Ketoacyl ACP synthase genes and uses thereof

Information

  • Patent Grant
  • 10316299
  • Patent Number
    10,316,299
  • Date Filed
    Tuesday, April 10, 2018
    6 years ago
  • Date Issued
    Tuesday, June 11, 2019
    4 years ago
Abstract
The present invention relates to beta-ketoacyl ACP synthase genes of the KASI/KASIV type and proteins encoded by these genes. The genes can be included in nucleic acid constructs, vectors or host cells. Expression of the gene products can alter the fatty acid profile of host cells. The KAS genes can be combined with a FATA or FATB thioesterase gene to create a cell that produces an increased amount of C8-C16 fatty acids. Suitable host cells include plastidic cells of plants or microalgae. Oleaginous microalga host cells with the new genes are disclosed.
Description
REFERENCE TO A SEQUENCE LISTING

This application includes include an electronic sequence listing in a file names “465964-Sequence.txt”, created on Sep. 28, 2015, and contains 235,869 bytes, which is hereby incorporated by reference in its entirety for all purposes.


TECHNICAL FIELD

The present invention relates to novel β-ketoacyl ACP synthase genes and methods for using the genes including expressing the genes in oleaginous host cells to produce triglycerides with altered fatty acid profiles.


BACKGROUND

Certain organisms including plants and some microalgae use a type II fatty acid biosynthetic pathway, characterized by the use of discrete enzymes in a multimeric complex for fatty acid synthesis. In contrast, mammals and fungi use a single, large, multifunctional protein.


In organisms that use a type II fatty acid biosynthetic pathway, β-ketoacyl-ACP synthase I (KAS I, EC 2.3.1.41) is one of the enzymes responsible for elongation of growing medium-chain fatty acyl-ACP from 4 to 16 carbon atoms in length. KAS I uses C2-C14 acyl-ACPs as substrates for condensation with a C2 unit derived from malonyl-ACP. KASIV is a related enzyme that serves a similar elongation function. Thus, KASI and KASIV can both be considered KASI-like enzymes.


Such genes have been introduced to plants using recombinant DNA technology. See for example U.S. Pat. Nos. 7,301,070, 6,348,642, 6,660,849, 6,770,465 and US2006/0094088 (of which ¶¶194-200 and the entirety of the document are hereby incorporated herein by reference). In plastidic cells such as those from plants, macroalgae and microalgae, KAS I-like enzymes are located in the chloroplasts or other plastids together with other enzyme of the fatty acid synthesis (FAS) pathway.


PCT publications WO2010/063032, WO2011/150411, WO2012/106560, and WO2013/158938 disclose genetic engineering of oleaginous microalgae including targeting of exogenous FAS gene products to the microalgal plastid.


SUMMARY

In one aspect, embodiments of the invention include a non-natural, isolated polynucleotide having at least 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity or equivalent sequence by virtue of the degeneracy of the genetic code to any one of SEQ ID NOs: 21-37, or 39-55, or encoding a KASI-like protein having at least 80, 85, 85.5, 86, 86.5, 87, 87.5, 88, 88.5, 89, 89.5, 90, 90.5, 91, 91.5, 92, 92.5, 93, 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99 or 99.5% amino acid sequence identity to any one of SEQ ID NOs: 2-18, 62-72, or a mature protein produced therefrom, or the complement of the polynucleotide.


In another aspect, embodiments of the invention include a transformation vector comprising a cDNA molecule comprising a polynucleotide as discussed above. In some cases, the vector comprises promoter and 3′UTR sequences in operable linkage to the cDNA, and optionally a flanking sequence for homologous recombination. The promoter or the 3′UTR sequences are heterologous nucleotide sequences. The heterologous promoter or the heterologous 3′UTR sequences can be from a different organism than the organism from which the nucleotide sequences encoding KAS was first obtained.


In one aspect, the transformation vector comprises a heterologous promoter or a heterologous 3′UTR sequence obtained from the same organism from which the KAS gene was first isolated. When the promoter sequence, the 3′UTR sequence and the KAS nucleotide sequences are from the same organism, the heterologous promoter does not naturally drive the expression of KAS, and the 3′UTR does not naturally occur downstream from the KAS nucleotide sequences in the source organism.


In yet another aspect, the transformation vector is used to express the KAS gene in the organism from which the KAS gene was first isolated. When the KAS gene is recombinantly expressed in the organism from which the KAS gene was first isolated, the gene is expressed in a different chromosomal locus than the natural chromosomal locus of the KAS gene. Alternatively, the KAS gene is expressed in the cytoplasm.


In another aspect, embodiments of the invention include a host cell comprising the polynucleotide and/or the vector discussed above, and expressing a functional KAS protein encoded by the cDNA. In some cases, the host cell further comprises an exogenous gene encoding a functional FATA acyl-ACP thioesterase or FATB acyl-ACP thioesterase. In one aspect, the FATB acyl-ACP thioesterase has at least 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% amino acid sequence identity to any one of SEQ ID NOs: 1 or SEQ ID NO: 57. In some cases, the host cell produces a cell oil characterized by a fatty acid profile with (i) at least 30, 40, 50, or 55% C14:0, (ii) at least 7, 8, 9, 10, 11, 12, 13, or 14% C8:0, (iii) at least 10, 15, 20, 25, 30, or 35 area % for the sum of C8:0 and C10:0, or (iv) a C8/C10 ratio in the range of 2.2-2.5, 2.5-3.0, or 3.0-3.4. In some cases, the host cell is a plastidic oleaginous cell having a type II fatty acid biosynthesis pathway. In some cases, the host cell is a microalga. In some cases, the host cell is of Trebouxiophyceae, and optionally of the genus Chlorella or Prototheca. In some cases, the microalga is of the species Prototheca moriformis.


In another aspect, embodiments of the invention include a method for making a cell-oil, the method comprising cultivating a host cell as discussed above so as produce the cell-oil, wherein the oil comprises triglcyerides and microalgal sterols. In some cases, the cell oil comprises sterols characterized by a sterol profile and the sterol profile has an excess of ergosterol over β-sitosterol and/or the presence of 22, 23-dihydrobrassicasterol, poriferasterol or clionasterol.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a phylogenetic tree for KASI-like genes in connection with Example 3.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

As used with respect to nucleic acids, the term “isolated” refers to a nucleic acid that is free of at least one other component that is typically present with the naturally occurring nucleic acid. Thus, a naturally occurring nucleic acid is isolated if it has been purified away from at least one other component that occurs naturally with the nucleic acid.


A “cell oil” or “cell fat” shall mean a predominantly triglyceride oil obtained from an organism, where the oil has not undergone blending with another natural or synthetic oil, or fractionation so as to substantially alter the fatty acid profile of the triglyceride. In connection with an oil comprising triglycerides of a particular regiospecificity, the cell oil or cell fat has not been subjected to interesterification or other synthetic process to obtain that regiospecific triglyceride profile, rather the regiospecificity is produced naturally, by a cell or population of cells. For a cell oil or cell fat produced by a cell, the sterol profile of oil is generally determined by the sterols produced by the cell, not by artificial reconstitution of the oil by adding sterols in order to mimic the cell oil. In connection with a cell oil or cell fat, and as used generally throughout the present disclosure, the terms oil and fat are used interchangeably, except where otherwise noted. Thus, an “oil” or a “fat” can be liquid, solid, or partially solid at room temperature, depending on the makeup of the substance and other conditions. Here, the term “fractionation” means removing material from the oil in a way that changes its fatty acid profile relative to the profile produced by the organism, however accomplished. The terms “cell oil” and “cell fat” encompass such oils obtained from an organism, where the oil has undergone minimal processing, including refining, bleaching and/or degumming, which does not substantially change its triglyceride profile. A cell oil can also be a “noninteresterified cell oil”, which means that the cell oil has not undergone a process in which fatty acids have been redistributed in their acyl linkages to glycerol and remain essentially in the same configuration as when recovered from the organism.


“Exogenous gene” shall mean a nucleic acid that codes for the expression of an RNA and/or protein that has been introduced into a cell (e.g. by transformation/transfection), and is also referred to as a “transgene”. A cell comprising an exogenous gene may be referred to as a recombinant cell, into which additional exogenous gene(s) may be introduced. The exogenous gene may be from a different species (and so heterologous), or from the same species (and so homologous), relative to the cell being transformed. Thus, an exogenous gene can include a homologous gene that occupies a different location in the genome of the cell or is under different control, relative to the endogenous copy of the gene. An exogenous gene may be present in more than one copy in the cell. An exogenous gene may be maintained in a cell, for example, as an insertion into the genome (nuclear or plastid) or as an episomal molecule.


“Fatty acids” shall mean free fatty acids, fatty acid salts, or fatty acyl moieties in a glycerolipid. It will be understood that fatty acyl groups of glycerolipids can be described in terms of the carboxylic acid or anion of a carboxylic acid that is produced when the triglyceride is hydrolyzed or saponified.


“Microalgae” are microbial organisms that contain a chloroplast or other plastid, and optionally that are capable of performing photosynthesis, or a prokaryotic microbial organism capable of performing photosynthesis. Microalgae include obligate photoautotrophs, which cannot metabolize a fixed carbon source as energy, as well as heterotrophs, which can live solely off of a fixed carbon source. Microalgae include unicellular organisms that separate from sister cells shortly after cell division, such as Chlamydomonas, as well as microbes such as, for example, Volvox, which is a simple multicellular photosynthetic microbe of two distinct cell types. Microalgae include cells such as Chlorella, Dunaliella, and Prototheca. Microalgae also include other microbial photosynthetic organisms that exhibit cell-cell adhesion, such as Agmenellum, Anabaena, and Pyrobotrys. Microalgae also include obligate heterotrophic microorganisms that have lost the ability to perform photosynthesis, such as certain dinoflagellate algae species and species of the genus Prototheca.


An “oleaginous” cell is a cell capable of producing at least 20% lipid by dry cell weight, naturally or through recombinant or classical strain improvement. An “oleaginous microbe” or “oleaginous microorganism” is a microbe, including a microalga that is oleaginous.


The term “percent sequence identity,” in the context of two or more amino acid or nucleic acid sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection. For sequence comparison to determine percent nucleotide or amino acid identity, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters. Optimal alignment of sequences for comparison can be conducted using the NCBI BLAST software (ncbi.nlm.nih.gov/BLAST/) set to default parameters. For example, to compare two nucleic acid sequences, one may use blastn with the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) set at the following default parameters: Matrix: BLOSUM62; Reward for match: 1; Penalty for mismatch: −2; Open Gap: 5 and Extension Gap: 2 penalties; Gap x drop-off: 50; Expect: 10; Word Size: 11; Filter: on. For a pairwise comparison of two amino acid sequences, one may use the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) with blastp set, for example, at the following default parameters: Matrix: BLOSUM62; Open Gap: 11 and Extension Gap: 1 penalties; Gap x drop-off 50; Expect: 10; Word Size: 3; Filter: on.


Where multiple sequence identities are given for a strain having a pair of exogenous genes, this encompasses all combinations of sequence identities. For example, coexpression of a first gene encoding a first protein having at least 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% with gene A and a second gene encoding a second protein having at least 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% with gene A shall be understood to encompass (i) at least 85% identity with gene A and least 85% identity with gene B, (ii)) at least 85% identity with gene A and least 99% identity with gene B, (iii) at least 92% identity with gene A and least 95% identity with gene B, and all other combinations.


In connection with a cell oil, a “profile” is the distribution of particular species of triglycerides or fatty acyl groups within the oil. A “fatty acid profile” is the distribution of fatty acyl groups in the triglycerides of the oil without reference to attachment to a glycerol backbone. Fatty acid profiles are typically determined by conversion to a fatty acid methyl ester (FAME), followed by gas chromatography (GC) analysis with flame ionization detection (FID). The fatty acid profile can be expressed as one or more percent of a fatty acid in the total fatty acid signal determined from the area under the curve for that fatty acid. FAME-GC-FID measurement approximate weight percentages of the fatty acids.


As used herein, an oil is said to be “enriched” in one or more particular fatty acids if there is at least a 10% increase in the mass of that fatty acid in the oil relative to the non-enriched oil. For example, in the case of a cell expressing a heterologous FatB gene described herein, the oil produced by the cell is said to be enriched in, e.g., C8 and C16 fatty acids if the mass of these fatty acids in the oil is at least 10% greater than in oil produced by a cell of the same type that does not express the heterologous FatB gene (e.g., wild type oil).


“Recombinant” is a cell, nucleic acid, protein or vector that has been modified due to the introduction of an exogenous nucleic acid or the alteration of a native nucleic acid. Thus, e.g., recombinant (host) cells can express genes that are not found within the native (non-recombinant) form of the cell or express native genes differently than those genes are expressed by a non-recombinant cell. Recombinant cells can, without limitation, include recombinant nucleic acids that encode a gene product or suppression elements such as mutations, knockouts, antisense, interfering RNA (RNAi) or dsRNA that reduce the levels of active gene product in a cell. A “recombinant nucleic acid” is a nucleic acid originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases, ligases, exonucleases, and endonucleases, using chemical synthesis, or otherwise is in a form not normally found in nature. Recombinant nucleic acids may be produced, for example, to place two or more nucleic acids in operable linkage. Thus, an isolated nucleic acid or an expression vector formed in vitro by nucleic by ligating DNA molecules that are not normally joined in nature, are both considered recombinant for the purposes of this invention. Recombinant nucleic acids can also be produced in other ways; e.g., using chemical DNA synthesis. Once a recombinant nucleic acid is made and introduced into a host cell or organism, it may replicate using the in vivo cellular machinery of the host cell; however, such nucleic acids, once produced recombinantly, although subsequently replicated intracellularly, are still considered recombinant for purposes of this invention. Similarly, a “recombinant protein” is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid.


A “KAS I-like” gene or enzyme shall mean either a KAS I or KAS IV gene or enzyme.


Embodiments of the present invention relate to the use of KASI-like genes isolated from plants or other organisms, which can be expressed in a transgenic host cell in order to alter the fatty acid profile of a cell-oil produced by the host cell. Although the microalga Prototheca moriformis was used to screen the genes for ability to the alter fatty acid profile, the genes discovered are useful in a wide variety of host cells for which genetic transformation techniques are known. For example, the genes can be expressed in bacteria, cyanobacteria, other eukaryotic microalgae, or higher plants. The genes can be expressed in higher plants according to the methods disclosed in U.S. Pat. Nos. 7,301,070, 6,348,642, 6,660,849, and 6,770,465. We have found that KASI-like transgenes can be used alone or in combination with a FatB transgene (encoding an active acyl-ACP thioesterase) can boost the levels of mid-chain fatty acids (e.g., capric, caprylic, lauric, myristic or palmitic acids) in the fatty acid profile of the cell oil. Combining an exogenous KASI-like gene with an exogenous FATA or FATB gene in a host cell can give levels of mid-chain fatty acids and/or long-chain fatty acids (e.g., stearic or oleic) greater than either exogenous gene alone. The fatty acids of the cell oil can be further converted to triglycerides, fatty aldehydes, fatty alcohols and other oleochemicals either synthetically or biosynthetically.


In specific embodiments, triglycerides are produced by a host cell expressing a novel KASI-like gene (from a novel cDNA and/or under control of a heterologous promoter). A cell oil can be recovered from the host cell. Typically, the cell oil comprises mainly triglycerides and sterols. The cell oil can be refined, degummed, bleached and/or deodorized. The oil, in its unprocesssed or processed form, can be used for foods, chemicals, fuels, cosmetics, plastics, and other uses. In other embodiments, the KASI-like gene may not be novel, but the expression of the gene in a microalga is novel.


The KAS genes can be used in a variety of genetic constructs including plasmids or other vectors for expression or recombination in a host cell. The genes can be codon optimized for expression in a target host cell. The genes can be included in an expression cassette that includes a promoter (e.g., a heterologous promoter) and downstream regulatory element. The vector can include flanking sequences for homologous recombination. For example, the vector can cause insertion into a chromosome of the host cell, where it can be stably expressed. The proteins produced by the genes can be used in vivo or in purified form. In an embodiment, an expression cassette comprises a homologous promoter, a CDS operable to express a KASI-like enzyme of Table 1 and a 3′UTR. The 3′UTR can comprise a polyadenylation site.


As described in the examples below, novel KAS genes are were discovered from cDNA produced from plant seed mRNA transcripts. Accordingly the gene sequences are non-natural because they lack introns that are present in the plant genes and mRNA transcripts of the genes prior to mRNA splicing. Accordingly, the invention comprises an isolated non-natural KASI-like gene of Table 1. Further departure from the natural gene is in the use of heterologous regulatory elements and expression in host cells for which such genes do not occur in nature.


For example, the gene can be prepared in an expression vector comprising an operably linked promoter and 5′UTR. Where a plastidic cell is used as the host, a suitably active plastid targeting peptide (also referred to below as a “transit peptide”) can be fused to the KASI-like gene, as in the examples below. The disclosed genes comprise a hydrophobic N-terminal plastid targeting sequence, which can be replaced with alternative targeting sequence and varied in length. Varying the plastid targeting peptide can improve cellular localization and enzyme activity for a given host-cell type. Thus, the invention contemplates deletions and fusion proteins in order to optimize enzyme activity in a given host cell. For example, a transit peptide from the host or related species may be used instead of that of the newly discovered plant genes described here. Additional terminal or internal deletions may be made so-long as the enzymatic activity is retained. The targeting peptide can be cleaved by the host cell to produce a mature KASI-like protein that lacks the targeting peptide.


A selectable marker gene may be included in the vector to assist in isolating a transformed cell. Examples of selectable markers useful in microalgae include sucrose invertase, alpha galactosidase (for selection on melibiose) and antibiotic resistance genes.


The gene sequences disclosed can also be used to prepare antisense, or inhibitory RNA (e.g., RNAi or hairpin RNA) to inhibit complementary genes in a plant or other organism. For example, armed with the knowledge of a gene sequence of Table 1, one can engineer a plant with the same or similar KASI-like gene to express an RNAi construct, gene knockout, point mutation, or the like, and thereby reduce the KASI or KASIV activity of the plant's seed. As a result, the plant can produce an oil with an altered fatty acid profile in which the mean chain length is decreased or increased, depending on the presence of other fatty acid synthesis genes.


KASI-like genes/proteins found to be useful in producing desired fatty acid profiles in a cell are summarized below in Table 1, and related proteins discovered from transcript sequencing (as in Examples 1-2) are shown in Table 1a. Nucleic acids or proteins having the sequence of SEQ ID NOS: 2-18, 59, 62-72, 21-37 or 39-55 can be used to alter the fatty acid profile of a recombinant cell. Variant nucleic acids can also be used; e.g., variants having at least 70, 80, 85, 90, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NOS: 21-37 or 39-55. Codon optimization of the genes for a variety of host organisms is contemplated, as is the use of gene fragments. Preferred codons for Prototheca strains and for Chlorella protothecoides are shown below in Tables 2 and 3, respectively. Codon usage for Cuphea wrightii is shown in Table 4. Codon usage for Arabidopsis is shown in Table 5; for example, the most preferred codon for each amino acid can be selected. Codon tables for other organisms including microalgae and higher plants are known in the art. In some embodiments, the first and/or second most preferred Prototheca codons are employed for codon optimization. In specific embodiments, the novel amino acid sequences contained in the sequence listings below are converted into nucleic acid sequences according to the most preferred codon usage in Prototheca, Chlorella, Cuphea wrightii, or Arabidopsis as set forth in tables 2 through 3b or nucleic acid sequences having at least 70, 80, 85, 90, 95, 96, 97, 98, or 99% sequence identity to these derived nucleic acid sequences. For example, the KASI-like gene can be codon optimized for Prototheca moriformis by substituting most preferred codons according to Table 2 for at least 10, 20, 30, 40, 50, 60, 70, 80, or 90% of all codons. Likewise, the KASI-like gene can be codon optimized for Chlorella protothecoides by substituting most-preferred codons according to Table 3 for at least 10, 20, 30, 40, 50, 60, 70, 80, or 90% of all codons. Alternately, the KASI-like gene can be codon optimized for Chlorella protothecoides or Prototheca moriformis by substituting first or second most-preferred codons according to Table 2 or 3 for at least 10, 20, 30, 40, 50, 60, 70, 80, or 90% of all codons. Codon-optimized genes are non-naturally occurring because they are optimized for expression in a host organism.


In certain embodiments, percent sequence identity for variants of the nucleic acids or proteins discussed above can be calculated by using the full-length nucleic acid sequence (e.g., one of SEQ ID NOS: 21-37 or 39-55 or full-length amino acid sequence (e.g., one of SEQ ID NOS: 2-18) as the reference sequence and comparing the full-length test sequence to this reference sequence. For fragments, percent sequence identity for variants of nucleic acid or protein fragments can be calculated over the entire length of the fragment. In certain embodiments, there is a nucleic acid or protein fragment have at least 70, 80, 85, 90, 95, 96, 97, 98, or 99% sequence identity to one of SEQ ID NOS: 21-37, 39-55 or 2-18.


Optionally, the plastidic targeting peptide can be swapped with another peptide that functions to traffic the KASI-like enzyme to a fatty acid synthesizing plastid of a plastidic host cell. Accordingly, in various embodiments of the invention, a transgene or transgenic host cell comprises a nucleotide or corresponding peptidic fusion of a plastic targeting sequence and an enzyme-domain sequence (the sequence remaining after deletion of the transit peptide), where the mature protein has at least 70, 80, 85, 90, 95, 96, 97, 98, or 99% sequence identity to an mature protein sequence listed in Table 1 or Table 1a. Plastid transit/targeting peptides are underlined in the accompanying informal sequence listing. Examples of targeting peptides include those of Table 1 and others known in the art, especially in connection with the targeting of KAS I, KAS II, KAS III, FATA, FATB and SAD (stearoyl-ACP desaturase) gene products to chloroplasts or other plastids of plants and microalgae. See examples of Chorophyta given in PCT publications WO2010/063032, WO2011/150411, WO2012/106560, and WO2013/158938. Optionally, the KASI-like genes encode 450, 475 or 500 amino acids or more (with or without the transit peptide), or about 555 residues (with the transit peptide,) in contrast to known truncated sequences.









TABLE 1







KASI-like genes: The expression cassette used to test the genes in


combination with a FATB transgene is given in SEQ ID NO: 38


(i.e., substituting the Cpal KASIV coding sequence of SEQ ID NO: 38


with various other coding sequences of Table 1), except that the



Cuphea hookeriana KASIV was tested using the expression



cassette of SEQ ID NO: 61. See Examples 1-4.














nucleotide






coding





sequence





(from cDNA





produced

Prototheca






from

moriformis






seed
codon-




Amino
mRNA, not
optimized




Acid
codon-
nucleotide


Species
Gene Name
Sequence
optimized)
sequence















Cuphea

KASIV
2
21
39



palustris




Cinnamonum

KASIV
3
22
40



camphora




Cinnamonum

KASI
4
23
41



camphora




Umbellularia

KASI
5
24
42



californica




U. californica

KASIV
6
25
43



Cuphea.

KASAI
7
26
44



wrightii




Cuphea

KASIVb
8
27
45



avigera




Cuphea

KASIVb
9
28
46



paucipetala




C. ignea

KASIVb
10
29
47



Cuphea

KASIV
11
30
48



procumbens




C. paucipetala

KASIVa
12
31
49



Cuphea

KASIV
13
32
50



painteri




C. avigera

KASIVa
14
33
51



C. ignea

KASIVa
15
34
52



C. avigera

KASIa
16
35
53



C. pulcherrima

KASI
17
36
54



C. avigera

mitochondrial
18
37
55



KAS



Cuphea

KASIV
59

60, 61



hookeriana

















TABLE 1a







Additional proteins encoded by cDNA discovered from transcript


profiling of seeds. Coding sequences can be derived


from codon tables for various host cells.













Amino





Acid



Species
Gene Name
Sequence







Various
KASIV
69, 71



(Clade 1)
consensus




sequence



Various
KASIV
70, 72



(Clade 2)
consensus




sequence




Cuphea

KASIV
62




aequipetala





Cuphea

KASIV
63




glassostoma





Cuphea

KASIV
64




hookeriana





Cuphea

KASIV
65




glassostoma





Cuphea

KASIV
66, 67




carthagenesis





C. pulcherrima

KASIV
68

















TABLE 2





Codon usage in Prototheca strains.






















