanism is positioned temporally, the blade will be placed on the nasal side of the cornea and will cut the flap as it moves toward the drive mechanism toward the temporal side of the cornea, placing the hinge on the temporal side of the cornea. This is shown in
As shown in
The guide 212 as shown by the exemplary dimensions is spaced 0.16 mm (±0.025) above and 0.10 mm (±0.01) forward of the blade cutting edge 210. The guide 212 begins with a straight portion 226 and commences into a curved portion 220 upwardly and forwardly of the blade cutting edge 210. This is configured to flatten the cornea locally, just in front of the blade cutting edge so that the cutting operation is controlled by the gap between the blade cutting edge 210 and the guide 212. The blade and guide are shown as extending straight across the opening defined by the forks 214 and 216. It is only necessary that they be present and straight in the portion of that opening that will come into contact with the cornea. It is also possible to configure the blade and the guide to not be straight.
In operation as shown in
It will be appreciated by those skilled in the art that many alternative embodiments are envisioned within the scope of the present invention. Some possible variations of the blade fork assembly are discussed in the blade fork assembly section above. Variations of other parts are discussed below, but do not represent an exhaustive survey of possibilities; rather, they serve as examples to show that a wide variety of mechanisms are encompassed within the scope of the invention.
Myriad physical configurations of the connection interface surfaces which removably attach the blade fork assembly to the blade fork drive arm can provide the predictable positioning needed to practice the invention. The mating parts of the interface are described herein as trapezoidal or “dove-tail” but may take any form having locating features, including sawtooth, rectangular, eccentric oval, keyhole, or other shapes too numerous to enumerate.
Similarly, the means for securing the connection interface is shown herein as either a thumbscrew or a cam locking lever, but could be accomplished many other ways. To mention just a few examples, the mating parts could use magnetic attraction, spring-loaded detents, or tapered engaging pieces fitted into a recess formed partly from each of the mating parts. The mating pieces could even interfere snugly under normal conditions, and have a means to temporarily change the shape of one of the pieces to release the interference and thereby permit connecting or separating the interface. Any method known in the art to disengageably secure two pieces in a closely predictable relationship could be used.
Any blade fork can be used which is able to suspend the blade, and the guide if used, in a properly controlled position with respect to the mounting surface of the connection interface. The blade and the guide may take a multitude of shapes and comprise a multitude of materials; only a few such alternatives are discussed herein.
A preferred embodiment of this invention includes sterile disposable or sterilizable disposable cutting head elements. A non-limiting variety of material choices suitable for such an embodiment is discussed above with respect to each cutting head element. There is no need for the various cutting head elements to be all disposable or all permanent, but a mixture of disposable and sterilizable types is also suitable.
Surgical unit actuators may be driven by any known method, including pneumatic drive methods.
User commands may be recognized in any known way, including voice command reception, and sensing user activation of sensors or switches located on the surgical unit or in other convenient places. The commands thus recognized may exert control through any combination of control elements, which may include mechanical means, direct electrical control, or intelligent electrical control with intelligence provided by any means known to the art. The command recognition and control elements could be physically located at any accessible place, and as an example could be placed largely or entirely within the surgical unit.
The present application is a continuation of Ser. No. 10/668,882 filed on Sep. 23, 2003, which is a continuation-in-part of Ser. No. 09/521,010 filed on Mar. 7, 2000 now U.S. Pat. No. 6,623,497, which is a continuation-in-part of Ser. No. 09/132,987 filed on Aug. 12, 1998 now U.S. Pat. No. 6,083,236 and Ser. No. 10/668,882 filed on Sep. 23, 2003 is also a continuation-in-part of 10/618,279 filed on Jul. 11, 2003 now U.S. Pat. No. 7,207,998, which is a divisional of 09/586,273 filed on Jun. 2, 2000 now U.S. Pat. No. 6,599,305, which is a continuation-in-part of Ser. No. 09/132,987 filed on Aug. 12, 1998 now U.S. Pat. No. 6,083,236. It is also a continuation of Ser. No. 10/884,171 filed on Jul. 1, 2004 which is a continuation-in-part of Ser. No. 10/668,882 filed on Sep. 23, 2003 (see above) and is also a continuation-in-part of Ser. No. 10/618,279 filed on Jul. 11, 2003 now U.S. Pat. No. 7,207,998 (see above). The contents of all of the aforementioned serials are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10668882 | Sep 2003 | US |
Child | 12171246 | US | |
Parent | 10884171 | Jul 2004 | US |
Child | 09132987 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09521010 | Mar 2000 | US |
Child | 10668882 | US | |
Parent | 09132987 | Aug 1998 | US |
Child | 09521010 | US | |
Parent | 10668882 | Sep 2003 | US |
Child | 10884171 | US | |
Parent | 10618279 | Jul 2003 | US |
Child | 10668882 | US |