Ala
GCG
345 (0.36)
Asn
AAT
 8 (0.04)




GCA
 66 (0.07)

AAC
201 (0.96)




GCT
101 (0.11)
Pro
CCG
161 (0.29)




GCC
442 (0.46)

CCA
 49 (0.09)



Cys
TGT
 12 (0.10)

CCT
 71 (0.13)




TGC
105 (0.90)

CCC
267 (0.49)



Asp
GAT
 43 (0.12)
Gln
CAG
226 (0.82)




GAC
316 (0.88)

CAA
 48 (0.18)



Glu
GAG
377 (0.96)
Arg
AGG
 33 (0.06)




GAA
 14 (0.04)

AGA
 14 (0.02)



Phe
TTT
 89 (0.29)

CGG
102 (0.18)




TTC
216 (0.71)

CGA
 49 (0.08)



Gly
GGG
 92 (0.12)

CGT
 51 (0.09)




GGA
 56 (0.07)

CGC
331 (0.57)




GGT
 76 (0.10)
Ser
AGT
 16 (0.03)




GGC
559 (0.71)

AGC
123 (0.22)



His
CAT
 42 (0.21)

TCG
152 (0.28)




CAC
154 (0.79)

TCA
 31 (0.06)



Ile
ATA
 4 (0.01)

TCT
 55 (0.10)




ATT
 30 (0.08)

TCC
173 (0.31)




ATC
338 (0.91)
Thr
ACG
184 (0.38)



Lys
AAG
284 (0.98)

ACA
 24 (0.05)




AAA
 7 (0.02)

ACT
 21 (0.05)



Leu
TTG
 26 (0.04)

ACC
249 (0.52)




TTA
 3 (0.00)
Val
GTG
308 (0.50)




CTG
447 (0.61)

GTA
 9 (0.01)




CTA
 20 (0.03)

GTT
 35 (0.06)




CTT
 45 (0.06)

GTC
262 (0.43)




CTC
190 (0.26)
Trp
TGG
107 (1.00)



Met
ATG
191 (1.00)
Tyr
TAT
 10 (0.05)







TAC
180 (0.95)











Stop
TGA/TAG/TAA

















TABLE 3





Preferred codon usage in Chlorella protothecoides.




















TTC (Phe)
TAC (Tyr)
TGC (Cys)
TGA (Stop)



TGG (Trp)
CCC (Pro)
CAC (His)
CGC (Arg)



CTG (Leu)
CAG (Gln)
ATC (Ile)
ACC (Thr)



GAC (Asp)
TCC (Ser)
ATG (Met)
AAG (Lys)



GCC (Ala)
AAC (Asn)
GGC (Gly)
GTG (Val)



GAG (Glu)

















TABLE 4





Codon usage for Cuphea wrightii (codon, amino acid, frequency, per


thousand, number)


















UUU F 0.48 19.5 (52)
UCU S 0.21 19.5 (52)
UAU Y 0.45 6.4 (17)
UGU C 0.41 10.5 (28)


UUC F 0.52 21.3 (57)
UCC S 0.26 23.6 (63)
UAC Y 0.55 7.9 (21)
UGC C 0.59 15.0 (40)


UUA L 0.07 5.2 (14)
UCA S 0.18 16.8 (45)
UAA * 0.33 0.7 (2)
UGA * 0.33 0.7 (2)


UUG L 0.19 14.6 (39)
UCG S 0.11 9.7 (26)
UAG * 0.33 0.7 (2)
UGG W 1.00 15.4 (41)


CUU L 0.27 21.0 (56)
CCU P 0.48 21.7 (58)
CAU H 0.60 11.2 (30)
CGU R 0.09 5.6 (15)


CUC L 0.22 17.2 (46)
CCC P 0.16 7.1 (19)
CAC H 0.40 7.5 (20)
CGC R 0.13 7.9 (21)


CUA L 0.13 10.1 (27)
CCA P 0.21 9.7 (26)
CAA Q 0.31 8.6 (23)
CGA R 0.11 6.7 (18)


CUG L 0.12 9.7 (26)
CCG P 0.16 7.1 (19)
CAG Q 0.69 19.5 (52)
CGG R 0.16 9.4 (25)


AUU I 0.44 22.8 (61)
ACU T 0.33 16.8 (45)
AAU N 0.66 31.4 (84)
AGU S 0.18 16.1 (43)


AUC I 0.29 15.4 (41)
ACC T 0.27 13.9 (37)
AAC N 0.34 16.5 (44)
AGC S 0.07 6.0 (16)


AUA I 0.27 13.9 (37)
ACA T 0.26 13.5 (36)
AAA K 0.42 21.0 (56)
AGA R 0.24 14.2 (38)


AUG M 1.00 28.1 (75)
ACG T 0.14 7.1 (19)
AAG K 0.58 29.2 (78)
AGG R 0.27 16.1 (43)


GUU V 0.28 19.8 (53)
GCU A 0.35 31.4 (84)
GAU D 0.63 35.9 (96)
GGU G 0.29 26.6 (71)


GUC V 0.21 15.0 (40)
GCC A 0.20 18.0 (48)
GAC D 0.37 21.0 (56)
GGC G 0.20 18.0 (48)


GUA V 0.14 10.1 (27)
GCA A 0.33 29.6 (79)
GAA E 0.41 18.3 (49)
GGA G 0.35 31.4 (84)


GUG V 0.36 25.1 (67)
GCG A 0.11 9.7 (26)
GAG E 0.59 26.2 (70)
GGG G 0.16 14.2 (38)
















TABLE 5





Codon usage for Arabidopsis (codon, amino acid, frequency, per thousand)


















UUU F 0.51 21.8
UCU S 0.28 25.2
UAU Y 0.52 14.6
UGU C 0.60 10.5


UUC F 0.49 20.7
UCC S 0.13 11.2
UAC Y 0.48 13.7
UGC C 0.40 7.2


UUA L 0.14 12.7
UCA S 0.20 18.3
UAA * 0.36 0.9
UGA * 0.44 1.2


UUG L 0.22 20.9
UCG S 0.10 9.3
UAG * 0.20 0.5
UGG W 1.00 12.5


CUU L 0.26 24.1
CCU P 0.38 18.7
CAU H 0.61 13.8
CGU R 0.17 9.0


CUC L 0.17 16.1
CCC P 0.11 5.3
CAC H 0.39 8.7
CGC R 0.07 3.8


CUA L 0.11 9.9
CCA P 0.33 16.1
CAA Q 0.56 19.4
CGA R 0.12 6.3


CUG L 0.11 9.8
CCG P 0.18 8.6
CAG Q 0.44 15.2
CGG R 0.09 4.9


AUU I 0.41 21.5
ACU T 0.34 17.5
AAU N 0.52 22.3
AGU S 0.16 14.0


AUC I 0.35 18.5
ACC T 0.20 10.3
AAC N 0.48 20.9
AGC S 0.13 11.3


AUA I 0.24 12.6
ACA T 0.31 15.7
AAA K 0.49 30.8
AGA R 0.35 19.0


AUG M 1.00 24.5
ACG T 0.15 7.7
AAG K 0.51 32.7
AGG R 0.20 11.0


GUU V 0.40 27.2
GCU A 0.43 28.3
GAU D 0.68 36.6
GGU G 0.34 22.2


GUC V 0.19 12.8
GCC A 0.16 10.3
GAC D 0.32 17.2
GGC G 0.14 9.2


GUA V 0.15 9.9
GCA A 0.27 17.5
GAA E 0.52 34.3
GGA G 0.37 24.2


GUG V 0.26 17.4
GCG A 0.14 9.0
GAG E 0.48 32.2
GGG G 0.16 10.2










Gene Combinations


In an embodiment, a gene/gene-product of Table 1 is co-expressed in a host cell with an exogenous FATA or FATB acyl-ACP thioesterase gene. In a specific embodiment, the FATB gene product has at least 85, 90, 91, 92, 93, 94, 95, 95.5, 96, 96.5 97, 97.5, 98, 98.5 or 99% amino acid sequence identity to the Cuphea palustris FATB2 (“Cpal FATB2”, accession AAC49180, SEQ ID NO: 1) or C. hookeriana FATB2 (“Ch FATB2”, accession U39834, SEQ ID NO: 57) or fragment thereof. Optionally the FATB gene product has at least 85, 90, 91, 92, 93, 94, 95, 95.5, 96, 96.5 97, 97.5, 98, 98.5 or 99% amino acid sequence identity to the non-transit-peptide domain of Cuphea palustris FATB2 (“Cpal FATB2”, accession AAC49180, SEQ ID NO: 1) or C. hookeriana FATB2 (“Ch FATB2”, accession U39834 SEQ ID NO: 57)).


FATA genes encode enzymes that preferentially, but not exclusively, hydrolyze long-chain fatty acids with highest activity towards C18:1. FATB genes encode a group of enzymes with more heterogeneous substrate specificities but generally show higher activity toward saturated fatty acids. The substrate specificities of FATB enzymes are quite heterogenous; there are a number of FATB enzymes that show high activity towards C18:0 and C18:1. FATA and FATB enzymes terminate the synthesis of fatty acids by hydrolyzing the thioester bond between the acyl moiety and the acyl carrier protein (ACP).


In an embodiment, a host cell is transformed to express both a FATA or FATB and KASI-like transgene. The host-cell produces a cell oil. Together, the FATA or FATB and KASI-like genes are expressed to produce their respective gene products and thereby alter the fatty acid profile of the cell oil. The two genes function either additively or synergistically with respect to control strains lacking one of the two genes. Optionally, the host cell is oleaginous and can be an oleaginous eukaryotic microalgae such as those described above or below. The fatty acid profile of the cell oil can be enriched (relative to an appropriate control) in C14:0 (myristic), C8:0, C10:0 or a combination of C8/C10.


In an embodiment, the fatty acid profile of the cell is enriched in C14:0 fatty acids. In this embodiment, the FATB gene expresses an acyl-ACP thioesterase enzyme having at least 85, 90, 91, 92, 93, 94, 95, 95.5, 96, 96.5 97, 97.5, 98, 98.5 or 99% amino acid sequence identity percent amino acid identity to the enzyme of SEQ ID NO: 1. The co-expressed KASI-like gene encodes a beta-ketoacyl ACP synthase having at least 85, 90, 91, 92, 93, 94, 95, 95.5, 96, 96.5 97, 97.5, 98, 98.5 or 99% amino acid sequence identity percent amino acid identity to the enzyme of SEQ ID NO: 2. Alternately The co-expressed KASI-like gene encodes a beta-ketoacyl ACP synthase having at least 85, 90, 91, 92, 93, 94, 95, 95.5, 96, 96.5 97, 97.5, 98, 98.5 or 99% amino acid sequence identity percent amino acid identity to the enzyme of SEQ ID NO: 7. Optionally, the cell oil has a fatty acid profile characterized by at least 10%, 20%, 30%, 40%, 50% or at least 55% C14:0 (area % by FAME-GC-FID).


In another embodiment, the fatty acid profile of the cell is enriched in C8:0 and/or C10:0 fatty acids. In this embodiment, the FATB gene expresses an acyl-ACP thioesterase enzyme having at least 85, 90, 91, 92, 93, 94, 95, 95.5, 96, 96.5 97, 97.5, 98, 98.5 or 99% amino acid sequence identity percent amino acid identity to the enzyme of SEQ ID NO: 57. The co-expressed KASI-like gene encodes a beta-ketoacyl ACP synthase having at least 85, 90, 91, 92, 93, 94, 9595.5, 96, 96.5 97, 97.5, 98, 98.5 or 99% amino acid sequence identity percent amino acid identity to an enzyme of one of SEQ ID NOs: 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 37. In a related embodiment, the co-expressed KASI-like gene encodes a beta-ketoacyl ACP synthase having at least 85, 90, 91, 92, 93, 94, 95, 95.5, 96, 96.5 97, 97.5, 98, 98.5 or 99% amino acid sequence identity percent amino acid identity to enzyme of one of SEQ ID NO: 2, 8, 11, 12, 13, 14, or 15. Optionally, the cell oil has a fatty acid profile characterized by at least 7, 8, 9, 10, 11, 12, 13, or 14 area % C8:0 (by FAME-GC-FID). Optionally, the cell oil has a fatty acid profile characterized by at least 10, 15, 20, 25, 30, or 35 area % for the sum of C8:0 and C10:0 fatty acids (by FAME-GC-FID). Optionally, the C8/C10 ratio of the cell oil is in the range of 2.2-2.5, 2.5-3.0, or 3.0-3.4.


Optionally, the oils produced by these methods can have a sterol profile in accord with those described below.


Host Cells


The host cell can be a single cell (e.g., microalga, bacteria, yeast) or part of a multicellular organism such as a plant or fungus. Methods for expressing KASI-like genes in a plant are given in U.S. Pat. Nos. 7,301,070, 6,348,642, 6,660,849, and 6,770,465, or can be accomplished using other techniques generally known in plant biotechnology. Engineering of eukaryotic oleaginous microbes including eukaryotic microalgae (e.g., of Chlorophyta) is disclosed in WO2010/063032, WO2011/150411, and WO2012/106560 and in the examples below.


Examples of oleaginous host cells include plant cells and microbial cells having a type II fatty acid biosynthetic pathway, including plastidic oleaginous cells such as those of oleaginous algae. Specific examples of microalgal cells include heterotrophic or obligate heterotrophic eukaryotic microalgae of the phylum Chlorophtya, the class Trebouxiophytae, the order Chlorellales, or the family Chlorellacae. Examples of eukaryotic oleaginous microalgae host cells are provided in Published PCT Patent Applications WO2008/151149, WO2010/06032, WO2011/150410, and WO2011/150411, including species of Chlorella and Prototheca, a genus comprising obligate heterotrophs. The oleaginous cells can be, for example, capable of producing 25, 30, 40, 50, 60, 70, 80, 85, or about 90% oil by cell weight, ±5%. Optionally, the oils produced can be low in DHA or EPA fatty acids. For example, the oils can comprise less than 5%, 2%, or 1% DHA and/or EPA. The above-mentioned publications also disclose methods for cultivating such cells and extracting oil, especially from microalgal cells; such methods are applicable to the cells disclosed herein and incorporated by reference for these teachings. When microalgal cells are used they can be cultivated autotrophically (unless an obligate heterotroph) or in the dark using a sugar (e.g., glucose, fructose and/or sucrose). When cultivated heterotrophically, the cells and cell oil can comprise less than 200 ppm, 20 ppm, or 2 ppm of color-generating impurities or of chlorophyll. In any of the embodiments described herein, the cells can be heterotrophic cells comprising an exogenous invertase gene so as to allow the cells to produce oil from a sucrose feedstock. Alternately, or in addition, the cells can metabolize xylose from cellulosic feedstocks. For example, the cells can be genetically engineered to express one or more xylose metabolism genes such as those encoding an active xylose transporter, a xylulose-5-phosphate transporter, a xylose isomerase, a xylulokinase, a xylitol dehydrogenase and a xylose reductase. See WO2012/154626, “GENETICALLY ENGINEERED MICROORGANISMS THAT METABOLIZE XYLOSE”, published Nov. 15, 2012. The cells can be cultivated on a depolymerized cellulosic feedstock such as acid or enzyme hydrolyzed bagasse, sugar beet pulp, corn stover, wood chips, sawdust or switchgrass. Optionally, the cells can be cultivated on a depolymerized cellulosic feedstock comprising glucose and at least 5, 10, 20, 30 or 40% xylose, while producing at least 20% lipid by dry weight. Optionally, the lipid comprises triglycerides having a fatty acid profile characterized by at least 10, 15 or 20% C12:0


Optionally, the host cell comprises 23S rRNA having at least 65, 70, 75, 80, 85, 90 or 95% nucleotide sequence identity to SEQ ID NO: 58.


Oils and Related Products


The oleaginous cells express one or more exogenous genes encoding fatty acid biosynthesis enzymes. As a result, some embodiments feature cell oils that were not obtainable from a non-plant or non-seed oil, or not obtainable at all.


The oleaginous cells produce a storage oil, which is primarily triacylglyceride and may be stored in storage bodies of the cell. A raw oil may be obtained from the cells by disrupting the cells and isolating the oil. WO2008/151149, WO2010/06032, WO2011/150410, and WO2011/1504 disclose heterotrophic cultivation and oil isolation techniques. For example, oil may be obtained by cultivating, drying and pressing the cells. The cell oils produced may be refined, bleached and deodorized (RBD) as known in the seed-oil art or as described in WO2010/120939. The refining step may comprise degumming. The raw, refined, or RBD oils may be used in a variety of food, chemical, and industrial products or processes. After recovery of the oil, a valuable residual biomass remains. Uses for the residual biomass include the production of paper, plastics, absorbents, adsorbents, as animal feed, for human nutrition, or for fertilizer.


Where a fatty acid profile of a triglyceride (also referred to as a “triacylglyceride” or “TAG”) cell oil is given here, it will be understood that this refers to a nonfractionated sample of the storage oil extracted from the cell analyzed under conditions in which phospholipids have been removed or with an analysis method that is substantially insensitive to the fatty acids of the phospholipids (e.g. using chromatography and mass spectrometry). The oil may be subjected to an RBD process to remove phospholipids, free fatty acids and odors yet have only minor or negligible changes to the fatty acid profile of the triglycerides in the oil. Because the cells are oleaginous, in some cases the storage oil will constitute the bulk of all the TAGs in the cell.


The stable carbon isotope value δ13C is an expression of the ratio of 13C/12C relative to a standard (e.g. PDB, carbonite of fossil skeleton of Belemnite americana from Peedee formation of South Carolina). The stable carbon isotope value δ13C (0/00) of the oils can be related to the δ13C value of the feedstock used. In some embodiments, the oils are derived from oleaginous organisms heterotrophically grown on sugar derived from a C4 plant such as corn or sugarcane. In some embodiments the δ13C (0/00) of the oil is from −10 to −17 0/00 or from −13 to −16 0/00.


The oils produced according to the above methods in some cases are made using a microalgal host cell. As described above, the microalga can be, without limitation, be a eukaryotic microalga falling in the classification of Chlorophyta, Trebouxiophyceae, Chlorellales, Chlorellaceae, or Chlorophyceae. It has been found that microalgae of Trebouxiophyceae can be distinguished from vegetable oils based on their sterol profiles. Oil produced by Chlorella protothecoides (a close relative of Prototheca moriformis) was found to produce sterols that appeared to be brassicasterol, ergosterol, campesterol, stigmasterol, and beta-sitosterol, when detected by GC-MS. However, it is believed that all sterols produced by Chlorella have C2413 stereochemistry. Thus, it is believed that the molecules detected as campesterol, stigmasterol, and beta-sitosterol, are actually 22,23-dihydrobrassicasterol, proferasterol and clionasterol, respectively. Thus, the oils produced by the microalgae described above can be distinguished from plant oils by the presence of sterols with C24α stereochemistry and the absence of C24α stereochemistry in the sterols present. For example, the oils produced may contain 22, 23-dihydrobrassicasterol while lacking campesterol; contain clionasterol, while lacking in beta-sitosterol, and/or contain poriferasterol while lacking stigmasterol. Alternately, or in addition, the oils may contain significant amounts of Δ7-poriferasterol.


In one embodiment, the oils provided herein are not vegetable oils. Vegetable oils are oils extracted from plants and plant seeds. Vegetable oils can be distinguished from the non-plant oils provided herein on the basis of their oil content. A variety of methods for analyzing the oil content can be employed to determine the source of the oil or whether adulteration of an oil provided herein with an oil of a different (e.g. plant) origin has occurred. The determination can be made on the basis of one or a combination of the analytical methods. These tests include but are not limited to analysis of one or more of free fatty acids, fatty acid profile, total triacylglycerol content, diacylglycerol content, peroxide values, spectroscopic properties (e.g. UV absorption), sterol profile, sterol degradation products, antioxidants (e.g. tocopherols), pigments (e.g. chlorophyll), d13C values and sensory analysis (e.g. taste, odor, and mouth feel). Many such tests have been standardized for commercial oils such as the Codex Alimentarius standards for edible fats and oils.


Sterol profile analysis is a particularly well-known method for determining the biological source of organic matter. Campesterol, β-sitosterol, and stigmasterol are common plant sterols, with β-sitosterol being a principle plant sterol. For example, β-sitosterol was found to be in greatest abundance in an analysis of certain seed oils, approximately 64% in corn, 29% in rapeseed, 64% in sunflower, 74% in cottonseed, 26% in soybean, and 79% in olive oil (Gul et al. J. Cell and Molecular Biology 5:71-79, 2006).


Oil isolated from Prototheca moriformis strain UTEX1435 were separately clarified (CL), refined and bleached (RB), or refined, bleached and deodorized (RBD) and were tested for sterol content according to the procedure described in JAOCS vol. 60, no. 8, August 1983. Results of the analysis are shown below (units in mg/100 g) in Table 6.









TABLE 6







Sterols in microalgal oil.

















Refined,





Clar-
Refined &
bleached, &



Sterol
Crude
ified
bleached
deodorized
















1
Ergosterol
384  
398  
293  
302  




 (56%)
 (55%)
 (50%)
 (50%)


2
5,22-cholestadien-24-
14.6
18.8
14  
15.2



methyl-3-ol
(2.1%)
(2.6%)
(2.4%)
(2.5%)



(Brassicasterol)


3
24-methylcholest-5-
10.7
11.9
10.9
10.8



en-3-ol (Campesterol
(1.6%)
(1.6%)
(1.8%)
(1.8%)



or 22,23-



dihydrobrassicasterol)


4
5,22-cholestadien-24-
57.7
59.2
46.8
49.9



ethyl-3-ol
(8.4%)
(8.2%)
(7.9%)
(8.3%)



(Stigmasterol



or poriferasterol)


5
24-ethylcholest-5-en-
 9.64
 9.92
 9.26
10.2



3-ol (β-Sitosterol or
(1.4%)
(1.4%)
(1.6%)
(1.7%)



clionasterol)


6
Other sterols
209  
221  
216  
213  



Total sterols
685.64
718.82
589.96
601.1









These results show three striking features. First, ergosterol was found to be the most abundant of all the sterols, accounting for about 50% or more of the total sterols. The amount of ergosterol is greater than that of campesterol, beta-sitosterol, and stigmasterol combined. Ergosterol is steroid commonly found in fungus and not commonly found in plants, and its presence particularly in significant amounts serves as a useful marker for non-plant oils. Secondly, the oil was found to contain brassicasterol. With the exception of rapeseed oil, brassicasterol is not commonly found in plant based oils. Thirdly, less than 2% beta-sitosterol was found to be present. Beta-sitosterol is a prominent plant sterol not commonly found in microalgae, and its presence particularly in significant amounts serves as a useful marker for oils of plant origin. In summary, Prototheca moriformis strain UTEX1435 has been found to contain both significant amounts of ergosterol and only trace amounts of beta-sitosterol as a percentage of total sterol content. Accordingly, the ratio of ergosterol:beta-sitosterol or in combination with the presence of brassicasterol can be used to distinguish this oil from plant oils.


In some embodiments, the oil content of an oil provided herein contains, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% beta-sitosterol. In other embodiments the oil is free from beta-sitosterol.


In some embodiments, the oil is free from one or more of beta-sitosterol, campesterol, or stigmasterol. In some embodiments the oil is free from beta-sitosterol, campesterol, and stigmasterol. In some embodiments the oil is free from campesterol. In some embodiments the oil is free from stigmasterol.


In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% 24-ethylcholest-5-en-3-ol. In some embodiments, the 24-ethylcholest-5-en-3-ol is clionasterol. In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% clionasterol.


In some embodiments, the oil content of an oil provided herein contains, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% 24-methylcholest-5-en-3-ol. In some embodiments, the 24-methylcholest-5-en-3-ol is 22, 23-dihydrobrassicasterol. In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% 22,23-dihydrobrassicasterol.


In some embodiments, the oil content of an oil provided herein contains, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% 5,22-cholestadien-24-ethyl-3-ol. In some embodiments, the 5, 22-cholestadien-24-ethyl-3-ol is poriferasterol. In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% poriferasterol.


In some embodiments, the oil content of an oil provided herein contains ergosterol or brassicasterol or a combination of the two. In some embodiments, the oil content contains, as a percentage of total sterols, at least 5%, 10%, 20%, 25%, 35%, 40%, 45%, 50%, 55%, 60%, or 65% ergosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 25% ergosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 40% ergosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 5%, 10%, 20%, 25%, 35%, 40%, 45%, 50%, 55%, 60%, or 65% of a combination of ergosterol and brassicasterol.


In some embodiments, the oil content contains, as a percentage of total sterols, at least 1%, 2%, 3%, 4% or 5% brassicasterol. In some embodiments, the oil content contains, as a percentage of total sterols less than 10%, 9%, 8%, 7%, 6%, or 5% brassicasterol.


In some embodiments the ratio of ergosterol to brassicasterol is at least 5:1, 10:1, 15:1, or 20:1.


In some embodiments, the oil content contains, as a percentage of total sterols, at least 5%, 10%, 20%, 25%, 35%, 40%, 45%, 50%, 55%, 60%, or 65% ergosterol and less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% beta-sitosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 25% ergosterol and less than 5% beta-sitosterol. In some embodiments, the oil content further comprises brassicasterol. For any of the oils or cell-oils disclosed in this application, the oil can have the sterol profile of any column of Table 6, above, with a sterol-by-sterol variation of 30%, 20%, 10% or less.


Sterols contain from 27 to 29 carbon atoms (C27 to C29) and are found in all eukaryotes. Animals exclusively make C27 sterols as they lack the ability to further modify the C27 sterols to produce C28 and C29 sterols. Plants however are able to synthesize C28 and C29 sterols, and C28/C29 plant sterols are often referred to as phytosterols. The sterol profile of a given plant is high in C29 sterols, and the primary sterols in plants are typically the C29 sterols beta-sitosterol and stigmasterol. In contrast, the sterol profile of non-plant organisms contain greater percentages of C27 and C28 sterols. For example the sterols in fungi and in many microalgae are principally C28 sterols. The sterol profile and particularly the striking predominance of C29 sterols over C28 sterols in plants has been exploited for determining the proportion of plant and marine matter in soil samples (Huang, Wen-Yen, Meinschein W. G., “Sterols as ecological indicators”; Geochimica et Cosmochimia Acta. Vol 43. pp 739-745).


In some embodiments the primary sterols in the microalgal oils provided herein are sterols other than beta-sitosterol and stigmasterol. In some embodiments of the microalgal oils, C29 sterols make up less than 50%, 40%, 30%, 20%, 10%, or 5% by weight of the total sterol content.


In some embodiments the microalgal oils provided herein contain C28 sterols in excess of C29 sterols. In some embodiments of the microalgal oils, C28 sterols make up greater than 50%, 60%, 70%, 80%, 90%, or 95% by weight of the total sterol content. In some embodiments the C28 sterol is ergosterol. In some embodiments the C28 sterol is brassicasterol.


In embodiments of the present invention, oleaginous cells expressing one or more of the genes of Table 1 can produce an oil with at least 20, 40, 60 or 70% of C8, C10, C12, C14 or C16 fatty acids. In a specific embodiment, the level of myristate (C14:0) in the oil is greater than 30%.


Thus, in embodiments of the invention, there is a process for producing an oil, triglyceride, fatty acid, or derivative of any of these, comprising transforming a cell with any of the nucleic acids discussed herein. In another embodiment, the transformed cell is cultivated to produce an oil and, optionally, the oil is extracted. Oil extracted in this way can be used to produce food, oleochemicals or other products.


The oils discussed above alone or in combination are useful in the production of foods, fuels and chemicals (including plastics, foams, films, detergents, soaps, etc). The oils, triglycerides, fatty acids from the oils may be subjected to C—H activation, hydroamino methylation, methoxy-carbonation, ozonolysis, enzymatic transformations, epoxidation, methylation, dimerization, thiolation, metathesis, hydro-alkylation, lactonization, or other chemical processes.


After extracting the oil, a residual biomass may be left, which may have use as a fuel, as an animal feed, or as an ingredient in paper, plastic, or other product. For example, residual biomass from heterotrophic algae can be used in such products.


EXAMPLES
Example 1: Screening KAS Genes in Combination with Cuphea palustris FATB2 Acyl-ACP Thioesterase

A Prototheca moriformis strain expressing codon optimized Cuphea palustris (Cpal) FATB2 was constructed as described in WO2013/158938, example 53 (p. 231). The amino acid sequence of the Cpal FATB2 gene is given in SEQ ID NO: 1. This strain (S6336) produced a cell oil characterized by a fatty acid profile having about 38% myristic acid (C14:0).


Six KASI-like genes were cloned from seed oil genomes. Total RNA was extracted from dried mature seeds using a liquid-nitrogen-chilled mortar and pestle to break open the seed walls. RNA was then precipitated with an 8M urea, 3M LiCl solution followed by a phenol-chloroform extraction. A cDNA library was generated with oligo dT primers using the purified RNA and subjected to Next Generation sequencing. The novel KAS genes were identified from the assembled transcriptome using BLAST with known KAS genes as bait. The identified KAS gene sequences were codon optimized for expression in Prototheca and synthesized for incorporation into an expression cassette.


To test the impact on myristate accumulation, S6336 was transformed with a linearized plasmid designed for homologous recombination at the pLOOP locus and to express the KASI-like genes with coexpression of a selection marker (see WO2013/1589380). The vector is described in SEQ ID NO 38, the remaining codon optimized KAS genes were substituted into the KAS CDS segment of this vector prior to transformation. As shown in Table 7, increases in C14:0 levels in extracted cell oil were observed with the expression of the C. camphora KASIV (D3147), C. camphora KASI (D3148), U. cahfornica KASI (D3150) or U. cahfornica KASVI (D3152) genes in S6336. Even greater increases in C14:0 levels resulted from expression the KASI gene from C. palustris KASIV (D3145) or C. wrightii KASAI (D3153), with some individual lines producing >50% or >55% C14:0. The C14 production far exceeded the negligible amount found in the wild-type oil (see Table 7a).









TABLE 7







KAS genes that effect an increase in C14 fatty acids in eukaryotic


microalgal oil.












C14:0 (area %.




SEQ ID
mean of 4
Highest C14:0


Gene (transformant ID)
NOs:
transformants)
observed






C. camphora KASIV

3, 22, 40
38.0
40.3



C. camphora KASI

4, 23, 41
33.8
39.3



U. californica KASI

5, 24, 42
37.4
42.3



U. californica KASVI

6, 25, 43
38.4
41.6



C. palustris KASIV

2, 21, 39
45.4
58.4



C. wrightii KASAI

7, 26, 44
43.2
53.6
















TABLE 7a







Fatty acid profile of wild-type Prototheca moriformis oil (area %).















C8:0
C10:0
C12:0
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3





0
0
0
2
38
4
48
5
1









Example 2: Screening KAS Genes in Combination with Cuphea hookeriana FATB Acyl-ACP Thioesterase


P. moriformis strains were constructed that express ChFATB2 acyl-ACP thioesterase together with a KAS gene selected from ten KASI, one KASIII and one mitochondrial KAS were cloned from seed oil genomes, codon optimized and introduced into Prototheca as described in Example 1. The KAS genes were fused to an HA epitope TAG at the c-terminus of each KAS to allow confirmation of protein expression.









TABLE 8







Mean C8:0-C10:0 fatty acid profiles derived from transformation of


FATB2-expressing microalgal strain with KASI-like


genes isolated from seed oil genomes.













SEQ ID







NOS:



(amino acid,



CDS, codon
C8:0
C10:0



optimized
(mean
(mean
Sum C8:0 +
C10/C8


KAS Gene
CDS)
area %)
area %)
C10:0
ratio
















C. avigera

16, 35, 53
8.0
21.4
29.3
2.7


KASIa



C. pulcherrima

17, 36, 54
7.7
20.3
28.0
2.6


KASI



C. avigera

NL, 37, 55
7.8
20.4
28.2
2.6


Mitochondrial


KAS



C. avigera

19, NL, 56
9.5
22.8
32.3
2.4


KAS III



C. paucipetala

9, 28, 46
7.9
22.5
30.3
2.9


KASIVb



C. ignea

10, 29, 47
6.6
18.7
25.4
2.8


KASIVb



C. painteri

13, 32, 50
9.0
22.4
31.4
2.5


KASIV



C. palustris

2, 21, 38
8.6
21.6
30.4
2.5


KASIVa



C. avigera

8, 27, 45
11.0
23.8
34.8
2.2


KASIVb



C. procumbens

11, 30, 48
8.2
25.8
34.0
3.2


KASIV



C. paucipetala

12, 31, 49
8.8
29.9
39.4
3.4


KASIVa



C. ignea

15, 34, 52
8.6
25.8
34.4
3.0


KASIVa



C avigera

14, 33, 51
10.0
23.0
32.9
2.3


KASIVa



C. hookeriana

59, NL, 61
14.5
27.81
42.6
3.0


KASIV









The parental strain is a stable microalgal strain expressing the C. hookeriana FATB2 under the control of the pH5-compatible PmUAPA1 promoter. The parental strain accumulates 27.8% C8:0-C10:0 with a C10/C8 ratio of 2.6. All transformants are derived from integrations of the KASI transgenes at the pLOOP locus of the parental strain. Means are calculated from at least 19 individual transformants for each KAS transgene (NL=not listed).


As can be seen from Table 8, expression of the following KAS genes significantly increased C8:0-C10:0 levels: C. avigera KASIVb (D3287), C. procumbens KASIV (D3290), C. paucipetala KASIVa (D3291), C. avigera KASIVa (D3293), and C. ignea KASIVa (D3294). Importantly, expression of the C. avigera KASIVb (D3287) augmented the accumulation of both C8:0 and C10:0 fatty acids, while only C10:0 levels were increased upon expression of D3290, D3291, D3293 and D3294. In some cases the sum of C8:0 and C10:0 fatty acids in the fatty acid profile was at least 30%, or at least 35% (area % by FAME-GC-FID). The midchain production far exceeded the negligible amount found in the wild-type oil (see Table 7a).


The mean C8/C10 ratios of Table 8 ranged from 2.2 to 3.4. The sum of mean C8 and C10 ranged from 25.4 to 39.4.


The highest C8:0 producing strain found was D3287, which combined C. avigera KASIV with C. hookeriana FATB2. The mean was 11.0% C8:0 with a range of 12.4 to 14.8. Thus, a cell oil with a fatty acid profile of greater than 14% C8 was produced. Furthermore, the C10/C8 ratio was less than 2.5.


Example 3: Identification of KAS Clades and Consensus Sequences

The newly identified sequences of KASI-like genes were compared to those in the ThYme database of thioester-active enzymes maintained by Iowa State University (enzyme.cbirc.iastate.edu) using the blast algorithm and the top hits were extracted. The top 50 BLAST hits were downloaded and a multiple alignment was created using ClustalW alignment algorithm and a phylogenetic tree (FIG. 1) was created using that alignment with the Jukes-Cantor Neighbor-Joining method. The new KASIV genes grouped together with only 4 ThYme KAS genes internal to that group out of the 50 possible. The total ThYme KAS sequences were reduced to 12 because nearly all ThYme KAS grouped away from the new KAS sequences. The ThYme sequences are only 222 residues while the new KASIV are approximately 555 residues in length including the targeting peptide.


Two new clades were identified Clade 1 and Clade 2, characterized by consensus SEQ ID NO: 69 and SEQ ID NO:70, which include transit peptides. The clades can also be characterized by the sequences of the mature consensus proteins SEQ ID NO: 71 and SEQ ID NO: 72, respectively. The KAS genes of Clade 1 are associated with production of elevated C8 and C10 fatty acids based on based on transformations in P. moriformis in combination with a FATB acyl-ACP thioesterase as in Example 2. The KAS genes of Clade 2 are associated with production of elevated C10 fatty acids based on transformations in P. moriformis in combination with a FATB acyl-ACP thioesterase as in Example 2.


Although the above discussion discloses various exemplary embodiments of the invention, it should be apparent that those skilled in the art can make various modifications that will achieve some of the advantages of the invention without departing from the true scope of the invention.












SEQUENCE LISTING
















Cuphea palustris FATB2 amino acid sequence 



(Genbank Accession No. AAC49180.1)


SEQ ID NO: 1


MVAAAASAAFFSVATPRTNISPSSLSVPFKPKSNHNGGFQVKANASA





HPKANGSAVSLKSGSLETQEDKTSSSSPPPRTFINQLPVWSMLLSAV





TTVFGVAEKQWPMLDRKSKRPDMLVEPLGVDRIVYDGVSFRQSFSIR





SYEIGADRTASIETLMNMFQETSLNHCKIIGLLNDGFGRTPEMCKRD





LIWVVTKMQIEVNRYPTWGDTIEVNTWVSASGKHGMGRDWLISDCHT





GEILIRATSVWAMMNQKTRRLSKIPYEVRQEIEPQFVDSAPVIVDDR





KFHKLDLKTGDSICNGLTPRWTDLDVNQHVNNVKYIGWILQSVPTEV





FETQELCGLTLEYRRECGRDSVLESVTAMDPSKEGDRSLYQHLLRLE





DGADIVKGRTEWRPKNAGAKGAILTGKTSNGNSIS





Amino acid sequence of the C. palustris KASIV 


(D3145 and D3295, pSZ4312). The algal transit


peptide is underlined.


SEQ ID NO: 2



MASAAFTMSACPAMTGRAPGARRSGRPVATRLRGSTFQCLVTSYIDP






CNQFSSSASLSFLGDNGFASLFGSKPFRSNRGHRRLGRASHSGEAMA





VALEPAQEVATKKKPLVKQRRVVVTGMGVVTPLGHEPDVYYNNLLDG





VSGISEIEAFDCTQFPTRIAGEIKSFSTDGWVAPKLSKRMDKFMLYL





LTAGKKALADGGITDDVMKELDKRKCGVLIGSGLGGMKLFSDSIEAL





RISYKKMNPFCVPFATTNMGSAMLAMDLGWMGPNYSISTACATSNFC





ILNSANHIVRGEADMMLCGGSDAVIIPIGLGGFVACRALSQRNNDPT





KASRPWDSNRDGFVMGEGAGVLLLEELEHAKKRGATIYAEFLGGSFT





CDAYHMTEPHPEGAGVILCIEKALAQAGVSREDVNYINAHATSTPAG





DIKEYQALAHCFGQNSELRVNSTKSMIGHLIGAAGGVEAVTVVQAIR





TGWIHPNLNLEDPDKAVDAKVLVGPKKERLNVKVGLSNSFGFGGHNS





SILFAPYN





Amino acid sequence of the C. camphora KASIV


(D3147, pSZ4338).


SEQ ID NO: 3



MAMMAGSCSNLVIGNRELGGNGPSLLHYNGLRPLENIQTASAVKKPN







GLFASSTARKSKAVRAMVLPTVTAPKREKDPKKRIVITGMGLVSVFG






NDIDTFYSKLLEGESGIGPIDRFDASSFSVRFAGQIHNFSSKGYIDG





KNDRRLDDCWRYCLVAGRRALEDANLGPEVLEKMDRSRIGVLIGTGM





GGLSAFSNGVESLIQKGYKKITPFFIPYSITNMGSALLAIDTGVMGP





NYSISTACATANYCFHAAANHIRRGEAEIMVTGGTEAAVSATGVGGF





IACRALSHRNDEPQTASRPWDKDRDGFVMGEGAGVLVMESLHHARKR





GANIIAEYLGGAVTCDAHHMTDPRADGLGVSSCITKSLEDAGVSPEE





VNYVNAHATSTLAGDLAEVNAIKKVFKDTSEMKMNGTKSMIGHCLGA





AGGLEAIATIKAINTGWLHPTINQFNIEPAVTIDTVPNVKKKHDIHV





GISNSFGFGGHNSVVVFAPFMP





Amino acid sequence of the C. camphora KASI


(D3148, pSZ4339).


SEQ ID NO: 4



MQILQTPSSSSSSLRMSSMESLSLTPKSLPLKTLLPLRPRPKNLSRR







KSQNPRPISSSSSPERETDPKKRVVITGMGLVSVFGNDVDAYYDRLL






SGESGIAPIDRFDASKFPTRFAGQIRGFTSDGYIDGKNDRRLDDCLR





YCIVSGKKALENAGLGPHLMDGKIDKERAGVLVGTGMGGLTVFSNGV





QTLHEKGYRKMTPFFIPYAITNMGSALLAIELGFMGPNYSISTACAT





SNYCFYAAANHIRRGEADLMLAGGTEAAIIPIGLGGFVACRALSQRN





DDPQTASRPWDKDRDGFVMGEGAGVLVMESLEHAMKRDAPIIAEYLG





GAVNCDAYHMTDPRADGLGVSTCIERSLEDAGVAPEEVNYINAHATS





TLAGDLAEVNAIKKVFTNTSEIKINATKSMIGHCLGAAGGLEAIATI





KAINTGWLHPSINQFNPEPSVEFDTVANKKQQHEVNVAISNSFGFGG





HNSVVVFSAFKP





Amino acid sequence of the U. californica KASI


(D3150, pSZ4341).


SEQ ID NO: 5



MESLSLTPKSLPLKTLLPFRPRPKNLSRRKSQNPKPISSSSSPERET






DPKKRVVITGMGLVSVFGNDVDAYYDRLLSGESGIAPIDRFDASKFP





TRFAGQIRGFTSDGYIDGKNDRRLDDCLRYCIVSGKKALENAGLGPD





LMDGKIDKERAGVLVGTGMGGLTVFSNGVQTLHEKGYRKMTPFFIPY





AITNMGSALLAIDLGFMGPNYSISTACATSNYCFYAAANHIRRGEAD





VMLAGGTEAAIIPIGLGGFVACRALSQRNDDPQTASRPWDKDRDGFV





MGEGAGVLVMESLEHAMKRDAPIIAEYLGGAVNCDAYHMTDPRADGL





GVSTCIERSLEDAGVAPEEVNYINAHATSTLAGDLAEVNAIKKVFTN





TSEIKINATKSMIGHCLGAAGGLEAIATIKAINTGWLHPSINQFNPE





PSVEFDTVANKKQQHEVNVAISNSFGFGGHNSVVVFSAFKP





Amino acid sequence of the U. californica KASIV


(D3152, pSZ4343).


SEQ ID NO: 6



MTQTLICPSSMETLSLTKQSHFRLRLPTPPHIRRGGGHRHPPPFISA






SAAPRRETDPKKRVVITGMGLVSVFGTNVDVYYDRLLAGESGVGTID





RFDASMFPTRFGGQIRRFTSEGYIDGKNDRRLDDYLRYCLVSGKKAI





ESAGFDLHNITNKIDKERAGILVGSGMGGLKVFSDGVESLIEKGYRK





ISPFFIPYMIPNNIGSALLGIDLGFMGPNYSISTACATSNYCIYAAA





NHIRQGDADLMVAGGTEAPIIPIGLGGFVACRALSTRNDDPQTASRP





WDIDRDGFVMGEGAGILVLESLEHAMKRDAPILAEYLGGAVNCDAHH





MTDPRADGLGVSTCIESSLEDAGVAAEEVNYINAHATSTPTGDLAEM





KAIKNVFRNTSEIKINATKSMIGHCLGASGGLEAIATLKAITTGWLH





PTINQFNPEPSVDFDTVAKKKKQHEVNVAISNSFGFGGHNSVLVFSA





FKP





Amino acid sequence of the C. wrightii KASAI


(D3153, pSZ4379). The algal transit peptide is


underlined.


SEQ ID NO: 7



MASAAFTMSACPAMTGRAPGARRSGRPVATRLRYVFQCLVASCIDPC






DQYRSSASLSFLGDNGFASLFGSKPFMSNRGHRRLRRASHSGEAMAV





ALQPAQEAGTKKKPVIKQRRVVVTGMGVVTPLGHEPDVFYNNLLDGV





SGISEIETFDCTQFPTRIAGEIKSFSTDGWVAPKLSKRMDKFMLYLL





TAGKKALADGGITDEVMKELDKRKCGVLIGSGMGGMKVFNDAIEALR





VSYKKMNPFCVPFATTNMGSAMLAMDLGWMGPNYSISTACATSNFCI





LNAANHIIRGEADMMLCGGSDAVIIPIGLGGFVACRALSQRNSDPTK





ASRPWDSNRDGFVMGEGAGVLLLEELEHAKKRGATIYAEFLGGSFTC





DAYHMTEPHPEGAGVILCIEKALAQAGVSKEDVNYINAHATSTSAGD





IKEYQALARCFGQNSELRVNSTKSMIGHLLGAAGGVEAVTVVQAIRT





GWIHPNLNLEDPDKAVDAKLLVGPKKERLNVKVGLSNSFGFGGHNSS





ILFAPCNV





Amino acid sequence of the C. avigera KASIVb


(D3287, pSZ4453).


SEQ ID NO: 8



MASAAFTMSACPAMTGRAPGARRSGRPVATRLRGSTFQCYIGDNGFG






SKPPRSNRGHLRLGRTSHSGEVMAVAMQSAQEVSTKEKPATKQRRVV





VTGMGVVTALGHDPDVYYNNLLDGVSGISEIENFDCSQLPTRIAGEI





KSFSADGWVAPKFSRRMDKFMLYILTAGKKALVDGGITEDVMKELDK





RKCGVLIGSGLGGMKVFSESIEALRTSYKKISPFCVPFSTTNIVIGS





AILAMDLGWMGPNYSISTACATSNFCILNAANHITKGEADMMLCGGS





DSVILPIGMGGFVACRALSQRNNDPTKASRPWDSNRDGFVMGEGAGV





LLLEELEHAKKRGATIYAEFLGGSFTCDAYHMTEPHPEGAGVILCIE





KALAQSGVSREDVNYINAHATSTPAGDIKEYQALAHCFGQNSELRVN





STKSMIGHLLGGAGGVEAVTVVQAIRTGWIHPNINLDDPDEGVDAKL





LVGPKKEKLKVKVGLSNSFGFGGHNSSILFAPCN





Amino acid sequence of the C. paucipetala


KASIVb (D3288, pSZ4454).


SEQ ID NO: 9



MASAAFTMSACPAMTGRAPGARRSGRPVATRLRGSTFQCLGDIGFAS






LIGSKPPRSNRNHRRLGRTSHSGEVMAVAMQPAHEASTKNKPVTKQR





RVVVTGMGVATPLGHDPDVYYNNLLDGVSGISQIENFDCTQFPTRIA





GEIKSFSTEGYVIPKFAKRMDKFMLYLLTAGKKALEDGGITEDVMKE





LDKRKCGVLIGSGMGGMKIINDSIAALNVSYKKMTPFCVPFSTTNMG





SAMLAIDLGWMGPNYSISTACATSNYCILNAANHIVRGEADMMLCGG





SDAVIIPVGLGGFVACRALSQRNNDPTKASRPWDSNRDGFVMGEGAG





VLLLEELEHAKKRGATIYAEFLGGSFTCDAYHMTEPHPDGAGVILCI





EKALAQSGVSREDVNYINAHATSTPAGDIKEYQALAHCFGQNSELRV





NSTKSMIGHLLGAAGGVEAVTVVQAIRTGWIHPNINLENPDEAVDAK





LLVGPKKEKLKVKVGLSNSFGFGGHNSSILFAPYN





Amino acid sequence of the C. ignea KASIVb


(D3289, pSZ4455). The algal transit peptide is


underlined.


SEQ ID NO: 10



MASAAFTMSACPAMTGRAPGARRSGRPVATRLRGSTSQCLVTSYID






PCNKYCSSASLSFLGDNGFASLFGSKPFRSNRGHRRLGRASHSGEA





MAVALQPAQEVTTKKKPVIKQRRVVVTGMGVVTPLGHEPDVYYNNL





LDGVSGISEIETFDCTQFPTRIAGEIKSFSTDGWVAPKLSKRMDKF





MLYLLTAGKKALADGGITDDVMKELDKRKCGVLIGSGMGGMKLFND





SIEALRISYKKMNPFCVPFATTNMGSAMLAMDLGWMGPNYSISTAC





ATSNFCILNASNHIVRGEADMMLCGGSDSVTVPLGVGGFVACRALS





QRNNDPTKASRPWDSNRDGFVMGEGAGVLLLEELEHAKKRGATIYA





EFLGGSFTSDAYHMTEPHPEGAGVILCIEKALAQSGVSREDVNYIN





AHATSTPAGDIKEYQALARCFGQNSELRVNSTKSMIGHLLGAAGGV





EAVAVIQAIRTGWIHPNINLEDPDEAVDPKLLVGPKKEKLKVKVAL





SNSFGFGGHNSSILFAPCN





Amino acid sequence of the C. procumbens KASIV


(D3290, pSZ4456). The algal transit peptide is


underlined.


SEQ ID NO: 11



MASAAFTMSACPAMTGRAPGARRSGRPVATRLRGSTFQCLVTSHND






PCNQYCSSASLSFLGDNGFGSKPFRSNRGHRRLGRASHSGEAMAVA





LQPAQEVATKKKPAMKQRRVVVTGMGVVTPLGHEPDVYYNNLLDGV





SGISEIETFDCTQFPTRIAGEIKSFSTDGWVAPKLSKRMDKFMLYL





LTAGKKALADGGITDDVMKELDKRKCGVLIGSGMGGMKLFNDSIEA





LRVSYKKMNPFCVPFATTNMGSAMLAMDLGWMGPNYSISTACATSN





FCILNAANHIVRGEADMMLCGGSDAVIIPIGLGGFVACRALSQRNN





DPTKASRPWDSNRDGFVMGEGAGVLLLEELEHAKKRGATIYAEFLG





GSFTCDAYHMTEPHPEGAGVILCIEKALAQSGVSREDVNYINAHAT





STPAGDIKEYQALAHCFGQNSELRVNSTKSMIGHLLGAAGGVEAVT





VIQAIRTGWIHPNLNLEDPDKAVDAKFLVGPKKERLNVKVGLSNSF





GFGGHNSSILFAPCN





Amino acid sequence of the C. paucipetala


KASIVa (D3291, pSZ4457). The algal transit


peptide is underlined.


SEQ ID NO: 12



MASAAFTMSACPAMTGRAPGARRSGRPVATRLRGSTFQCLVNSHID






PCNQNVSSASLSFLGDNGFGSNPFRSNRGHRRLGRASHSGEAMAVA





LQPAQEVATKKKPAIKQRRVVVTGMGVVTPLGHEPDVFYNNLLDGV





SGISEIETFDCTQFPTRIAGEIKSFSTDGWVAPKLSKRMDKFMLYL





LTAGKKALADAGITEDVMKELDKRKCGVLIGSGMGGMKLFNDSIEA





LRVSYKKMNPFCVPFATTNMGSAMLAMDLGWMGPNYSISTACATSN





FCILNAANHIIRGEADMMLCGGSDAVIIPIGLGGFVACRALSQRNS





DPTKASRPWDSNRDGFVMGEGAGVLLLEELEHAKKRGATIYAEFLG





GSFTCDAYHMTEPHPDGAGVILCIEKALAQSGVSREDVNYINAHAT





STPAGDIKEYQALAHCFGQNSELRVNSTKSMIGHLLGAAGGVEAVT





VIQAIRTGWIHPNLNLEDPDEAVDAKFLVGPKKERLNVKVGLSNSF





GFGGHNSSILFAPYN





Amino acid sequence of the C. painteri KASIV


(D3292, pSZ4458). The algal transit peptide


is underlined.


SEQ ID NO: 13



MASAAFTMSACPAMTGRAPGARRSGRPVATRLRGSTPQCLDPCNQH






CFLGDNGFASLIGSKPPRSNLGHLRLGRTSHSGEVMAVAQEVSTNK





KHATKQRRVVVTGMGVVTPLGHDPDVYYNNLLEGVSGISEIENFDC





SQLPTRIAGEIKSFSTDGLVAPKLSKRMDKFMLYILTAGKKALADG





GITEDVMKELDKRKCGVLIGSGLGGMKVFSDSVEALRISYKKISPF





CVPFSTTNMGSAMLAMDLGWMGPNYSISTACATSNFCILNAANHIT





KGEADMMLCGGSDAAILPIGMGGFVACRALSQRNNDPTKASRPWDS





NRDGFVMGEGAGVLLLEELEHAKKRGATIYAEFLGGSFTCDAYHMT





EPHPDGAGVILCIEKALAQSGVSREEVNYINAHATSTPAGDIKEYQ





ALAHCFGQNSELRVNSTKSMIGHLLGGAGGVEAVTVVQAIRTGWIH





PNINLEDPDKGVDAKLLVGPKKEKLKVKVGLSNSFGFGGHNSSILF





APCN





Amino acid sequence of the C. avigera KASIVa


(D3293, pSZ4459). The algal transit peptide


is underlined.


SEQ ID NO: 14



MASAAFTMSACPAMTGRAPGARRSGRPVATRLRGSTFQCLVTSYND






PCEQYRSSASLSFLGDNGFASLFGSKPFRSNRGHRRLGRASHSGEA





MAVALQPAQEVGTKKKPVIKQRRVVVTGMGVVTPLGHEPDVYYNNL





LDGVSGISEIETFDCTQFPTRIAGEIKSFSTDGWVAPKLSKRMDKF





MLYLLTAGKKALADGGITDDVMKELDKRKCGVLIGSGLGGMKVFSE





SIEALRTSYKKISPFCVPFSTTNMGSAILAMDLGWMGPNYSISTAC





ATSNFCILNAANHITKGEADMMLCGGSDSVILPIGMGGFVACRALS





QRNNDPTKASRPWDSNRDGFVMGEGAGVLLLEELEHAKKRGATIYA





EFLGGSFTCDAYHMTEPHPEGAGVILCIEKALAQSGVSREDVNYIN





AHATSTPAGDIKEYQALAHCFGQNSELRVNSTKSMIGHLLGGAGGV





EAVTVVQAIRTGWIHPNINLDDPDEGVDAKLLVGPKKEKLKVKVGL





SNSFGFGGHNSSILFAPCN





Amino acid sequence of the C. ignea KASIVa


(D3294, pSZ4460). The algal transit peptide is


underlined.


SEQ ID NO: 15



MASAAFTMSACPAMTGRAPGARRSGRPVATRLRGSTSQCLVTSYID






PCNKYCSSASLSFLGDNGFASLFGSKPFRSNRGHRRLGRASHSGEA





MAVALQPAQEVTTKKKPVIKQRRVVVTGMGVVTPLGHEPDVYYNNL





LDGVSGISEIETFDCTQFPTRIAGEIKSFSTDGWVAPKLSKRMDKF





MLYLLTAGKKALADGGITDDVMKELDKRKCGVLIGSGMGGMKLFND





SIEALRISYKKMNPFCVPFATTNMGSAMLAMDLGWMGPNYSISTAC





ATSNFCILNASNHIVRGEADMMLCGGSDAVIIPIGLGGFVACRALS





QRNNDPTKASRPWDSNRDGFVMGEGAGVLLLEELEHAKKRGATIYA





EFLGGSFTCDAYHMTEPHPEGAGVILCIEKALAQAGVSKEDVNYIN





AHATSTPAGDIKEYQALAQCFGQNSELRVNSTKSMIGHLLGAAGGV





EAVTVVQAIRTGWIHPNLNLEDPDKAVDAKLLVGPKKERLNVKVGL





SNSFGFGGHNSSILFAPYN





Amino acid sequence of the C. avigera KASIa


(D3342, pSZ4511).


SEQ ID NO: 16



MQSLHSPALRASPLDPLRLKSSANGPSSTAAFRPLRRATLPNIRAA






SPTVSAPKRETDPKKRVVITGMGLVSVFGSDVDAYYEKLLSGESGI





SLIDRFDASKFPTRFGGQIRGFNATGYIDGKNDRRLDDCLRYCIVA





GKKALENSDLGGDSLSKIDKERAGVLVGTGMGGLTVFSDGVQNLIE





KGHRKISPFFIPYAITNMGSALLAIDLGLMGPNYSISTACATSNYC





FYAAANHIRRGEADLMIAGGTEAAIIPIGLGGFVACRALSQRNDDP





QTASRPWDKDRDGFVMGEGAGVLVMESLEHAMKRGAPIIAEYLGGA





VNCDAYHMTDPRADGLGVSSCIESSLEDAGVSPEEVNYINAHATST





LAGDLAEINAIKKVFKNTKDIKINATKSMIGHCLGASGGLEAIATI





KGITTGWLHPSINQFNPEPSVEFDTVANKKQQHEVNVAISNSFGFG





GHNSVVAFSAFKP





Amino acid sequence of the C. pulcherima KASI


(D3343, pSZ4512).


SEQ ID NO: 17



MHSLQSPSLRASPLDPFRPKSSTVRPLHRASIPNVRAASPTVSAPK






RETDPKKRVVITGMGLVSVFGSDVDAYYDKLLSGESGIGPIDRFDA





SKFPTRFGGQIRGFNSMGYIDGKNDRRLDDCLRYCIVAGKKSLEDA





DLGADRLSKIDKERAGVLVGTGMGGLTVFSDGVQSLIEKGHRKITP





FFIPYAITNMGSALLAIELGLMGPNYSISTACATSNYCFHAAANHI





RRGEADLMIAGGTEAAIIPIGLGGFVACRALSQRNDDPQTASRPWD





KDRDGFVMGEGAGVLVLESLEHAMKRGAPIIAEYLGGAINCDAYHM





TDPRADGLGVSSCIESSLEDAGVSPEEVNYINAHATSTLAGDLAEI





NAIKKVFKNTKDIKINATKSMIGHCLGASGGLEAIATIKGINTGWL





HPSINQFNPEPSVEFDTVANKKQQHEVNVAISNSFGFGGHNSVVAF





SAFKP





Amino acid sequence of the C. avigera


mitochondrial KAS (D3344, pSZ4513).


SEQ ID NO: 18



MVFLPWRKMLCPSQYRFLRPLSSSTTFDPRRVVVTGLGMVTPLGCG






VNTTWKQLIEGKCGIRAISLEDLKMDAFDIDTQAYVFDQLTSKVAA





TVPTGVNPGEFNEDLWFNQKEHRAIARFIAYALCAADEALKDANWE





PTEPEEREMTGVSIGGGTGSISDVLDAGRMICEKKLRRLSPFFIPR





ILINMASGHVSMKYGFQGPNHAAVTACATGAHSIGDAARMIQFGDA





DVMVAGGTESSIDALSIAGFCRSRALTTKYNSCPQEASRPFDTDRD





GFVIGEGSGVLVLEELDHARKRGAKMYAEFCGYGMSGDAHHITQPH





SDGRGAILAMTRALKQSNLHPDQVDYVNAHATSTSLGDAIEAKAIK





TVFSDHAMSGSLALSSTKGAIGHLLGAAGAVEAIFSILAIKNGLAP





LTLNVARPDPVFTERFVPLTASKEMHVRAALSNSFGFGGTNTTLLF





TSPPQN





Amino acid sequence of the C. avigera KASIII


(D3345, pSZ4514).


SEQ ID NO: 19



MANAYGFVGSSVPTVGRAAQFQQMGSGFCSVDFISKRVFCCSAVQG






ADKPASGDSRAEYRTPRLVSRGCKLIGSGSAIPTLQVSNDDLAKIV





DTNDEWISVRTGIRNRRVLTGKDSLTNLATEAARKALEMAQVDAED





VDMVLMCTSTPEDLFGSAPQIQKALGCKKNPLSYDITAACSGFVLG





LVSAACHIRGGGFNNVLVIGADSLSRYVDWTDRGTCILFGDAAGAV





LVQSCDAEEDGLFAFDLHSDGDGQRHLRAVITENETDHAVGTNGSV





SDFPPRRSSYSCIQMNGKEVFRFACRSVPQSIELALGKAGLNGSNI





DWLLLHQANQRIIDAVATRLEVPQERVISNLANYGNTSAASIPLAL





DEAVRGGKVKPGHLIATAGFGAGLTWGSAIVRWG





HA Epitope TAG amino acid sequence


SEQ ID NO: 20


TMYPYDVPDYA






C. palustris KASIV CDS



SEQ ID NO: 21


ATGGCGGCCGCCGCTTCCATGGTTGCGTCCCCACTCTGTACGTGGC





TCGTAGCCGCTTGCATGTCCACTTCCTTCGACAACGACCCACGTTC





CCCGTCCATCAAGCGTCTCCCCCGCCGGAGGAGGACTCTCTCCCAA





TCCTCCCTCCGCGGCGGATCCACCTTCCAATGCCTCGTCACCTCAT





ACATCGACCCTTGCAATCAGTTCTCCTCCTCCGCCTCCCTTAGCTT





CCTCGGGGATAACGGATTCGCATCCCTTTTCGGATCCAAGCCTTTC





CGGTCCAATCGCGGCCACCGGAGGCTCGGCCGTGCTTCCCATTCCG





GGGAGGCCATGGCCGTGGCTTTGGAACCTGCACAGGAAGTCGCCAC





GAAGAAGAAACCTCTTGTCAAGCAAAGGCGAGTAGTTGTTACAGGA





ATGGGCGTGGTGACTCCTCTAGGCCATGAACCTGATGTTTACTACA





ACAATCTCCTAGATGGAGTAAGCGGCATAAGTGAGATAGAGGCCTT





CGACTGCACTCAGTTTCCCACGAGAATTGCCGGAGAGATCAAGTCT





TTTTCCACAGATGGATGGGTGGCCCCAAAGCTCTCCAAGAGGATGG





ACAAGTTCATGCTTTACTTGTTGACTGCTGGCAAGAAAGCATTAGC





GGATGGTGGAATCACCGATGATGTGATGAAAGAGCTTGATAAAAGA





AAGTGTGGAGTTCTCATTGGCTCCGGATTGGGCGGCATGAAGCTGT





TCAGTGATTCCATTGAAGCTCTGAGGATTTCATATAAGAAGATGAA





TCCCTTTTGTGTACCTTTTGCTACTACAAATATGGGATCAGCTATG





CTTGCAATGGACTTGGGATGGATGGGTCCTAACTACTCGATATCAA





CTGCCTGTGCTACAAGTAATTTCTGTATACTGAATTCTGCAAATCA





CATAGTCAGAGGCGAAGCTGACATGATGCTTTGTGGTGGCTCGGAT





GCGGTCATTATACCTATTGGTTTGGGAGGTTTTGTGGCGTGCCGAG





CTTTGTCACAGAGGAATAATGACCCTACCAAAGCTTCGAGACCATG





GGACAGTAATCGTGATGGATTTGTAATGGGCGAAGGAGCTGGAGTG





TTACTTCTCGAGGAGTTAGAGCATGCAAAGAAAAGAGGTGCCACCA





TTTATGCGGAATTTTTAGGGGGCAGTTTCACTTGCGATGCCTACCA





TATGACCGAGCCTCACCCTGAAGGTGCTGGAGTGATCCTCTGCATA





GAGAAGGCCTTGGCTCAGGCCGGAGTCTCTAGAGAAGACGTAAATT





ACATAAATGCGCATGCAACTTCCACTCCTGCTGGAGATATCAAGGA





ATACCAAGCTCTCGCACACTGCTTCGGCCAAAACAGTGAGCTGAGA





GTGAATTCCACTAAATCGATGATCGGTCATCTTATTGGAGCAGCTG





GTGGTGTAGAAGCAGTTACCGTAGTTCAGGCGATAAGGACTGGGTG





GATCCATCCAAATCTTAATTTGGAGGACCCGGACAAAGCCGTGGAT





GCAAAAGTGCTCGTAGGACCTAAGAAGGAGAGACTAAATGTCAAGG





TCGGTTTGTCCAATTCATTTGGGTTCGGTGGTCATAACTCGTCCAT





ACTCTTCGCCCCTTACAATTAG






C. camphora KASIV CDS



SEQ ID NO: 22


ATGGCAATGATGGCAGGTTCTTGTTCCAATTTGGTGATTGGAAACA





GAGAATTGGGTGGGAATGGGCCTTCTTTGCTTCACTACAATGGCCT





CAGACCATTGGAAAATATTCAAACAGCCTCAGCTGTGAAAAAGCCA





AATGGGTTATTTGCATCTTCTACAGCTCGAAAATCCAAAGCTGTCA





GAGCCATGGTATTGCCCACTGTAACAGCTCCAAAACGCGAAAAAGA





TCCCAAGAAGCGGATTGTAATAACAGGAATGGGCCTGGTTTCCGTC





TTTGGAAATGACATTGATACATTTTATAGTAAACTACTGGAAGGAG





AGAGCGGGATTGGCCCAATCGACAGATTTGATGCTTCTTCCTTCTC





AGTGAGATTTGCTGGTCAGATTCACAATTTCTCATCCAAAGGATAC





ATTGATGGGAAGAATGATCGTCGGCTAGATGACTGCTGGAGGTATT





GCCTTGTGGCTGGAAGAAGAGCCCTTGAAGATGCCAATCTTGGACC





AGAGGTATTGGAAAAAATGGACCGATCTCGAATAGGGGTGCTGATA





GGGACAGGAATGGGTGGGTTGTCAGCCTTTAGCAATGGAGTTGAGT





CTCTGATCCAGAAGGGCTACAAGAAAATCACTCCATTTTTTATTCC





TTACTCCATCACCAATATGGGCTCTGCTCTTTTAGCAATCGACACG





GGCGTAATGGGACCAAACTACTCCATTTCAACAGCATGTGCAACCG





CAAACTATTGCTTCCATGCTGCTGCAAATCATATAAGAAGGGGTGA





AGCTGAAATCATGGTGACTGGAGGGACAGAGGCAGCAGTCTCAGCT





ACTGGAGTTGGCGGATTCATAGCATGTAGAGCCTTATCGCACAGGA





ATGATGAGCCCCAGACGGCCTCGAGACCATGGGATAAAGATCGGGA





TGGTTTCGTCATGGGCGAAGGCGCTGGTGTGCTGGTGATGGAGAGC





TTGCATCATGCAAGAAAGAGAGGAGCAAACATAATTGCAGAGTATT





TAGGAGGAGCAGTAACATGTGATGCACATCACATGACAGATCCTCG





AGCTGATGGTCTCGGGGTTTCTTCTTGCATAACCAAGAGCTTAGAA





GATGCAGGAGTCTCCCCAGAAGAGGTGAACTATGTGAATGCTCATG





CAACATCAACACTTGCAGGAGATTTAGCAGAGGTTAATGCCATAAA





GAAGGTCTTCAAGGACACATCTGAAATGAAAATGAATGGAACTAAG





TCAATGATTGGACACTGTCTTGGAGCAGCTGGTGGATTAGAAGCCA





TTGCGACCATCAAAGCTATCAATACTGGCTGGCTACATCCAACCAT





CAATCAATTTAACATAGAACCAGCGGTAACTATCGACACGGTCCCA





AATGTGAAGAAAAAGCATGATATCCATGTTGGCATCTCTAACTCAT





TTGGCTTTGGTGGGCACAACTCGGTGGTCGTTTTTGCTCCCTTCAT





GCCATGA






C. camphora KASI CDS



SEQ ID NO: 23


ATGCAAATCCTCCAAACCCCATCATCATCATCGTCTTCTCTCCGCA





TGTCGTCCATGGAATCTCTCTCTCTCACCCCTAAATCTCTCCCTCT





CAAAACCCTTCTTCCCCTTCGTCCTCGCCCTAAAAACCTCTCCAGA





CGCAAATCCCAAAACCCTAGACCCATCTCCTCCTCTTCCTCCCCCG





AGAGAGAGACGGATCCCAAGAAGCGAGTCGTCATCACCGGGATGGG





CCTCGTCTCCGTCTTCGGCAACGATGTCGATGCCTACTACGACCGC





CTCCTCTCGGGAGAGAGCGGCATCGCCCCCATCGATCGCTTCGACG





CCTCCAAGTTCCCCACCAGATTCGCCGGTCAGATCCGAGGGTTCAC





CTCCGACGGCTACATTGACGGGAAGAACGACCGCCGGTTAGACGAT





TGTCTCAGATACTGTATTGTTAGTGGGAAGAAGGCGCTCGAGAATG





CCGGCCTCGGACCCCATCTCATGGACGGAAAGATTGACAAGGAGAG





AGCTGGTGTGCTTGTCGGGACAGGCATGGGTGGTCTTACAGTTTTC





TCTAATGGGGTCCAGACTCTACATGAGAAAGGTTACAGGAAAATGA





CTCCGTTTTTCATCCCTTATGCCATAACAAACATGGGTTCTGCCTT





GCTTGCAATTGAACTTGGTTTTATGGGCCCAAACTATTCTATCTCA





ACTGCATGTGCTACCTCCAATTATTGCTTTTATGCTGCTGCTAACC





ATATACGGAGAGGTGAGGCTGATCTGATGCTTGCTGGTGGAACTGA





AGCTGCAATTATTCCTATTGGATTAGGAGGCTTTGTTGCATGTAGA





GCTTTATCACAGAGAAATGATGACCCCCAGACAGCTTCAAGACCAT





GGGACAAAGATCGAGACGGTTTTGTTATGGGTGAAGGTGCTGGAGT





ATTGGTAATGGAGAGCTTGGAGCATGCTATGAAACGTGATGCACCA





ATTATTGCTGAGTATTTAGGAGGTGCAGTGAACTGTGATGCGTATC





ATATGACGGATCCTAGAGCTGATGGGCTCGGGGTTTCAACATGCAT





AGAAAGAAGTCTTGAAGATGCTGGTGTGGCACCTGAAGAGGTTAAC





TACATAAATGCACATGCAACTTCCACTCTTGCAGGAGACCTGGCTG





AGGTGAATGCGATCAAAAAGGTTTTTACAAACACTTCAGAGATCAA





AATCAATGCAACCAAGTCTATGATAGGGCACTGCCTTGGAGCGGCC





GGGGGGTTAGAAGCCATTGCCACAATCAAAGCAATAAATACTGGTT





GGCTGCACCCTTCTATAAACCAATTTAATCCAGAGCCCTCTGTTGA





GTTTGACACTGTAGCAAATAAAAAGCAGCAGCATGAAGTGAATGTT





GCCATTTCCAACTCTTTCGGGTTTGGCGGACACAACTCAGTCGTGG





TGTTTTCGGCATTCAAGCCTTGA






Umbellularia californica KASI CDS



SEQ ID NO: 24


ATGGAATCTCTCTCTCTCACCCCTAAATCTCTCCCTCTCAAAACCC





TTCTTCCCTTTCGTCCTCGCCCTAAAAACCTCTCCAGACGCAAATC





CCAAAACCCTAAACCCATCTCCTCCTCTTCCTCCCCGGAGAGAGAG





ACGGATCCCAAGAAGCGAGTCGTCATCACCGGGATGGGCCTCGTCT





CCGTCTTCGGCAACGACGTCGATGCCTACTACGACCGCCTCCTCTC





CGGAGAGAGCGGCATCGCCCCCATCGATCGCTTCGACGCCTCCAAG





TTCCCCACCAGATTCGCCGGTCAGATCCGAGGGTTCACCTCCGACG





GCTACATTGACGGGAAGAACGACCGCCGGTTAGACGATTGTCTCAG





ATACTGTATCGTTAGTGGGAAGAAGGCGCTCGAGAATGCCGGCCTC





GGACCCGATCTCATGGACGGAAAGATTGACAAGGAGCGAGCTGGTG





TGCTTGTCGGGACAGGCATGGGTGGTCTTACAGTTTTCTCTAATGG





GGTTCAGACTCTCCATGAGAAAGGTTACAGGAAAATGACTCCGTTT





TTCATCCCTTATGCCATAACAAACATGGGTTCTGCCTTGCTTGCAA





TTGACCTTGGTTTTATGGGCCCAAACTATTCTATCTCAACTGCATG





TGCTACCTCCAATTATTGCTTTTATGCTGCTGCTAACCATATACGG





AGAGGTGAGGCTGATGTGATGCTTGCTGGTGGAACTGAAGCTGCAA





TTATTCCTATTGGCTTAGGAGGCTTTGTTGCATGTAGAGCTTTATC





ACAGCGAAATGATGACCCCCAGACAGCTTCAAGACCATGGGACAAA





GATCGAGACGGTTTTGTTATGGGTGAAGGTGCTGGAGTATTGGTAA





TGGAGAGCTTGGAGCATGCTATGAAACGTGATGCACCAATTATTGC





TGAGTATTTAGGAGGTGCAGTGAACTGTGATGCGTATCATATGACG





GATCCTAGAGCTGATGGGCTCGGGGTTTCAACATGCATAGAAAGAA





GTCTTGAAGATGCTGGTGTGGCACCTGAAGAGGTTAACTACATAAA





TGCACATGCAACTTCCACACTTGCAGGTGACCTGGCCGAGGTGAAT





GCCATCAAAAAGGTTTTTACAAACACTTCAGAGATCAAAATCAATG





CAACCAAGTCTATGATAGGGCACTGCCTTGGAGCGGCCGGGGGTTT





AGAAGCCATTGCCACAATCAAAGCAATAAATACTGGTTGGCTGCAC





CCTTCTATAAACCAATTTAATCCAGAGCCCTCTGTTGAGTTTGACA





CTGTAGCAAATAAAAAGCAGCAGCATGAAGTGAATGTTGCCATTTC





CAACTCTTTCGGGTTTGGTGGACACAACTCGGTCGTGGTGTTTTCG





GCATTCAAGCCTTGA






Umbellularia californica KASIV CDS



SEQ ID NO: 25


ATGACGCAAACCCTCATCTGCCCATCCTCCATGGAAACCCTCTCTC





TTACCAAACAATCCCATTTCAGACTCAGGCTACCCACTCCTCCTCA





CATCAGACGCGGCGGCGGCCATCGCCATCCTCCTCCCTTCATCTCC





GCCTCCGCCGCCCCTAGGAGAGAGACCGATCCGAAGAAGAGAGTCG





TCATCACGGGAATGGGCCTCGTCTCCGTCTTCGGCACCAACGTCGA





TGTCTACTACGATCGCCTCCTCGCCGGCGAGAGCGGCGTTGGCACT





ATCGATCGCTTCGACGCGTCGATGTTCCCGACGAGATTCGGCGGCC





AGATCCGGAGGTTCACGTCGGAGGGGTACATCGACGGGAAGAACGA





CCGGCGGCTGGATGACTACCTCCGGTACTGCCTCGTCAGCGGGAAG





AAGGCGATCGAGAGTGCTGGCTTCGATCTCCATAACATCACCAACA





AGATTGACAAGGAGCGAGCTGGGATACTTGTTGGGTCAGGCATGGG





CGGTCTTAAAGTTTTCTCTGATGGTGTTGAGTCTCTTATCGAGAAA





GGTTACAGGAAAATAAGTCCATTTTTCATCCCTTATATGATACCAA





ACATGGGTTCTGCTTTGCTTGGAATTGACCTTGGTTTCATGGGACC





AAACTACTCAATTTCAACTGCTTGTGCTACGTCAAATTATTGCATT





TATGCTGCTGCAAATCATATCCGACAAGGTGATGCCGACCTAATGG





TTGCTGGTGGAACTGAGGCTCCAATTATTCCAATTGGCTTAGGGGG





CTTTGTAGCATGTAGAGCTTTGTCAACAAGAAATGATGATCCCCAG





ACAGCTTCAAGGCCATGGGACATAGACCGAGATGGTTTTGTTATGG





GCGAAGGAGCTGGAATATTGGTATTGGAGAGCTTGGAACATGCAAT





GAAACGTGATGCACCAATTCTTGCTGAGTATTTAGGAGGTGCAGTT





AACTGTGATGCTCATCATATGACAGATCCTCGAGCTGATGGGCTTG





GGGTTTCAACATGCATTGAAAGCAGTCTTGAAGATGCCGGCGTGGC





AGCAGAAGAGGTTAACTATATAAATGCACACGCGACTTCAACACCT





ACAGGTGACCTGGCTGAGATGAAGGCTATAAAAAATGTATTTAGGA





ACACTTCTGAGATCAAAATCAATGCAACCAAGTCTATGATTGGGCA





TTGCCTTGGAGCGTCTGGGGGGCTAGAAGCCATTGCCACATTGAAA





GCGATTACAACTGGTTGGCTTCATCCAACTATAAACCAATTTAATC





CAGAGCCTTCTGTTGACTTTGATACGGTGGCAAAGAAAAAGAAGCA





GCATGAAGTTAATGTTGCCATTTCAAACTCTTTTGGATTCGGAGGA





CACAACTCAGTGTTGGTGTTTTCGGCATTCAAGCCTTGA






C. wrightii KASAI CDS (D3153, pSZ4379)



SEQ ID NO: 26


atggcttccgcggcattcaccatgtcggcgtgccccgcgatgactg





gcagggcccctggggcacgtcgctccggacggccagtcgccacccg





cctgaggtacgtattccagtgcctggtggccagctgcatcgacccc





tgcgaccagtaccgcagcagcgccagcctgagcttcctgggcgaca





acggatcgccagcctgttcggcagcaagccatcatgagcaaccgcg





gccaccgccgcctgcgccgcgccagccacagcggcgaggccatggc





cgtggccctgcagcccgcccaggaggccggcaccaagaagaagccc





gtgatcaagcagcgccgcgtggtggtgaccggcatgggcgtggtga





cccccctgggccacgagcccgacgtgttctacaacaacctgctgga





cggcgtgagcggcatcagcgagatcgagaccttcgactgcacccag





ttccccacccgcatcgccggcgagatcaagagcttcagcaccgacg





gctgggtggcccccaagctgagcaagcgcatggacaagttcatgct





gtacctgctgaccgccggcaagaaggccctggccgacggcggcatc





accgacgaggtgatgaaggagctggacaagcgcaagtgcggcgtgc





tgatcggcagcggcatgggcggcatgaaggtgttcaacgacgccat





cgaggccctgcgcgtgagctacaagaagatgaaccccttctgcgtg





cccttcgccaccaccaacatgggcagcgccatgctggccatggacc





tgggctggatgggccccaactacagcatcagcaccgcctgcgccac





cagcaacttctgcatcctgaacgccgccaaccacatcatccgcggc





gaggccgacatgatgctgtgcggcggcagcgacgccgtgatcatcc





ccatcggcctgggcggcttcgtggcctgccgcgccctgagccagcg





caacagcgaccccaccaaggccagccgcccctgggacagcaaccgc





gacggcttcgtgatgggcgagggcgccggcgtgctgctgctggagg





agctggagcacgccaagaagcgcggcgccaccatctacgccgagtt





cctgggcggcagatcacctgcgacgcctaccacatgaccgagcccc





accccgagggcgccggcgtgatcctgtgcatcgagaaggccctggc





ccaggccggcgtgagcaaggaggacgtgaactacatcaacgcccac





gccaccagcaccagcgccggcgacatcaaggagtaccaggccctgg





cccgctgatcggccagaacagcgagctgcgcgtgaacagcaccaag





agcatgatcggccacctgctgggcgccgccggcggcgtggaggccg





tgaccgtggtgcaggccatccgcaccggctggattcaccccaacct





gaacctggaggaccccgacaaggccgtggacgccaagctgctggtg





ggccccaagaaggagcgcctgaacgtgaaggtgggcctgagcaaca





gatcggatcggcggccacaacagcagcatcctgttcgccccctgca





acgtgtga






C. avigera KASIVb CDS



SEQ ID NO: 27


ATGGCGGCCGCTTCTTGCATGGCTGCGTCCCCTTTCTGTACGTCGC





TCGTGGCTGCATGCATGTCGACTTCATCCGACAACGACCCATGTCC





CCTTTCCCGCCGCGGATCCACCTTCCAATGCTACATCGGGGATAAC





GGATTCGGATCGAAGCCTCCCCGTTCAAATCGTGGCCACCTGAGGC





TCGGCCGCACTTCACATTCCGGAGAGGTGATGGCTGTGGCTATGCA





ATCTGCACAAGAAGTCTCCACAAAGGAGAAACCTGCTACCAAGCAA





AGGCGAGTTGTTGTCACGGGTATGGGTGTGGTGACTGCTCTAGGCC





ATGACCCCGATGTTTACTACAACAATCTCCTAGACGGAGTAAGCGG





CATAAGCGAGATAGAAAACTTTGACTGTTCTCAGCTTCCCACGAGA





ATTGCCGGAGAGATCAAGTCTTTTTCTGCAGATGGGTGGGTGGCCC





CGAAGTTCTCCAGGAGGATGGACAAGTTTATGCTTTACATTCTGAC





TGCAGGCAAGAAAGCATTAGTAGATGGTGGAATCACTGAAGATGTG





ATGAAAGAGCTCGATAAAAGAAAGTGTGGAGTTCTCATTGGCTCCG





GATTGGGCGGTATGAAGGTATTTAGCGAGTCCATTGAAGCTCTGAG





GACTTCATATAAGAAGATCAGTCCCTTTTGTGTACCTTTTTCTACC





ACGAATATGGGATCCGCTATTCTTGCAATGGACTTGGGATGGATGG





GCCCTAACTATTCGATATCGACTGCCTGTGCAACAAGTAACTTCTG





TATACTGAATGCTGCGAACCACATAACCAAAGGCGAAGCAGACATG





ATGCTTTGTGGTGGCTCGGATTCGGTCATTTTACCTATTGGTATGG





GAGGTTTCGTAGCATGCCGAGCTTTGTCACAGAGGAATAATGACCC





TACCAAAGCTTCGAGACCATGGGACAGTAATCGTGATGGATTTGTG





ATGGGAGAAGGTGCTGGAGTTTTACTTCTCGAGGAGTTAGAGCATG





CAAAGAAAAGAGGCGCAACCATTTATGCGGAATTTCTTGGTGGGAG





TTTCACTTGCGATGCCTACCACATGACCGAGCCTCACCCTGAAGGA





GCTGGAGTGATCCTCTGCATAGAGAAGGCCTTGGCTCAGTCCGGAG





TCTCGAGGGAAGACGTAAATTACATAAATGCGCATGCAACTTCCAC





TCCCGCTGGAGATATCAAAGAATACCAAGCTCTCGCCCACTGTTTC





GGCCAAAACAGTGAGTTAAGAGTGAATTCCACCAAGTCGATGATCG





GTCACCTTCTTGGAGGAGCCGGTGGCGTAGAAGCAGTTACAGTCGT





TCAGGCAATAAGGACTGGATGGATCCATCCAAATATTAATTTGGAC





GACCCGGACGAAGGCGTGGATGCAAAACTGCTCGTCGGCCCTAAGA





AGGAGAAACTGAAGGTCAAGGTCGGTTTGTCCAATTCATTCGGGTT





CGGCGGCCATAACTCATCCATACTCTTTGCCCCATGCAATTAG






C. paucipetala KASIVb CDS



SEQ ID NO: 28


ATGGCGGCCGCTTCATCAATGGTTGCCTCCCCATTCTCTACGTCCC





TCGTAGCCGCCTGCATGTCCACTTCATTCGACAACGACCCACGTTC





CCTTTCCCACAACCGCATCCGCCTCCGCGGATCCACCTTCCAATGC





CTCGGGGATATCGGATTCGCTTCCCTCATCGGATCCAAGCCTCCGC





GTTCAAATCGCAACCACCGGAGGCTCGGCCGCACTTCCCATTCCGG





GGAGGTCATGGCTGTGGCTATGCAACCTGCACATGAAGCTTCCACA





AAGAATAAACCTGTTACCAAGCAAAGGCGAGTAGTTGTGACAGGTA





TGGGCGTGGCGACTCCTCTAGGCCATGACCCCGATGTTTACTACAA





CAATCTCCTAGACGGAGTAAGTGGCATAAGTCAGATAGAGAACTTC





GACTGCACTCAGTTTCCCACGAGAATTGCCGGAGAGATCAAGTCTT





TCTCCACAGAAGGGTATGTGATCCCGAAGTTCGCCAAGAGGATGGA





CAAGTTCATGCTTTACTTGCTGACTGCAGGCAAGAAAGCATTAGAA





GATGGTGGAATCACTGAAGATGTGATGAAAGAGCTCGATAAAAGAA





AGTGTGGAGTTCTCATTGGCTCCGGAATGGGCGGTATGAAGATAAT





CAACGATTCCATTGCAGCTCTGAATGTTTCATATAAGAAGATGACT





CCCTTTTGTGTACCCTTTTCCACCACAAATATGGGATCCGCTATGC





TTGCGATAGACTTGGGATGGATGGGCCCGAACTATTCGATATCAAC





TGCCTGTGCAACAAGTAACTACTGTATACTGAATGCTGCGAACCAC





ATAGTCAGAGGCGAAGCAGATATGATGCTTTGTGGTGGCTCGGATG





CGGTCATTATACCTGTTGGTTTGGGAGGTTTCGTAGCATGCCGAGC





TTTGTCACAGAGGAACAATGACCCTACCAAAGCTTCGAGACCTTGG





GACAGTAACCGTGATGGATTTGTGATGGGAGAAGGAGCCGGAGTGT





TACTTCTCGAGGAGTTAGAGCATGCAAAGAAAAGAGGTGCAACCAT





TTATGCGGAATTTCTAGGTGGGAGTTTCACTTGCGATGCCTACCAC





ATGACCGAGCCTCACCCTGATGGAGCTGGAGTGATCCTCTGCATAG





AGAAGGCTTTGGCACAGTCCGGAGTCTCGAGGGAAGACGTCAATTA





CATAAATGCGCATGCAACTTCTACTCCTGCTGGAGATATCAAGGAA





TACCAAGCTCTCGCCCACTGTTTCGGCCAAAACAGTGAGTTAAGAG





TGAATTCCACCAAATCGATGATCGGTCACCTTCTTGGAGCTGCTGG





TGGCGTAGAAGCAGTTACAGTAGTTCAGGCAATAAGGACTGGGTGG





ATCCATCCAAATATTAATTTGGAAAACCCGGACGAAGCTGTGGATG





CAAAATTGCTCGTCGGCCCTAAGAAGGAGAAACTGAAGGTCAAGGT





CGGTTTGTCCAATTCATTTGGGTTCGGTGGGCATAACTCATCCATA





CTCTTCGCCCCTTACAATTAG






C. ignea KASIVb CDS



SEQ ID NO: 29


ATGGCGGCGGCCGCTTCCATGTTTACGTCCCCACTCTGTACGTGGC





TCGTAGCCTCTTGCATGTCGACTTCCTTCGACAACGACCCACGTTC





GCCGTCCGTCAAGCGTCTCCCCCGCCGGAGGAGGATTCTCTCCCAA





TGCTCCCTCCGCGGATCCACCTCCCAATGCCTCGTCACCTCATACA





TCGACCCTTGCAATAAGTACTGCTCCTCCGCCTCCCTTAGCTTCCT





CGGGGATAACGGATTCGCATCCCTTTTCGGATCTAAGCCATTCCGG





TCCAATCGCGGCCACCGGAGGCTCGGCCGTGCTTCCCATTCCGGGG





AGGCCATGGCTGTGGCTCTGCAACCTGCACAGGAAGTCACCACGAA





GAAGAAACCTGTGATCAAGCAAAGGCGAGTAGTTGTTACAGGAATG





GGCGTGGTGACTCCTCTAGGCCATGAACCTGATGTTTACTACAACA





ATCTCCTAGATGGAGTAAGCGGCATAAGTGAGATAGAGACCTTCGA





CTGCACTCAGTTTCCCACGAGAATCGCCGGAGAGATCAAGTCTTTT





TCCACAGATGGGTGGGTGGCCCCAAAGCTCTCCAAGAGGATGGACA





AGTTCATGCTTTACTTGTTGACTGCTGGCAAGAAAGCATTAGCAGA





TGGTGGAATCACCGATGATGTGATGAAAGAGCTTGATAAAAGAAAG





TGTGGGGTTCTCATTGGCTCTGGAATGGGCGGCATGAAGTTGTTCA





ACGATTCCATTGAAGCTCTGAGGATTTCATATAAAAAGATGAATCC





CTTTTGTGTACCTTTTGCTACCACAAATATGGGATCAGCTATGCTT





GCAATGGACTTGGGATGGATGGGTCCTAACTACTCGATATCAACTG





CCTGTGCAACAAGTAATTTCTGTATACTGAATGCTTCAAACCACAT





AGTCAGAGGCGAAGCTGACATGATGCTTTGTGGTGGCTCGGATTCT





GTCACTGTACCTTTAGGTGTGGGAGGTTTCGTAGCATGCCGAGCTT





TGTCACAGAGGAATAATGACCCTACCAAAGCTTCGAGACCTTGGGA





CAGTAATCGGGATGGATTTGTGATGGGAGAAGGAGCTGGAGTGTTA





CTTCTTGAGGAGTTAGAGCATGCAAAGAAAAGAGGTGCAACCATTT





ATGCGGAATTTCTCGGTGGGAGCTTTACTTCTGATGCCTACCACAT





GACCGAGCCTCACCCCGAAGGAGCTGGAGTGATTCTCTGCATTGAG





AAGGCCTTGGCTCAGTCCGGAGTCTCGAGGGAAGACGTGAATTATA





TAAATGCGCATGCAACTTCCACTCCTGCTGGTGATATAAAGGAATA





CCAAGCTCTCGCCCGCTGTTTCGGCCAAAACAGTGAGTTAAGAGTG





AATTCCACCAAATCGATGATCGGTCACCTTCTTGGAGCAGCTGGTG





GCGTAGAAGCAGTTGCAGTAATTCAGGCAATAAGGACTGGATGGAT





CCATCCAAATATTAATTTGGAAGACCCCGACGAAGCCGTGGATCCA





AAATTGCTCGTCGGCCCTAAGAAGGAGAAACTGAAGGTCAAGGTAG





CTTTGTCCAATTCATTCGGGTTCGGCGGGCATAACTCATCCATACT





CTTTGCCCCTTGCAATTAG






C. procumbens KASIV CDS



SEQ ID NO: 30


ATGGCGGCGGCGCCCTCTTCCCCACTCTGTACGTGGCTCGTAGCCG





CTTGCATGTCCACTTCCTTCGACAACAACCCACGTTCGCCCTCCAT





CAAGCGTCTCCCCCGCCGGAGGAGGGTTCTCTCCCAATGCTCCCTC





CGTGGATCCACCTTCCAATGCCTCGTCACCTCACACAACGACCCTT





GCAATCAGTACTGCTCCTCCGCCTCCCTTAGCTTCCTCGGGGATAA





CGGATTCGGATCCAAGCCATTCCGGTCCAATCGCGGCCACCGGAGG





CTCGGCCGTGCTTCGCATTCCGGGGAGGCCATGGCTGTGGCCTTGC





AACCTGCACAGGAAGTCGCCACGAAGAAGAAACCTGCTATGAAGCA





AAGGCGAGTAGTTGTTACAGGAATGGGCGTGGTGACTCCTCTGGGC





CATGAACCTGATGTTTACTACAACAATCTCCTAGATGGAGTAAGCG





GCATAAGTGAGATAGAGACCTTCGACTGCACTCAGTTTCCCACGAG





AATCGCCGGAGAGATCAAGTCTTTTTCCACAGATGGATGGGTGGCC





CCAAAGCTCTCCAAGAGGATGGACAAGTTCATGCTTTACTTGTTGA





CTGCTGGCAAGAAAGCATTAGCAGATGGTGGAATCACTGATGATGT





GATGAAAGAGCTTGATAAAAGAAAGTGTGGAGTTCTCATTGGCTCT





GGAATGGGCGGCATGAAGTTGTTCAACGATTCCATTGAAGCTCTGA





GAGTTTCATATAAGAAGATGAATCCCTTTTGTGTACCTTTTGCTAC





CACAAATATGGGATCAGCTATGCTTGCAATGGACTTGGGATGGATG





GGTCCTAACTACTCGATATCAACTGCCTGTGCAACAAGTAATTTCT





GTATACTGAATGCTGCAAACCACATAGTCAGAGGCGAAGCTGACAT





GATGCTTTGTGGTGGCTCGGATGCGGTCATTATACCTATTGGTTTG





GGAGGTTTTGTGGCGTGCCGAGCTTTGTCACAGAGGAATAATGACC





CTACCAAGGCTTCGAGACCATGGGATAGTAATCGTGATGGATTTGT





AATGGGCGAAGGAGCTGGAGTGTTACTTCTCGAGGAGTTAGAGCAT





GCAAAGAAAAGAGGTGCAACCATTTATGCGGAATTTTTAGGGGGCA





GTTTCACTTGCGATGCCTACCATATGACCGAGCCTCACCCTGAAGG





AGCTGGAGTGATCCTCTGCATAGAGAAGGCCTTGGCTCAGTCCGGA





GTCTCTAGAGAAGACGTAAATTACATAAATGCGCATGCAACTTCCA





CTCCTGCTGGAGATATCAAAGAATACCAAGCTCTCGCCCACTGTTT





CGGCCAAAACAGTGAGCTGAGAGTGAATTCCACTAAATCGATGATC





GGTCATCTTCTTGGAGCAGCTGGTGGTGTAGAAGCAGTTACCGTAA





TTCAGGCGATAAGGACTGGGTGGATCCATCCAAATCTTAATTTGGA





AGACCCGGACAAAGCCGTGGATGCAAAATTTCTCGTGGGACCTAAG





AAGGAGAGACTGAATGTCAAGGTCGGTTTGTCCAATTCATTTGGGT





TCGGGGGGCATAACTCATCCATACTCTTTGCCCCTTGCAATTAG






C. paucipetala KASIVa CDS



SEQ ID NO: 31


ATGGCGGCGGCGGCCTCTTCCCCACTCTGCACATGGCTCGTAGCCG





CTTGCATGTCCACTTCATTCGACAACAACCCACGTTCGCCCTCCAT





CAAGCGTCTCCCCCGCCGGAGGAGGGTTCTCTCCCAATGCTCCCTC





CGCGGATCCACCTTCCAATGCCTCGTCAACTCACACATCGACCCTT





GCAATCAGAACGTCTCCTCCGCCTCCCTTAGCTTCCTCGGGGATAA





CGGATTCGGATCCAATCCATTCCGGTCCAATCGCGGCCACCGGAGG





CTCGGCCGGGCTTCCCATTCCGGGGAGGCCATGGCTGTTGCTCTGC





AACCTGCACAGGAAGTCGCCACGAAGAAGAAACCTGCTATCAAGCA





AAGGCGAGTAGTTGTTACAGGAATGGGCGTGGTGACTCCTCTAGGC





CATGAGCCTGATGTTTTCTACAACAATCTCCTAGATGGAGTAAGCG





GCATAAGTGAGATAGAGACCTTCGACTGCACTCAGTTTCCCACGAG





AATTGCCGGAGAGATCAAGTCTTTTTCCACAGATGGGTGGGTGGCC





CCAAAGCTCTCCAAGAGGATGGACAAGTTCATGCTTTACTTGTTGA





CTGCTGGCAAGAAAGCATTAGCAGATGCTGGAATTACCGAGGATGT





GATGAAAGAGCTTGATAAAAGAAAGTGTGGAGTTCTCATTGGCTCC





GGAATGGGCGGCATGAAGTTGTTCAACGATTCCATTGAAGCTCTGA





GGGTTTCATATAAGAAGATGAATCCCTTTTGTGTACCTTTTGCTAC





CACAAATATGGGATCAGCTATGCTTGCAATGGACTTGGGATGGATG





GGTCCTAACTACTCGATATCGACTGCCTGTGCAACAAGTAATTTCT





GTATACTGAATGCTGCAAACCACATAATCAGAGGCGAAGCTGACAT





GATGCTTTGTGGTGGTTCGGATGCGGTCATTATACCTATTGGTTTG





GGAGGTTTTGTGGCGTGCCGAGCTTTGTCACAGAGGAATAGTGACC





CTACCAAAGCTTCGAGACCATGGGATAGTAATCGTGATGGATTTGT





AATGGGCGAAGGAGCTGGAGTGTTACTTCTCGAGGAGTTAGAGCAT





GCAAAGAAAAGAGGTGCAACCATTTATGCGGAATTTTTAGGGGGCA





GCTTCACTTGCGATGCCTACCACATGACCGAGCCTCACCCTGATGG





AGCTGGAGTGATCCTCTGCATAGAGAAGGCTTTGGCACAGTCCGGA





GTCTCGAGGGAAGACGTCAATTACATAAATGCGCATGCAACTTCTA





CTCCTGCTGGAGATATCAAGGAATACCAAGCTCTCGCCCACTGTTT





CGGCCAAAACAGTGAGCTGAGAGTGAATTCCACTAAATCGATGATC





GGTCATCTTCTTGGTGCAGCTGGTGGTGTAGAAGCTGTTACTGTAA





TTCAGGCGATAAGGACTGGGTGGATTCATCCAAATCTTAATTTGGA





AGACCCGGACGAAGCCGTGGATGCAAAATTTCTCGTGGGACCTAAG





AAGGAGAGATTGAATGTCAAGGTCGGTTTGTCCAATTCATTTGGGT





TCGGTGGGCATAACTCATCCATACTCTTCGCCCCTTACAATTAG






C. painteri KASIV CDS



SEQ ID NO: 32


ATGGCGGCCTCCTCTTGCATGGTTGCGTCCCCGTTCTGTACGTGGC





TCGTATCCGCATGCATGTCTACTTCATTCGACAACGACCCACGTTC





CCTTTCCCACAAGCGGCTCCGCCTCTCCCGTCGCCGGAGGCCTCTC





TCCTCTCATTGCTCCCTCCGCGGATCCACTCCCCAATGCCTCGACC





CTTGCAATCAGCACTGCTTCCTCGGGGATAACGGATTCGCTTCCCT





CATCGGATCCAAGCCTCCCCGTTCCAATCTCGGCCACCTGAGGCTC





GGCCGCACTTCCCATTCCGGGGAGGTCATGGCTGTGGCACAGGAAG





TCTCCACAAATAAGAAACATGCTACCAAGCAAAGGCGAGTAGTTGT





GACAGGTATGGGCGTGGTGACTCCTCTAGGCCATGACCCCGATGTT





TACTACAACAATCTCCTAGAAGGAGTAAGTGGCATCAGTGAGATAG





AGAACTTCGACTGCTCTCAGCTTCCCACGAGAATTGCCGGAGAGAT





CAAGTCTTTTTCCACAGATGGGTTGGTGGCCCCGAAGCTCTCCAAG





AGGATGGACAAGTTCATGCTTTACATCCTGACTGCAGGCAAGAAAG





CATTAGCAGATGGTGGAATCACTGAAGATGTGATGAAAGAGCTCGA





TAAAAGAAAGTGTGGAGTTCTCATTGGCTCCGGATTGGGCGGTATG





AAGGTATTCAGCGACTCCGTTGAAGCTCTGAGGATTTCATATAAGA





AGATCAGTCCCTTTTGTGTACCTTTTTCTACCACAAATATGGGATC





CGCTATGCTTGCAATGGACTTGGGATGGATGGGCCCTAACTATTCG





ATATCAACTGCCTGTGCAACAAGTAACTTCTGTATACTGAATGCTG





CGAACCACATAACCAAAGGCGAAGCTGACATGATGCTTTGTGGTGG





CTCGGATGCGGCCATTTTACCTATTGGTATGGGAGGTTTCGTGGCA





TGCCGAGCTTTGTCACAGAGGAATAATGACCCTACCAAAGCTTCGA





GACCATGGGACAGTAATCGTGATGGATTTGTGATGGGAGAAGGAGC





TGGAGTGTTACTTCTCGAGGAGTTAGAGCATGCAAAGAAAAGAGGT





GCAACCATTTATGCGGAATTTCTAGGTGGGAGTTTCACTTGCGATG





CCTACCACATGACCGAGCCTCACCCTGATGGAGCTGGAGTGATCCT





CTGCATAGAGAAGGCCTTGGCTCAGTCCGGAGTCTCGAGGGAAGAA





GTAAATTACATAAATGCGCATGCAACTTCCACTCCTGCTGGAGATA





TCAAGGAATACCAAGCTCTCGCCCATTGTTTCGGCCAAAACAGTGA





GTTAAGAGTGAATTCCACCAAATCGATGATCGGTCACCTTCTTGGA





GGAGCTGGTGGCGTAGAAGCAGTTACAGTAGTTCAGGCAATAAGGA





CTGGATGGATCCATCCAAATATTAATTTGGAAGACCCGGACAAAGG





CGTGGATGCAAAACTGCTCGTCGGCCCTAAGAAGGAGAAACTGAAG





GTCAAGGTCGGTTTGTCCAATTCATTTGGGTTCGGCGGCCATAACT





CATCCATACTCTTTGCCCCATGCAATTAG






C. avigera KASIVa CDS



SEQ ID NO: 33


ATGGCGGCCGCCGCTTCCATGGTTGCGTCCCCATTCTGTACGTGGC





TCGTAGCCGCTTGCATGTCCACTTCCGTCGACAAAGACCCACGTTC





GCCGTCTATCAAGCGTCTCCCCCGCCGGAAGAGGATTCATTCCCAA





TGCTCCCTCCGCGGATCCACCTTCCAATGCCTCGTCACCTCATACA





ACGACCCTTGCGAACAATACCGCTCATCCGCCTCCCTTAGCTTCCT





CGGGGATAACGGATTCGCATCCCTTTTCGGATCCAAGCCATTCCGG





TCCAATCGCGGCCACCGGAGGCTCGGCCGTGCTTCCCATTCCGGGG





AGGCCATGGCCGTGGCACTGCAACCTGCACAGGAAGTTGGCACGAA





GAAGAAACCTGTTATCAAGCAAAGGCGAGTAGTTGTTACAGGAATG





GGCGTGGTGACTCCTCTAGGCCATGAACCTGATGTTTACTACAACA





ATCTCCTAGACGGAGTAAGCGGCATAAGTGAGATAGAGACCTTCGA





CTGCACTCAGTTTCCCACGAGAATTGCCGGAGAGATCAAGTCTTTT





TCCACAGATGGGTGGGTGGCTCCAAAGCTCTCTAAGAGGATGGACA





AGTTCATGCTTTACTTGTTGACTGCTGGCAAGAAAGCATTGGCAGA





TGGTGGAATCACCGATGATGTGATGAAAGAGCTTGATAAAAGAAAG





TGTGGAGTTCTCATTGGCTCCGGATTGGGCGGTATGAAGGTATTTA





GCGAGTCCATTGAAGCTCTGAGGACTTCATATAAGAAGATCAGTCC





CTTTTGTGTACCTTTTTCTACCACGAATATGGGATCCGCTATTCTT





GCAATGGACTTGGGATGGATGGGCCCTAACTATTCGATATCGACTG





CCTGTGCAACAAGTAACTTCTGTATACTGAATGCTGCGAACCACAT





AACCAAAGGCGAAGCAGACATGATGCTTTGTGGTGGCTCGGATTCG





GTCATTTTACCTATTGGTATGGGAGGTTTCGTAGCATGCCGAGCTT





TGTCACAGAGGAATAATGACCCTACCAAAGCTTCGAGACCATGGGA





CAGTAATCGTGATGGATTTGTGATGGGAGAAGGTGCTGGAGTTTTA





CTTCTCGAGGAGTTAGAGCATGCAAAGAAAAGAGGCGCAACCATTT





ATGCGGAATTTCTTGGTGGGAGTTTCACTTGCGATGCCTACCACAT





GACCGAGCCTCACCCTGAAGGAGCTGGAGTGATCCTCTGCATAGAG





AAGGCCTTGGCTCAGTCCGGAGTCTCGAGGGAAGACGTAAATTACA





TAAATGCGCATGCAACTTCCACTCCCGCTGGAGATATCAAAGAATA





CCAAGCTCTCGCCCACTGTTTCGGCCAAAACAGTGAGTTAAGAGTG





AATTCCACCAAGTCGATGATCGGTCACCTTCTTGGAGGAGCCGGTG





GCGTAGAAGCAGTTACAGTCGTTCAGGCAATAAGGACTGGATGGAT





CCATCCAAATATTAATTTGGACGACCCGGACGAAGGCGTGGATGCA





AAACTGCTCGTCGGCCCTAAGAAGGAGAAACTGAAGGTCAAGGTCG





GTTTGTCCAATTCATTCGGGTTCGGCGGCCATAACTCATCCATACT





CTTTGCCCCATGCAATTAG






C. ignea KASIVa CDS



SEQ ID NO: 34


ATGGCGGCGGCCGCTTCCATGTTTACGTCCCCACTCTGTACGTGGC





TCGTAGCCTCTTGCATGTCGACTTCCTTCGACAACGACCCACGTTC





GCCGTCCGTCAAGCGTCTCCCCCGCCGGAGGAGGATTCTCTCCCAA





TGCTCCCTCCGCGGATCCACCTCCCAATGCCTCGTCACCTCATACA





TCGACCCTTGCAATAAGTACTGCTCCTCCGCCTCCCTTAGCTTCCT





CGGGGATAACGGATTCGCATCCCTTTTCGGATCTAAGCCATTCCGG





TCCAATCGCGGCCACCGGAGGCTCGGCCGTGCTTCCCATTCCGGGG





AGGCCATGGCTGTGGCTCTGCAACCTGCACAGGAAGTCACCACGAA





GAAGAAACCTGTGATCAAGCAAAGGCGAGTAGTTGTTACAGGAATG





GGCGTGGTGACTCCTCTAGGCCATGAACCTGATGTTTACTACAACA





ATCTCCTAGATGGAGTAAGCGGCATAAGTGAGATAGAGACCTTCGA





CTGCACTCAGTTTCCCACGAGAATCGCCGGAGAGATCAAGTCTTTT





TCCACAGATGGGTGGGTGGCCCCAAAGCTCTCCAAGAGGATGGACA





AGTTCATGCTTTACTTGTTGACTGCTGGCAAGAAAGCATTAGCAGA





TGGTGGAATCACCGATGATGTGATGAAAGAGCTTGATAAAAGAAAG





TGTGGGGTTCTCATTGGCTCTGGAATGGGCGGCATGAAGTTGTTCA





ACGATTCCATTGAAGCTCTGAGGATTTCATATAAAAAGATGAATCC





CTTTTGTGTACCTTTTGCTACCACAAATATGGGATCAGCTATGCTT





GCAATGGACTTGGGATGGATGGGTCCTAACTACTCGATATCAACTG





CCTGTGCAACAAGTAATTTCTGTATACTGAATGCTTCAAACCACAT





AGTCAGAGGCGAAGCTGACATGATGCTTTGTGGTGGCTCGGATGCG





GTTATTATACCTATTGGTTTGGGAGGTTTTGTGGCGTGCCGAGCTT





TGTCACAGAGGAATAATGACCCTACCAAAGCTTCGAGGCCATGGGA





TAGTAATCGTGATGGATTTGTAATGGGCGAAGGAGCTGGAGTGTTA





CTTCTCGAGGAGTTAGAGCATGCAAAGAAAAGAGGTGCAACCATTT





ATGCGGAATTTTTAGGGGGCAGTTTCACTTGCGATGCCTACCACAT





GACCGAGCCTCACCCTGAAGGAGCTGGAGTGATCCTCTGCATAGAG





AAGGCCTTGGCTCAGGCCGGAGTCTCTAAAGAAGATGTAAATTACA





TAAATGCGCATGCAACTTCTACTCCTGCTGGAGATATCAAGGAATA





CCAAGCTCTCGCCCAATGTTTCGGCCAAAACAGTGAGCTGAGAGTG





AATTCCACTAAATCGATGATCGGTCATCTTCTTGGAGCAGCTGGTG





GTGTAGAAGCAGTTACTGTGGTTCAGGCGATAAGGACTGGGTGGAT





CCATCCAAATCTTAATTTGGAAGACCCGGACAAAGCCGTGGATGCA





AAGTTGCTCGTGGGACCTAAGAAGGAGAGACTGAATGTCAAGGTCG





GTTTGTCCAATTCATTTGGGTTCGGTGGGCATAATTCGTCCATACT





CTTCGCCCCTTACAATTAG






C. avigera KASIa CDS



SEQ ID NO: 35


ATGCAATCCCTCCATTCCCCTGCCCTCCGGGCCTCCCCTCTCGACC





CTCTCCGACTCAAATCCTCCGCCAATGGCCCCTCTTCCACCGCCGC





TTTCCGTCCCCTCCGCCGCGCCACCCTCCCCAACATTCGGGCCGCC





TCCCCCACCGTCTCCGCCCCCAAGCGCGAGACCGACCCCAAGAAGC





GTGTCGTCATCACCGGCATGGGCCTCGTCTCCGTCTTCGGCTCCGA





TGTCGACGCTTATTACGAAAAGCTCCTCTCCGGCGAGAGCGGGATC





AGCTTAATCGACCGCTTCGACGCTTCCAAGTTCCCCACGAGGTTCG





GCGGCCAGATCCGGGGATTCAACGCCACGGGATACATCGACGGCAA





AAACGACAGGAGGCTCGACGATTGCCTCCGCTACTGCATTGTCGCC





GGGAAGAAGGCTCTCGAAAATTCCGATCTCGGCGGCGATAGTCTCT





CAAAGATTGATAAGGAGAGAGCTGGAGTGCTAGTTGGAACTGGCAT





GGGTGGCCTAACCGTCTTCTCTGACGGGGTTCAGAATCTAATCGAG





AAAGGTCACCGGAAGATCTCCCCGTTTTTCATTCCATATGCCATTA





CAAACATGGGGTCTGCCCTGCTTGCCATCGATTTGGGTCTGATGGG





CCCAAATTATTCGATTTCAACTGCATGTGCTACTTCCAACTACTGC





TTTTATGCTGCTGCTAATCATATCCGCCGAGGCGAGGCTGACCTCA





TGATTGCTGGAGGAACTGAGGCTGCAATCATTCCAATTGGGTTAGG





AGGATTCGTTGCTTGCAGGGCTTTATCTCAAAGGAATGATGACCCT





CAGACTGCCTCAAGGCCGTGGGATAAGGACCGTGATGGTTTTGTGA





TGGGTGAAGGGGCTGGAGTATTGGTTATGGAGAGCTTAGAACATGC





AATGAAACGAGGAGCGCCGATTATTGCAGAATATTTGGGAGGTGCA





GTCAACTGTGATGCTTATCATATGACTGATCCAAGGGCTGATGGGC





TTGGTGTCTCCTCGTGCATTGAGAGCAGTCTCGAAGATGCCGGGGT





CTCACCTGAAGAGGTCAATTACATAAATGCTCATGCGACTTCTACT





CTTGCTGGGGATCTTGCCGAGATAAATGCCATCAAGAAGGTTTTCA





AGAACACCAAGGATATCAAAATCAATGCAACTAAGTCGATGATTGG





ACACTGTCTTGGAGCATCAGGGGGTCTTGAAGCCATTGCGACAATT





AAGGGAATAACCACTGGCTGGCTTCATCCCAGCATAAACCAATTCA





ATCCCGAGCCATCAGTGGAATTTGACACTGTTGCCAACAAGAAGCA





GCAACATGAAGTCAATGTTGCTATCTCAAATTCATTCGGATTCGGA





GGCCACAACTCAGTTGTAGCTTTCTCAGCTTTCAAGCCATGA






C. pulcherrima KASI CDS



SEQ ID NO: 36


ATGCATTCCCTCCAGTCACCCTCCCTTCGGGCCTCCCCGCTCGACC





CCTTCCGCCCCAAATCATCCACCGTCCGCCCCCTCCACCGAGCATC





AATTCCCAACGTCCGGGCCGCTTCCCCCACCGTCTCCGCTCCCAAG





CGCGAGACCGACCCCAAGAAGCGCGTCGTGATCACCGGAATGGGCC





TTGTCTCCGTTTTCGGCTCCGACGTCGATGCGTACTACGACAAGCT





CCTGTCAGGCGAGAGCGGGATCGGCCCAATCGACCGCTTCGACGCC





TCCAAGTTCCCCACCAGGTTCGGCGGCCAGATTCGTGGCTTCAACT





CCATGGGATACATTGACGGCAAAAACGACAGGCGGCTTGATGATTG





CCTTCGCTACTGCATTGTCGCCGGGAAGAAGTCTCTTGAGGACGCC





GATCTCGGTGCCGACCGCCTCTCCAAGATCGACAAGGAGAGAGCCG





GAGTGCTGGTTGGGACAGGAATGGGTGGTCTGACTGTCTTCTCTGA





CGGGGTTCAATCTCTTATCGAGAAGGGTCACCGGAAAATCACCCCT





TTCTTCATCCCCTATGCCATTACAAACATGGGGTCTGCCCTGCTCG





CTATTGAACTCGGTCTGATGGGCCCAAACTATTCAATTTCCACTGC





ATGTGCCACTTCCAACTACTGCTTCCATGCTGCTGCTAATCATATC





CGCCGTGGTGAGGCTGATCTTATGATTGCTGGAGGCACTGAGGCCG





CAATCATTCCAATTGGGTTGGGAGGCTTTGTGGCTTGCAGGGCTCT





GTCTCAAAGGAACGATGACCCTCAGACTGCCTCTAGGCCCTGGGAT





AAAGACCGTGATGGTTTTGTGATGGGTGAAGGTGCTGGAGTGTTGG





TGCTGGAGAGCTTGGAACATGCAATGAAACGAGGAGCACCTATTAT





TGCAGAGTATTTGGGAGGTGCAATCAACTGTGATGCTTATCACATG





ACTGACCCAAGGGCTGATGGTCTCGGTGTCTCCTCTTGCATTGAGA





GTAGCCTTGAAGATGCTGGCGTCTCACCTGAAGAGGTCAATTACAT





AAATGCTCATGCGACTTCTACTCTAGCTGGGGATCTCGCCGAGATA





AATGCCATCAAGAAGGTTTTCAAGAACACAAAGGATATCAAAATTA





ATGCAACTAAGTCAATGATCGGACACTGTCTTGGAGCCTCTGGAGG





TCTTGAAGCTATAGCGACTATTAAGGGAATAAACACCGGCTGGCTT





CATCCCAGCATTAATCAATTCAATCCTGAGCCATCCGTGGAGTTCG





ACACTGTTGCCAACAAGAAGCAGCAACACGAAGTTAATGTTGCGAT





CTCGAATTCATTTGGATTCGGAGGCCACAACTCAGTCGTGGCTTTC





TCGGCTTTCAAGCCATGA






C. aviga mitochondrial KAS CDS



SEQ ID NO: 37


ATGGTGTTTCTTCCTTGGCGAAAAATGCTCTGTCCATCTCAATACC





GTTTTTTGCGGCCCTTATCTTCATCTACAACTTTTGATCCTCGTAG





GGTTGTTGTTACAGGCCTGGGTATGGTGACTCCATTAGGATGCGGG





GTGAACACCACATGGAAACAACTCATAGAGGGGAAATGTGGGATAA





GAGCAATATCCCTTGAAGACCTAAAGATGGATGCTTTTGATATTGA





TACTCAGGCCTATGTATTTGATCAGCTGACCTCGAAGGTCGCTGCC





ACCGTGCCCACCGGAGTGAATCCCGGAGAATTTAATGAAGATTTAT





GGTTCAATCAGAAGGAGCACCGTGCTATTGCAAGGTTCATAGCTTA





TGCACTCTGTGCAGCTGATGAAGCTCTTAAAGATGCAAATTGGGAA





CCTACTGAACCTGAAGAGAGAGAAATGACGGGTGTCTCCATTGGTG





GAGGGACTGGAAGCATTAGCGATGTATTAGATGCTGGTCGGATGAT





TTGTGAGAAGAAATTGCGTCGCCTAAGTCCATTCTTCATTCCACGC





ATATTGATAAATATGGCCTCTGGTCATGTGAGCATGAAATATGGTT





TCCAGGGACCCAACCATGCTGCTGTGACAGCTTGTGCAACAGGGGC





TCATTCGATAGGTGATGCTGCAAGGATGATACAGTTTGGAGATGCA





GATGTCATGGTCGCTGGAGGCACAGAATCTAGCATAGACGCCTTAT





CCATTGCAGGATTTTGCAGGTCAAGGGCTCTTACAACAAAGTATAA





TTCTTGCCCACAAGAAGCTTCACGACCCTTTGATACCGATAGAGAT





GGGTTTGTAATAGGTGAAGGGTCTGGCGTCTTGGTATTGGAGGAAC





TAGATCATGCAAGAAAACGTGGTGCAAAGATGTATGCCGAGTTCTG





TGGATATGGAATGTCTGGTGATGCGCATCATATAACCCAACCTCAT





AGCGATGGAAGAGGTGCCATTTTAGCAATGACCCGTGCATTGAAGC





AGTCAAATCTACATCCGGATCAGGTGGATTATGTAAATGCTCACGC





TACGTCTACTTCTTTAGGTGATGCAATTGAAGCTAAGGCGATTAAA





ACAGTTTTCTCGGATCATGCGATGTCAGGTTCGCTCGCCCTTTCCT





CCACCAAGGGAGCTATTGGGCATCTCCTCGGAGCAGCGGGTGCTGT





GGAAGCCATTTTCTCCATTCTGGCTATAAAAAACGGACTTGCGCCT





TTGACGCTAAATGTCGCAAGACCAGACCCTGTGTTTACCGAGCGGT





TTGTGCCTTTGACTGCTTCAAAAGAGATGCATGTAAGGGCGGCGTT





GTCAAACTCTTTTGGCTTTGGAGGTACAAATACTACACTTCTTTTC





ACTTCACCTCCTCAAAACTAA






Cuphea palustris KAS IV codon optimized for



Prototheca with cloning sequence and tags.


Nucleotide sequence of the C. palustris KASIV


expression vector (D3145 and D3295, pSZ4312).


The 5′ and 3′ homology arms enabling targeted


integration into the pLOOP locus are noted


with lowercase; the PmHXT1-2 promoter is


noted in uppercase italic which drives


expression of the ScMelibiase selection


marker noted with lowercase italic followed


by the PmPGK 3′UTR terminator highlighted in


uppercase. The PmACP promoter (noted in bold


text) drives the expression of the codon


optimized Cpal KASIV (noted with lowercase


bold text) and is terminated with the CvNR


3′UTR noted in underlined, lower case bold.


Restriction cloning sites and spacer DNA


fragments are noted as underlined, uppercase


plain lettering.


SEQ ID NO: 38


aacggaggtctgtcaccaaatggaccccgtctattgcgggaaacca





cggcgatggcacgtttcaaaacttgatgaaatacaatattcagtat





gtcgcgggcggcgacggcggggagctgatgtcgcgctgggtattga





taatcgccagatcgcccccgtatggcgcgaggcgtgaacaagccga





ccgatgtgcacgagcaaatcctgacactagaagggctgactcgccc





ggcacggctgaattacacaggcttgcaaaaataccagaatttgcac





gcaccgtattcgcggtattttgttggacagtgaatagcgatgcggc





aatggcttgtggcgttagaaggtgcgacgaaggtggtgccaccact





gtgccagccagtcctggcggctcccagggccccgatcaagagccag





gacatccaaactacccacagcatcaacgccccggcctatactcgaa





ccccacttgcactctgcaatggtatgggaaccacggggcagtcttg





tgtgggtcgcgcctatcgcggtcggcgaagaccgggaaGGTACCCC






GCTCCCGTCTGGTCCTCACGTTCGTGTACGGCCTGGATCCCGGAAA







GGGCGGATGCACGTGGTGTTGCCCCGCCATTGGCGCCCACGTTTCA







AAGTCCCCGGCCAGAAATGCACAGGACCGGCCCGGCTCGCACAGGC







CATGACGAATGCCCAGATTTCGACAGCAAAACAATCTGGAATAATC







GCAACCATTCGCGTTTTGAACGAAACGAAAAGACGCTGTTTAGCAC







GTTTCCGATATCGTGGGGGCCGAAGCATGATTGGGGGGAGGAAAGC







GTGGCCCCAAGGTAGCCCATTCTGTGCCACACGCCGACGAGGACCA







ATCCCCGGCATCAGCCTTCATCGACGGCTGCGCCGCACATATAAAG







CCGGACGCCTTCCCGACACGTTCAAACAGTTTTATTTCCTCCACTT







CCTGAATCAAACAAATCTTCAAGGAAGATCCTGCTCTTGAGCA
ACT







AGT
atgttcgcgttctacttcctgacggcctgcatctccctgaagg







gcgtgttcggcgtctccccctcctacaacggcctgggcctgacgcc







ccagatgggctgggacaactggaacacgttcgcctgcgacgtctcc







gagcagctgctgctggacacggccgaccgcatctccgacctgggcc







tgaaggacatgggctacaagtacatcatcctggacgactgctggtc







ctccggccgcgactccgacggcttcctggtcgccgacgagcagaag







ttccccaacggcatgggccacgtcgccgaccacctgcacaacaact







ccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgc







cggctaccccggctccctgggccgcgaggaggaggacgcccagttc







ttcgcgaacaaccgcgtggactacctgaagtacgacaactgctaca







acaagggccagttcggcacgcccgagatctcctaccaccgctacaa







ggccatgtccgacgccctgaacaagacgggccgccccatcttctac







tccctgtgcaactggggccaggacctgaccttctactggggctccg







gcatcgcgaactcctggcgcatgtccggcgacgtcacggcggagtt







cacgcgccccgactcccgctgcccctgcgacggcgacgagtacgac







tgcaagtacgccggcttccactgctccatcatgaacatcctgaaca







aggccgcccccatgggccagaacgcgggcgtcggcggctggaacga







cctggacaacctggaggtcggcgtcggcaacctgacggacgacgag







gagaaggcgcacttctccatgtgggccatggtgaagtcccccctga







tcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccat







ctactcccaggcgtccgtcatcgccatcaaccaggactccaacggc







atccccgccacgcgcgtctggcgctactacgtgtccgacacggacg







agtacggccagggcgagatccagatgtggtccggccccctggacaa







cggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgc







cccatgaacacgaccctggaggagatcttcttcgactccaacctgg







gctccaagaagctgacctccacctgggacatctacgacctgtgggc







gaaccgcgtcgacaactccacggcgtccgccatcctgggccgcaac







aagaccgccaccggcatcctgtacaacgccaccgagcagtcctaca







aggacggcctgtccaagaacgacacccgcctgttcggccagaagat







cggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcc







cacggcatcgcgttctaccgcctgcgcccctcctcctga
TACAACT







TATTACGTATTCTGACCGGCGCTGATGTGGCGCGGACGCCGTCGTA






CTCTTTCAGACTTTACTCTTGAGGAATTGAACCTTTCTCGCTTGCT





GGCATGTAAACATTGGCGCAATTAATTGTGTGATGAAGAAAGGGTG





GCACAAGATGGATCGCGAATGTACGAGATCGACAACGATGGTGATT





GTTATGAGGGGCCAAACCTGGCTCAATCTTGTCGCATGTCCGGCGC





AATGTGATCCAGCGGCGTGACTCTCGCAACCTGGTAGTGTGTGCGC





ACCGGGTCGCTTTGATTAAAACTGATCGCATTGCCATCCCGTCAAC





TCACAAGCCTACTCTAGCTCCCATTGCGCACTCGGGCGCCCGGCTC





GATCAATGTTCTGAGCGGAGGGCGAAGCGTCAGGAAATCGTCTCGG





CAGCTGGAAGCGCATGGAATGCGGAGCGGAGATCGAATCAGGATCC






CGCGTCTCGAACAGAGCGCGCAGAGGAACGCTGAAGGTCTCGCCTC







TGTCGCACCTCAGCGCGGCATACACCACAATAACCACCTGACGAAT







GCGCTTGGTTCTTCGTCCATTAGCGAAGCGTCCGGTTCACACACGT







GCCACGTTGGCGAGGTGGCAGGTGACAATGATCGGTGGAGCTGATG







GTCGAAACGTTCACAGCCTAGGGATATC
GCCTGCTCAAGCGGGCGC







TCAACATGCAGAGCGTCAGCGAGACGGGCTGTGGCGATCGCGAGAC







GGACGAGGCCGCCTCTGCCCTGTTTGAACTGAGCGTCAGCGCTGGC







TAAGGGGAGGGAGACTCATCCCCAGGCTCGCGCCAGGGCTCTGATC







CCGTCTCGGGCGGTGATCGGCGCGCATGACTACGACCCAACGACGT







ACGAGACTGATGTCGGTCCCGACGAGGAGCGCCGCGAGGCACTCCC







GGGCCACCGACCATGTTTACACCGACCGAAAGCACTCGCTCGTATC







CATTCCGTGCGCCCGCACATGCATCATCTTTTGGTACCGACTTCGG







TCTTGTTTTACCCCTACGACCTGCCTTCCAAGGTGTGAGCAACTCG







CCCGGACATGACCGAGGGTGATCATCCGGATCCCCAGGCCCCAGCA







GCCCCTGCCAGAATGGCTCGCGCTTTCCAGCCTGCAGGCCCGTCTC







CCAGGTCGACGCAACCTACATGACCACCCCAATCTGTCCCAGACCC







CAAACACCCTCCTTCCCTGCTTCTCTGTGATCGCTGATCAGCAACA







CAT
atggcttccgcggcattcaccatgtcggcgtgccccgcgatga







ctggcagggcccctggggcacgtcgctccggacggccagtcgccac







ccgcctgaggggctccaccttccagtgcctggtgacctcctacatc







gacccctgcaaccagttctcctcctccgcctccctgtccttcctgg







gcgacaacggcttcgcctccctgttcggctccaagcccttccgctc







caaccgcggccaccgccgcctgggccgcgcctcccactccggcgag







gccatggccgtggccctggagcccgcccaggaggtggccaccaaga







agaagcccctggtgaagcagcgccgcgtggtggtgaccggcatggg







cgtggtgacccccctgggccacgagcccgacgtgtactacaacaac







ctgctggacggcgtgtccggcatctccgagatcgaggccttcgact







gcacccagttccccacccgcatcgccggcgagatcaagtccttctc







caccgacggctgggtggcccccaagctgtccaagcgcatggacaag







ttcatgctgtacctgctgaccgccggcaagaaggccctggccgacg







gcggcatcaccgacgacgtgatgaaggagctggacaagcgcaagtg







cggcgtgctgatcggctccggcctgggcggcatgaagctgttctcc







gactccatcgaggccctgcgcatctcctacaagaagatgaacccct







tctgcgtgcccttcgccaccaccaacatgggctccgccatgctggc







catggacctgggctggatgggccccaactactccatctccaccgcc







tgcgccacctccaacttctgcatcctgaactccgccaaccacatcg







tgcgcggcgaggccgacatgatgctgtgcggcggctccgacgccgt







gatcatccccatcggcctgggcggcttcgtggcctgccgcgccctg







tcccagcgcaacaacgaccccaccaaggcctcccgcccctgggact







ccaaccgcgacggcttcgtgatgggcgagggcgccggcgtgctgct







gctggaggagctggagcacgccaagaagcgcggcgccaccatctac







gccgagttcctgggcggctccttcacctgcgacgcctaccacatga







ccgagccccaccccgagggcgccggcgtgatcctgtgcatcgagaa







ggccctggcccaggccggcgtgtcccgcgaggacgtgaactacatc







aacgcccacgccacctccacccccgccggcgacatcaaggagtacc







aggccctggcccactgcttcggccagaactccgagctgcgcgtgaa







ctccaccaagtccatgatcggccacctgatcggcgccgccggcggc







gtggaggccgtgaccgtggtgcaggccatccgcaccggctggatcc







accccaacctgaacctggaggaccccgacaaggccgtggacgccaa







ggtgctggtgggccccaagaaggagcgcctgaacgtgaaggtgggc







ctgtccaactccttcggcttcggcggccacaactcctccatcctgt







tcgccccctacaacaccatgtacccctacgacgtgcccgactacgc







ctga
TATCGAGgcagcagcagctcggatagtatcgacacactctgg








acgctggtcgtgtgatggactgttgccgccacacttgctgccttga









cctgtgaatatccctgccgcttttatcaaacagcctcagtgtcttg









atcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctat









ttgcgaataccacccccagcatccccttccctcgtttcatatcgct









tgcatcccaaccgcaacttatctacgctgtcctgctatccctcagc









gctgctcctgctcctgctcactgcccctcgcacagccttggtttgg









gctccgcctgtattctcctggtactgcaacctgtaaaccagcactg









caatgctgatgcacgggaagtagtgggatgggaacacaaatggaAA








GCTTGAGCTCagcggcgacggtcctgctaccgtacgacgttgggca






cgcccatgaaagtttgtataccgagcttgttgagcgaactgcaagc





gcggctcaaggatacttgaactcctggattgatatcggtccaataa





tggatggaaaatccgaacctcgtgcaagaactgagcaaacctcgtt





acatggatgcacagtcgccagtccaatgaacattgaagtgagcgaa





ctgttcgcttcggtggcagtactactcaaagaatgagctgctgtta





aaaatgcactctcgttctctcaagtgagtggcagatgagtgctcac





gccttgcacttcgctgcccgtgtcatgccctgcgccccaaaatttg





aaaaaagggatgagattattgggcaatggacgacgtcgtcgctccg





ggagtcaggaccggcggaaaataagaggcaacacactccgcttctt





a






Cuphea palustris KAS IV codon optimized for



Prototheca


SEQ ID NO: 39


atggcttccgcggcattcaccatgtcggcgtgccccgcgatgactg





gcagggcccctggggcacgtcgctccggacggccagtcgccacccg





cctgaggggctccaccttccagtgcctggtgacctcctacatcgac





ccctgcaaccagttctcctcctccgcctccctgtccttcctgggcg





acaacggcttcgcctccctgttcggctccaagcccttccgctccaa





ccgcggccaccgccgcctgggccgcgcctcccactccggcgaggcc





atggccgtggccctggagcccgcccaggaggtggccaccaagaaga





agcccctggtgaagcagcgccgcgtggtggtgaccggcatgggcgt





ggtgacccccctgggccacgagcccgacgtgtactacaacaacctg





ctggacggcgtgtccggcatctccgagatcgaggccttcgactgca





cccagttccccacccgcatcgccggcgagatcaagtccttctccac





cgacggctgggtggcccccaagctgtccaagcgcatggacaagttc





atgctgtacctgctgaccgccggcaagaaggccctggccgacggcg





gcatcaccgacgacgtgatgaaggagctggacaagcgcaagtgcgg





cgtgctgatcggctccggcctgggcggcatgaagctgttctccgac





tccatcgaggccctgcgcatctcctacaagaagatgaaccccttct





gcgtgcccttcgccaccaccaacatgggctccgccatgctggccat





ggacctgggctggatgggccccaactactccatctccaccgcctgc





gccacctccaacttctgcatcctgaactccgccaaccacatcgtgc





gcggcgaggccgacatgatgctgtgcggcggctccgacgccgtgat





catccccatcggcctgggcggcttcgtggcctgccgcgccctgtcc





cagcgcaacaacgaccccaccaaggcctcccgcccctgggactcca





accgcgacggcttcgtgatgggcgagggcgccggcgtgctgctgct





ggaggagctggagcacgccaagaagcgcggcgccaccatctacgcc





gagttcctgggcggctccttcacctgcgacgcctaccacatgaccg





agccccaccccgagggcgccggcgtgatcctgtgcatcgagaaggc





cctggcccaggccggcgtgtcccgcgaggacgtgaactacatcaac





gcccacgccacctccacccccgccggcgacatcaaggagtaccagg





ccctggcccactgatcggccagaactccgagctgcgcgtgaactcc





accaagtccatgatcggccacctgatcggcgccgccggcggcgtgg





aggccgtgaccgtggtgcaggccatccgcaccggctggatccaccc





caacctgaacctggaggaccccgacaaggccgtggacgccaaggtg





ctggtgggccccaagaaggagcgcctgaacgtgaaggtgggcctgt





ccaactccttcggatcggcggccacaactcctccatcctgttcgcc





ccctacaacaccatgtacccctacgacgtgcccgactacgcctga






C. camphora KASIV codon optimized for



Prototheca. Nucleotide sequence from the



C. camphora KASIV (D3147, pSZ4338) expression



vector. Only the codon optimized C. camphora


KASIV sequence is shown, the promoter, 3′UTR,


selection marker and targeting arms are the


same as in SEQ ID NO: 38.


SEQ ID NO: 40


atggccatgatggccggctcctgctccaacctggtgatcggcaacc





gcgagctgggcggcaacggcccctccctgctgcactacaacggcct





gcgccccctggagaacatccagaccgcctccgccgtgaagaagccc





aacggcctgttcgcctcctccaccgcccgcaagtccaaggccgtgc





gcgccatggtgctgcccaccgtgaccgcccccaagcgcgagaagga





ccccaagaagcgcatcgtgatcaccggcatgggcctggtgtccgtg





ttcggcaacgacatcgacaccttctactccaagctgctggagggcg





agtccggcatcggccccatcgaccgcttcgacgcctcctccttctc





cgtgcgcttcgccggccagatccacaacttctcctccaagggctac





atcgacggcaagaacgaccgccgcctggacgactgctggcgctact





gcctggtggccggccgccgcgccctggaggacgccaacctgggccc





cgaggtgctggagaagatggaccgctcccgcatcggcgtgctgatc





ggcaccggcatgggcggcctgtccgccttctccaacggcgtggagt





ccctgatccagaagggctacaagaagatcacccccttcttcatccc





ctactccatcaccaacatgggctccgccctgctggccatcgacacc





ggcgtgatgggccccaactactccatctccaccgcctgcgccaccg





ccaactactgcttccacgccgccgccaaccacatccgccgcggcga





ggccgagatcatggtgaccggcggcaccgaggccgccgtgtccgcc





accggcgtgggcggcttcatcgcctgccgcgccctgtcccaccgca





acgacgagccccagaccgcctcccgcccctgggacaaggaccgcga





cggcttcgtgatgggcgagggcgccggcgtgctggtgatggagtcc





ctgcaccacgcccgcaagcgcggcgccaacatcatcgccgagtacc





tgggcggcgccgtgacctgcgacgcccaccacatgaccgacccccg





cgccgacggcctgggcgtgtcctcctgcatcaccaagtccctggag





gacgccggcgtgtcccccgaggaggtgaactacgtgaacgcccacg





ccacctccaccctggccggcgacctggccgaggtgaacgccatcaa





gaaggtgttcaaggacacctccgagatgaagatgaacggcaccaag





tccatgatcggccactgcctgggcgccgccggcggcctggaggcca





tcgccaccatcaaggccatcaacaccggctggctgcaccccaccat





caaccagttcaacatcgagcccgccgtgaccatcgacaccgtgccc





aacgtgaagaagaagcacgacatccacgtgggcatctccaactcct





tcggcttcggcggccacaactccgtggtggtgttcgcccccttcat





gcccaccatgtacccctacgacgtgcccgactacgcctga






C. camphora KASI (D3148, pSZ4339) codon



optimized for Prototheca


SEQ ID NO: 41


atgcagatcctgcagaccccctcctcctcctcctcctccctgcgca





tgtcctccatggagtccctgtccctgacccccaagtccctgcccct





gaagaccctgctgcccctgcgcccccgccccaagaacctgtcccgc





cgcaagtcccagaacccccgccccatctcctcctcctcctcccccg





agcgcgagaccgaccccaagaagcgcgtggtgatcaccggcatggg





cctggtgtccgtgttcggcaacgacgtggacgcctactacgaccgc





ctgctgtccggcgagtccggcatcgcccccatcgaccgcttcgacg





cctccaagttccccacccgcttcgccggccagatccgcggcttcac





ctccgacggctacatcgacggcaagaacgaccgccgcctggacgac





tgcctgcgctactgcatcgtgtccggcaagaaggccctggagaacg





ccggcctgggcccccacctgatggacggcaagatcgacaaggagcg





cgccggcgtgctggtgggcaccggcatgggcggcctgaccgtgttc





tccaacggcgtgcagaccctgcacgagaagggctaccgcaagatga





cccccttcttcatcccctacgccatcaccaacatgggctccgccct





gctggccatcgagctgggcttcatgggccccaactactccatctcc





accgcctgcgccacctccaactactgcttctacgccgccgccaacc





acatccgccgcggcgaggccgacctgatgctggccggcggcaccga





ggccgccatcatccccatcggcctgggcggcttcgtggcctgccgc





gccctgtcccagcgcaacgacgacccccagaccgcctcccgcccct





gggacaaggaccgcgacggcttcgtgatgggcgagggcgccggcgt





gctggtgatggagtccctggagcacgccatgaagcgcgacgccccc





atcatcgccgagtacctgggcggcgccgtgaactgcgacgcctacc





acatgaccgacccccgcgccgacggcctgggcgtgtccacctgcat





cgagcgctccctggaggacgccggcgtggcccccgaggaggtgaac





tacatcaacgcccacgccacctccaccctggccggcgacctggccg





aggtgaacgccatcaagaaggtgttcaccaacacctccgagatcaa





gatcaacgccaccaagtccatgatcggccactgcctgggcgccgcc





ggcggcctggaggccatcgccaccatcaaggccatcaacaccggct





ggctgcacccctccatcaaccagttcaaccccgagccctccgtgga





gttcgacaccgtggccaacaagaagcagcagcacgaggtgaacgtg





gccatctccaactccttcggcttcggcggccacaactccgtggtgg





tgttctccgccttcaagcccaccatgtacccctacgacgtgcccga





ctacgcctga






U. californica KASI




U. californica KASI (D3150, pSZ4341) codon



optimized for Prototheca


SEQ ID NO: 42


atggagtccctgtccctgacccccaagtccctgcccctgaagaccc





tgctgcccttccgcccccgccccaagaacctgtcccgccgcaagtc





ccagaaccccaagcccatctcctcctcctcctcccccgagcgcgag





accgaccccaagaagcgcgtggtgatcaccggcatgggcctggtgt





ccgtgttcggcaacgacgtggacgcctactacgaccgcctgctgtc





cggcgagtccggcatcgcccccatcgaccgcttcgacgcctccaag





ttccccacccgcttcgccggccagatccgcggcttcacctccgacg





gctacatcgacggcaagaacgaccgccgcctggacgactgcctgcg





ctactgcatcgtgtccggcaagaaggccctggagaacgccggcctg





ggccccgacctgatggacggcaagatcgacaaggagcgcgccggcg





tgctggtgggcaccggcatgggcggcctgaccgtgttctccaacgg





cgtgcagaccctgcacgagaagggctaccgcaagatgacccccttc





ttcatcccctacgccatcaccaacatgggctccgccctgctggcca





tcgacctgggcttcatgggccccaactactccatctccaccgcctg





cgccacctccaactactgcttctacgccgccgccaaccacatccgc





cgcggcgaggccgacgtgatgctggccggcggcaccgaggccgcca





tcatccccatcggcctgggcggcttcgtggcctgccgcgccctgtc





ccagcgcaacgacgacccccagaccgcctcccgcccctgggacaag





gaccgcgacggcttcgtgatgggcgagggcgccggcgtgctggtga





tggagtccctggagcacgccatgaagcgcgacgcccccatcatcgc





cgagtacctgggcggcgccgtgaactgcgacgcctaccacatgacc





gacccccgcgccgacggcctgggcgtgtccacctgcatcgagcgct





ccctggaggacgccggcgtggcccccgaggaggtgaactacatcaa





cgcccacgccacctccaccctggccggcgacctggccgaggtgaac





gccatcaagaaggtgttcaccaacacctccgagatcaagatcaacg





ccaccaagtccatgatcggccactgcctgggcgccgccggcggcct





ggaggccatcgccaccatcaaggccatcaacaccggctggctgcac





ccctccatcaaccagttcaaccccgagccctccgtggagttcgaca





ccgtggccaacaagaagcagcagcacgaggtgaacgtggccatctc





caactccttcggcttcggcggccacaactccgtggtggtgttctcc





gccttcaagcccaccatgtacccctacgacgtgcccgactacgcct





ga






U. californica KASIV (D3152, pSZ4343) codon



optimized for Prototheca


SEQ ID NO: 43


atgacccagaccctgatctgcccctcctccatggagaccctgtccc





tgaccaagcagtcccacttccgcctgcgcctgcccaccccccccca





catccgccgcggcggcggccaccgccaccccccccccttcatctcc





gcctccgccgccccccgccgcgagaccgaccccaagaagcgcgtgg





tgatcaccggcatgggcctggtgtccgtgttcggcaccaacgtgga





cgtgtactacgaccgcctgctggccggcgagtccggcgtgggcacc





atcgaccgcttcgacgcctccatgttccccacccgcttcggcggcc





agatccgccgcttcacctccgagggctacatcgacggcaagaacga





ccgccgcctggacgactacctgcgctactgcctggtgtccggcaag





aaggccatcgagtccgccggcttcgacctgcacaacatcaccaaca





agatcgacaaggagcgcgccggcatcctggtgggctccggcatggg





cggcctgaaggtgttctccgacggcgtggagtccctgatcgagaag





ggctaccgcaagatctcccccttcttcatcccctacatgatcccca





acatgggctccgccctgctgggcatcgacctgggcttcatgggccc





caactactccatctccaccgcctgcgccacctccaactactgcatc





tacgccgccgccaaccacatccgccagggcgacgccgacctgatgg





tggccggcggcaccgaggcccccatcatccccatcggcctgggcgg





atcgtggcctgccgcgccctgtccacccgcaacgacgacccccaga





ccgcctcccgcccctgggacatcgaccgcgacggcttcgtgatggg





cgagggcgccggcatcctggtgctggagtccctggagcacgccatg





aagcgcgacgcccccatcctggccgagtacctgggcggcgccgtga





actgcgacgcccaccacatgaccgacccccgcgccgacggcctggg





cgtgtccacctgcatcgagtcctccctggaggacgccggcgtggcc





gccgaggaggtgaactacatcaacgcccacgccacctccaccccca





ccggcgacctggccgagatgaaggccatcaagaacgtgttccgcaa





cacctccgagatcaagatcaacgccaccaagtccatgatcggccac





tgcctgggcgcctccggcggcctggaggccatcgccaccctgaagg





ccatcaccaccggctggctgcaccccaccatcaaccagttcaaccc





cgagccctccgtggacttcgacaccgtggccaagaagaagaagcag





cacgaggtgaacgtggccatctccaactccttcggcttcggcggcc





acaactccgtgctggtgttctccgccttcaagcccaccatgtaccc





ctacgacgtgcccgactacgcctga






C. wrightii KASAI (D3153, pSZ4379) codon



optimized for Prototheca


SEQ ID NO: 44


atggcttccgcggcattcaccatgtcggcgtgccccgcgatgactg





gcagggcccctggggcacgtcgctccggacggccagtcgccacccg





cctgaggtacgtattccagtgcctggtggccagctgcatcgacccc





tgcgaccagtaccgcagcagcgccagcctgagcttcctgggcgaca





acggatcgccagcctgttcggcagcaagccatcatgagcaaccgcg





gccaccgccgcctgcgccgcgccagccacagcggcgaggccatggc





cgtggccctgcagcccgcccaggaggccggcaccaagaagaagccc





gtgatcaagcagcgccgcgtggtggtgaccggcatgggcgtggtga





cccccctgggccacgagcccgacgtgttctacaacaacctgctgga





cggcgtgagcggcatcagcgagatcgagaccttcgactgcacccag





ttccccacccgcatcgccggcgagatcaagagcttcagcaccgacg





gctgggtggcccccaagctgagcaagcgcatggacaagttcatgct





gtacctgctgaccgccggcaagaaggccctggccgacggcggcatc





accgacgaggtgatgaaggagctggacaagcgcaagtgcggcgtgc





tgatcggcagcggcatgggcggcatgaaggtgttcaacgacgccat





cgaggccctgcgcgtgagctacaagaagatgaaccccttctgcgtg





cccttcgccaccaccaacatgggcagcgccatgctggccatggacc





tgggctggatgggccccaactacagcatcagcaccgcctgcgccac





cagcaacttctgcatcctgaacgccgccaaccacatcatccgcggc





gaggccgacatgatgctgtgcggcggcagcgacgccgtgatcatcc





ccatcggcctgggcggcttcgtggcctgccgcgccctgagccagcg





caacagcgaccccaccaaggccagccgcccctgggacagcaaccgc





gacggcttcgtgatgggcgagggcgccggcgtgctgctgctggagg





agctggagcacgccaagaagcgcggcgccaccatctacgccgagtt





cctgggcggcagcttcacctgcgacgcctaccacatgaccgagccc





caccccgagggcgccggcgtgatcctgtgcatcgagaaggccctgg





cccaggccggcgtgagcaaggaggacgtgaactacatcaacgccca





cgccaccagcaccagcgccggcgacatcaaggagtaccaggccctg





gcccgctgcttcggccagaacagcgagctgcgcgtgaacagcacca





agagcatgatcggccacctgctgggcgccgccggcggcgtggaggc





cgtgaccgtggtgcaggccatccgcaccggctggattcaccccaac





ctgaacctggaggaccccgacaaggccgtggacgccaagctgctgg





tgggccccaagaaggagcgcctgaacgtgaaggtgggcctgagcaa





cagcttcggcttcggcggccacaacagcagcatcctgttcgccccc





tgcaacgtgtga






C. avigera KASIVb (D3287, pSZ4453) codon



optimized for Prototheca


SEQ ID NO: 45


atggcttccgcggcattcaccatgtcggcgtgccccgcgatgactg





gcagggcccctggggcacgtcgctccggacggccagtcgccacccg





cctgaggggctccaccttccagtgctacatcggcgacaacggcttc





ggctccaagcccccccgctccaaccgcggccacctgcgcctgggcc





gcacctcccactccggcgaggtgatggccgtggccatgcagtccgc





ccaggaggtgtccaccaaggagaagcccgccaccaagcagcgccgc





gtggtggtgaccggcatgggcgtggtgaccgccctgggccacgacc





ccgacgtgtactacaacaacctgctggacggcgtgtccggcatctc





cgagatcgagaacttcgactgctcccagctgcccacccgcatcgcc





ggcgagatcaagtccttctccgccgacggctgggtggcccccaagt





tctcccgccgcatggacaagttcatgctgtacatcctgaccgccgg





caagaaggccctggtggacggcggcatcaccgaggacgtgatgaag





gagctggacaagcgcaagtgcggcgtgctgatcggctccggcctgg





gcggcatgaaggtgttctccgagtccatcgaggccctgcgcacctc





ctacaagaagatctcccccttctgcgtgcccttctccaccaccaac





atgggctccgccatcctggccatggacctgggctggatgggcccca





actactccatctccaccgcctgcgccacctccaacttctgcatcct





gaacgccgccaaccacatcaccaagggcgaggccgacatgatgctg





tgcggcggctccgactccgtgatcctgcccatcggcatgggcggct





tcgtggcctgccgcgccctgtcccagcgcaacaacgaccccaccaa





ggcctcccgcccctgggactccaaccgcgacggcttcgtgatgggc





gagggcgccggcgtgctgctgctggaggagctggagcacgccaaga





agcgcggcgccaccatctacgccgagttcctgggcggctccttcac





ctgcgacgcctaccacatgaccgagccccaccccgagggcgccggc





gtgatcctgtgcatcgagaaggccctggcccagtccggcgtgtccc





gcgaggacgtgaactacatcaacgcccacgccacctccacccccgc





cggcgacatcaaggagtaccaggccctggcccactgatcggccaga





actccgagctgcgcgtgaactccaccaagtccatgatcggccacct





gctgggcggcgccggcggcgtggaggccgtgaccgtggtgcaggcc





atccgcaccggctggatccaccccaacatcaacctggacgaccccg





acgagggcgtggacgccaagctgctggtgggccccaagaaggagaa





gctgaaggtgaaggtgggcctgtccaactccttcggcttcggcggc





cacaactcctccatcctgttcgccccctgcaacaccatgtacccct





acgacgtgcccgactacgcctga






C. paucipetala KASIVb codon optimized for



Prototheca


SEQ ID NO: 46


atggcttccgcggcattcaccatgtcggcgtgccccgcgatgactg





gcagggcccctggggcacgtcgctccggacggccagtcgccacccg





cctgaggggctccaccttccagtgcctgggcgacatcggcttcgcc





tccctgatcggctccaagcccccccgctccaaccgcaaccaccgcc





gcctgggccgcacctcccactccggcgaggtgatggccgtggccat





gcagcccgcccacgaggcctccaccaagaacaagcccgtgaccaag





cagcgccgcgtggtggtgaccggcatgggcgtggccacccccctgg





gccacgaccccgacgtgtactacaacaacctgctggacggcgtgtc





cggcatctcccagatcgagaacttcgactgcacccagttccccacc





cgcatcgccggcgagatcaagtccttctccaccgagggctacgtga





tccccaagttcgccaagcgcatggacaagttcatgctgtacctgct





gaccgccggcaagaaggccctggaggacggcggcatcaccgaggac





gtgatgaaggagctggacaagcgcaagtgcggcgtgctgatcggct





ccggcatgggcggcatgaagatcatcaacgactccatcgccgccct





gaacgtgtcctacaagaagatgacccccttctgcgtgcccttctcc





accaccaacatgggctccgccatgctggccatcgacctgggctgga





tgggccccaactactccatctccaccgcctgcgccacctccaacta





ctgcatcctgaacgccgccaaccacatcgtgcgcggcgaggccgac





atgatgctgtgcggcggctccgacgccgtgatcatccccgtgggcc





tgggcggcttcgtggcctgccgcgccctgtcccagcgcaacaacga





ccccaccaaggcctcccgcccctgggactccaaccgcgacggcttc





gtgatgggcgagggcgccggcgtgctgctgctggaggagctggagc





acgccaagaagcgcggcgccaccatctacgccgagttcctgggcgg





ctccttcacctgcgacgcctaccacatgaccgagccccaccccgac





ggcgccggcgtgatcctgtgcatcgagaaggccctggcccagtccg





gcgtgtcccgcgaggacgtgaactacatcaacgcccacgccacctc





cacccccgccggcgacatcaaggagtaccaggccctggcccactgc





ttcggccagaactccgagctgcgcgtgaactccaccaagtccatga





tcggccacctgctgggcgccgccggcggcgtggaggccgtgaccgt





ggtgcaggccatccgcaccggctggatccaccccaacatcaacctg





gagaaccccgacgaggccgtggacgccaagctgctggtgggcccca





agaaggagaagctgaaggtgaaggtgggcctgtccaactccttcgg





cttcggcggccacaactcctccatcctgttcgccccctacaacacc





atgtacccctacgacgtgcccgactacgcctga






C. ignea KASIVb (D3289, pSZ4455) codon



optimized for Prototheca


SEQ ID NO: 47


atggcttccgcggcattcaccatgtcggcgtgccccgcgatgactg





gcagggcccctggggcacgtcgctccggacggccagtcgccacccg





cctgaggggctccacctcccagtgcctggtgacctcctacatcgac





ccctgcaacaagtactgctcctccgcctccctgtccttcctgggcg





acaacggcttcgcctccctgttcggctccaagcccttccgctccaa





ccgcggccaccgccgcctgggccgcgcctcccactccggcgaggcc





atggccgtggccctgcagcccgcccaggaggtgaccaccaagaaga





agcccgtgatcaagcagcgccgcgtggtggtgaccggcatgggcgt





ggtgacccccctgggccacgagcccgacgtgtactacaacaacctg





ctggacggcgtgtccggcatctccgagatcgagaccttcgactgca





cccagttccccacccgcatcgccggcgagatcaagtccttctccac





cgacggctgggtggcccccaagctgtccaagcgcatggacaagttc





atgctgtacctgctgaccgccggcaagaaggccctggccgacggcg





gcatcaccgacgacgtgatgaaggagctggacaagcgcaagtgcgg





cgtgctgatcggctccggcatgggcggcatgaagctgttcaacgac





tccatcgaggccctgcgcatctcctacaagaagatgaaccccttct





gcgtgcccttcgccaccaccaacatgggctccgccatgctggccat





ggacctgggctggatgggccccaactactccatctccaccgcctgc





gccacctccaacttctgcatcctgaacgcctccaaccacatcgtgc





gcggcgaggccgacatgatgctgtgcggcggctccgactccgtgac





cgtgcccctgggcgtgggcggcttcgtggcctgccgcgccctgtcc





cagcgcaacaacgaccccaccaaggcctcccgcccctgggactcca





accgcgacggcttcgtgatgggcgagggcgccggcgtgctgctgct





ggaggagctggagcacgccaagaagcgcggcgccaccatctacgcc





gagttcctgggcggctccttcacctccgacgcctaccacatgaccg





agccccaccccgagggcgccggcgtgatcctgtgcatcgagaaggc





cctggcccagtccggcgtgtcccgcgaggacgtgaactacatcaac





gcccacgccacctccacccccgccggcgacatcaaggagtaccagg





ccctggcccgctgcttcggccagaactccgagctgcgcgtgaactc





caccaagtccatgatcggccacctgctgggcgccgccggcggcgtg





gaggccgtggccgtgatccaggccatccgcaccggctggatccacc





ccaacatcaacctggaggaccccgacgaggccgtggaccccaagct





gctggtgggccccaagaaggagaagctgaaggtgaaggtggccctg





tccaactccttcggcttcggcggccacaactcctccatcctgttcg





ccccctgcaacaccatgtacccctacgacgtgcccgactacgcctg





a






Cuphea procumbens KASIV (D3290, pSZ4456) codon



optimized for Prototheca


SEQ ID NO: 48


atggcttccgcggcattcaccatgtcggcgtgccccgcgatgactg





gcagggcccctggggcacgtcgctccggacggccagtcgccacccg





cctgaggggctccaccttccagtgcctggtgacctcccacaacgac





ccctgcaaccagtactgctcctccgcctccctgtccttcctgggcg





acaacggcttcggctccaagcccttccgctccaaccgcggccaccg





ccgcctgggccgcgcctcccactccggcgaggccatggccgtggcc





ctgcagcccgcccaggaggtggccaccaagaagaagcccgccatga





agcagcgccgcgtggtggtgaccggcatgggcgtggtgacccccct





gggccacgagcccgacgtgtactacaacaacctgctggacggcgtg





tccggcatctccgagatcgagaccttcgactgcacccagttcccca





cccgcatcgccggcgagatcaagtccttctccaccgacggctgggt





ggcccccaagctgtccaagcgcatggacaagttcatgctgtacctg





ctgaccgccggcaagaaggccctggccgacggcggcatcaccgacg





acgtgatgaaggagctggacaagcgcaagtgcggcgtgctgatcgg





ctccggcatgggcggcatgaagctgttcaacgactccatcgaggcc





ctgcgcgtgtcctacaagaagatgaaccccttctgcgtgcccttcg





ccaccaccaacatgggctccgccatgctggccatggacctgggctg





gatgggccccaactactccatctccaccgcctgcgccacctccaac





ttctgcatcctgaacgccgccaaccacatcgtgcgcggcgaggccg





acatgatgctgtgcggcggctccgacgccgtgatcatccccatcgg





cctgggcggcttcgtggcctgccgcgccctgtcccagcgcaacaac





gaccccaccaaggcctcccgcccctgggactccaaccgcgacggct





tcgtgatgggcgagggcgccggcgtgctgctgctggaggagctgga





gcacgccaagaagcgcggcgccaccatctacgccgagttcctgggc





ggctccttcacctgcgacgcctaccacatgaccgagccccaccccg





agggcgccggcgtgatcctgtgcatcgagaaggccctggcccagtc





cggcgtgtcccgcgaggacgtgaactacatcaacgcccacgccacc





tccacccccgccggcgacatcaaggagtaccaggccctggcccact





gcttcggccagaactccgagctgcgcgtgaactccaccaagtccat





gatcggccacctgctgggcgccgccggcggcgtggaggccgtgacc





gtgatccaggccatccgcaccggctggatccaccccaacctgaacc





tggaggaccccgacaaggccgtggacgccaagttcctggtgggccc





caagaaggagcgcctgaacgtgaaggtgggcctgtccaactccttc





ggcttcggcggccacaactcctccatcctgttcgccccctgcaaca





ccatgtacccctacgacgtgcccgactacgcctga






C paucipetala KASIVa (D3291, pSZ4457) codon



optimized for Prototheca


SEQ ID NO: 49


atggcttccgcggcattcaccatgtcggcgtgccccgcgatgactg





gcagggcccctggggcacgtcgctccggacggccagtcgccacccg





cctgaggggctccaccttccagtgcctggtgaactcccacatcgac





ccctgcaaccagaacgtgtcctccgcctccctgtccttcctgggcg





acaacggcttcggctccaaccccttccgctccaaccgcggccaccg





ccgcctgggccgcgcctcccactccggcgaggccatggccgtggcc





ctgcagcccgcccaggaggtggccaccaagaagaagcccgccatca





agcagcgccgcgtggtggtgaccggcatgggcgtggtgacccccct





gggccacgagcccgacgtgttctacaacaacctgctggacggcgtg





tccggcatctccgagatcgagaccttcgactgcacccagttcccca





cccgcatcgccggcgagatcaagtccttctccaccgacggctgggt





ggcccccaagctgtccaagcgcatggacaagttcatgctgtacctg





ctgaccgccggcaagaaggccctggccgacgccggcatcaccgagg





acgtgatgaaggagctggacaagcgcaagtgcggcgtgctgatcgg





ctccggcatgggcggcatgaagctgttcaacgactccatcgaggcc





ctgcgcgtgtcctacaagaagatgaaccccttctgcgtgcccttcg





ccaccaccaacatgggctccgccatgctggccatggacctgggctg





gatgggccccaactactccatctccaccgcctgcgccacctccaac





ttctgcatcctgaacgccgccaaccacatcatccgcggcgaggccg





acatgatgctgtgcggcggctccgacgccgtgatcatccccatcgg





cctgggcggcttcgtggcctgccgcgccctgtcccagcgcaactcc





gaccccaccaaggcctcccgcccctgggactccaaccgcgacggct





tcgtgatgggcgagggcgccggcgtgctgctgctggaggagctgga





gcacgccaagaagcgcggcgccaccatctacgccgagttcctgggc





ggctccttcacctgcgacgcctaccacatgaccgagccccaccccg





acggcgccggcgtgatcctgtgcatcgagaaggccctggcccagtc





cggcgtgtcccgcgaggacgtgaactacatcaacgcccacgccacc





tccacccccgccggcgacatcaaggagtaccaggccctggcccact





gcttcggccagaactccgagctgcgcgtgaactccaccaagtccat





gatcggccacctgctgggcgccgccggcggcgtggaggccgtgacc





gtgatccaggccatccgcaccggctggatccaccccaacctgaacc





tggaggaccccgacgaggccgtggacgccaagttcctggtgggccc





caagaaggagcgcctgaacgtgaaggtgggcctgtccaactccttc





ggcttcggcggccacaactcctccatcctgttcgccccctacaaca





ccatgtacccctacgacgtgcccgactacgcctga






Cuphea painteri KASIV (D3292, pSZ4458) codon



optimized for Prototheca


SEQ ID NO: 50


atggcttccgcggcattcaccatgtcggcgtgccccgcgatgactg





gcagggcccctggggcacgtcgctccggacggccagtcgccacccg





cctgaggggctccaccccccagtgcctggacccctgcaaccagcac





tgcttcctgggcgacaacggcttcgcctccctgatcggctccaagc





ccccccgctccaacctgggccacctgcgcctgggccgcacctccca





ctccggcgaggtgatggccgtggcccaggaggtgtccaccaacaag





aagcacgccaccaagcagcgccgcgtggtggtgaccggcatgggcg





tggtgacccccctgggccacgaccccgacgtgtactacaacaacct





gctggagggcgtgtccggcatctccgagatcgagaacttcgactgc





tcccagctgcccacccgcatcgccggcgagatcaagtccttctcca





ccgacggcctggtggcccccaagctgtccaagcgcatggacaagtt





catgctgtacatcctgaccgccggcaagaaggccctggccgacggc





ggcatcaccgaggacgtgatgaaggagctggacaagcgcaagtgcg





gcgtgctgatcggctccggcctgggcggcatgaaggtgttctccga





ctccgtggaggccctgcgcatctcctacaagaagatctcccccttc





tgcgtgcccttctccaccaccaacatgggctccgccatgctggcca





tggacctgggctggatgggccccaactactccatctccaccgcctg





cgccacctccaacttctgcatcctgaacgccgccaaccacatcacc





aagggcgaggccgacatgatgctgtgcggcggctccgacgccgcca





tcctgcccatcggcatgggcggcttcgtggcctgccgcgccctgtc





ccagcgcaacaacgaccccaccaaggcctcccgcccctgggactcc





aaccgcgacggcttcgtgatgggcgagggcgccggcgtgctgctgc





tggaggagctggagcacgccaagaagcgcggcgccaccatctacgc





cgagttcctgggcggctccttcacctgcgacgcctaccacatgacc





gagccccaccccgacggcgccggcgtgatcctgtgcatcgagaagg





ccctggcccagtccggcgtgtcccgcgaggaggtgaactacatcaa





cgcccacgccacctccacccccgccggcgacatcaaggagtaccag





gccctggcccactgcttcggccagaactccgagctgcgcgtgaact





ccaccaagtccatgatcggccacctgctgggcggcgccggcggcgt





ggaggccgtgaccgtggtgcaggccatccgcaccggctggatccac





cccaacatcaacctggaggaccccgacaagggcgtggacgccaagc





tgctggtgggccccaagaaggagaagctgaaggtgaaggtgggcct





gtccaactccttcggcttcggcggccacaactcctccatcctgttc





gccccctgcaacaccatgtacccctacgacgtgcccgactacgcct





ga






C. avigera KASIVa (D3293, pSZ4459) codon



optimized for Prototheca


SEQ ID NO: 51


atggcttccgcggcattcaccatgtcggcgtgccccgcgatgactg





gcagggcccctggggcacgtcgctccggacggccagtcgccacccg





cctgaggggctccaccttccagtgcctggtgacctcctacaacgac





ccctgcgagcagtaccgctcctccgcctccctgtccttcctgggcg





acaacggcttcgcctccctgttcggctccaagcccttccgctccaa





ccgcggccaccgccgcctgggccgcgcctcccactccggcgaggcc





atggccgtggccctgcagcccgcccaggaggtgggcaccaagaaga





agcccgtgatcaagcagcgccgcgtggtggtgaccggcatgggcgt





ggtgacccccctgggccacgagcccgacgtgtactacaacaacctg





ctggacggcgtgtccggcatctccgagatcgagaccttcgactgca





cccagttccccacccgcatcgccggcgagatcaagtccttctccac





cgacggctgggtggcccccaagctgtccaagcgcatggacaagttc





atgctgtacctgctgaccgccggcaagaaggccctggccgacggcg





gcatcaccgacgacgtgatgaaggagctggacaagcgcaagtgcgg





cgtgctgatcggctccggcctgggcggcatgaaggtgttctccgag





tccatcgaggccctgcgcacctcctacaagaagatctcccccttct





gcgtgcccttctccaccaccaacatgggctccgccatcctggccat





ggacctgggctggatgggccccaactactccatctccaccgcctgc





gccacctccaacttctgcatcctgaacgccgccaaccacatcacca





agggcgaggccgacatgatgctgtgcggcggctccgactccgtgat





cctgcccatcggcatgggcggcttcgtggcctgccgcgccctgtcc





cagcgcaacaacgaccccaccaaggcctcccgcccctgggactcca





accgcgacggcttcgtgatgggcgagggcgccggcgtgctgctgct





ggaggagctggagcacgccaagaagcgcggcgccaccatctacgcc





gagttcctgggcggctccttcacctgcgacgcctaccacatgaccg





agccccaccccgagggcgccggcgtgatcctgtgcatcgagaaggc





cctggcccagtccggcgtgtcccgcgaggacgtgaactacatcaac





gcccacgccacctccacccccgccggcgacatcaaggagtaccagg





ccctggcccactgcttcggccagaactccgagctgcgcgtgaactc





caccaagtccatgatcggccacctgctgggcggcgccggcggcgtg





gaggccgtgaccgtggtgcaggccatccgcaccggctggatccacc





ccaacatcaacctggacgaccccgacgagggcgtggacgccaagct





gctggtgggccccaagaaggagaagctgaaggtgaaggtgggcctg





tccaactccttcggcttcggcggccacaactcctccatcctgttcg





ccccctgcaacaccatgtacccctacgacgtgcccgactacgcctg





a






C ignea KASIVa (D3294, pSZ4460) codon



optimized for Prototheca


SEQ ID NO: 52


atggcttccgcggcattcaccatgtcggcgtgccccgcgatgactg





gcagggcccctggggcacgtcgctccggacggccagtcgccacccg





cctgaggggctccacctcccagtgcctggtgacctcctacatcgac





ccctgcaacaagtactgctcctccgcctccctgtccttcctgggcg





acaacggcttcgcctccctgttcggctccaagcccttccgctccaa





ccgcggccaccgccgcctgggccgcgcctcccactccggcgaggcc





atggccgtggccctgcagcccgcccaggaggtgaccaccaagaaga





agcccgtgatcaagcagcgccgcgtggtggtgaccggcatgggcgt





ggtgacccccctgggccacgagcccgacgtgtactacaacaacctg





ctggacggcgtgtccggcatctccgagatcgagaccttcgactgca





cccagttccccacccgcatcgccggcgagatcaagtccttctccac





cgacggctgggtggcccccaagctgtccaagcgcatggacaagttc





atgctgtacctgctgaccgccggcaagaaggccctggccgacggcg





gcatcaccgacgacgtgatgaaggagctggacaagcgcaagtgcgg





cgtgctgatcggctccggcatgggcggcatgaagctgttcaacgac





tccatcgaggccctgcgcatctcctacaagaagatgaaccccttct





gcgtgcccttcgccaccaccaacatgggctccgccatgctggccat





ggacctgggctggatgggccccaactactccatctccaccgcctgc





gccacctccaacttctgcatcctgaacgcctccaaccacatcgtgc





gcggcgaggccgacatgatgctgtgcggcggctccgacgccgtgat





catccccatcggcctgggcggcttcgtggcctgccgcgccctgtcc





cagcgcaacaacgaccccaccaaggcctcccgcccctgggactcca





accgcgacggcttcgtgatgggcgagggcgccggcgtgctgctgct





ggaggagctggagcacgccaagaagcgcggcgccaccatctacgcc





gagttcctgggcggctccttcacctgcgacgcctaccacatgaccg





agccccaccccgagggcgccggcgtgatcctgtgcatcgagaaggc





cctggcccaggccggcgtgtccaaggaggacgtgaactacatcaac





gcccacgccacctccacccccgccggcgacatcaaggagtaccagg





ccctggcccagtgcttcggccagaactccgagctgcgcgtgaactc





caccaagtccatgatcggccacctgctgggcgccgccggcggcgtg





gaggccgtgaccgtggtgcaggccatccgcaccggctggatccacc





ccaacctgaacctggaggaccccgacaaggccgtggacgccaagct





gctggtgggccccaagaaggagcgcctgaacgtgaaggtgggcctg





tccaactccttcggcttcggcggccacaactcctccatcctgttcg





ccccctacaacaccatgtacccctacgacgtgcccgactacgcctg





a






C. avigera KASIa (D3342, pSZ4511) codon



optimized for Prototheca


SEQ ID NO: 53


atgcagtccctgcactcccccgccctgcgcgcctcccccctggacc





ccctgcgcctgaagtcctccgccaacggcccctcctccaccgccgc





cttccgccccctgcgccgcgccaccctgcccaacatccgcgccgcc





tcccccaccgtgtccgcccccaagcgcgagaccgaccccaagaagc





gcgtggtgatcaccggcatgggcctggtgtccgtgttcggctccga





cgtggacgcctactacgagaagctgctgtccggcgagtccggcatc





tccctgatcgaccgcttcgacgcctccaagttccccacccgcttcg





gcggccagatccgcggcttcaacgccaccggctacatcgacggcaa





gaacgaccgccgcctggacgactgcctgcgctactgcatcgtggcc





ggcaagaaggccctggagaactccgacctgggcggcgactccctgt





ccaagatcgacaaggagcgcgccggcgtgctggtgggcaccggcat





gggcggcctgaccgtgttctccgacggcgtgcagaacctgatcgag





aagggccaccgcaagatctcccccttcttcatcccctacgccatca





ccaacatgggctccgccctgctggccatcgacctgggcctgatggg





ccccaactactccatctccaccgcctgcgccacctccaactactgc





ttctacgccgccgccaaccacatccgccgcggcgaggccgacctga





tgatcgccggcggcaccgaggccgccatcatccccatcggcctggg





cggcttcgtggcctgccgcgccctgtcccagcgcaacgacgacccc





cagaccgcctcccgcccctgggacaaggaccgcgacggcttcgtga





tgggcgagggcgccggcgtgctggtgatggagtccctggagcacgc





catgaagcgcggcgcccccatcatcgccgagtacctgggcggcgcc





gtgaactgcgacgcctaccacatgaccgacccccgcgccgacggcc





tgggcgtgtcctcctgcatcgagtcctccctggaggacgccggcgt





gtcccccgaggaggtgaactacatcaacgcccacgccacctccacc





ctggccggcgacctggccgagatcaacgccatcaagaaggtgttca





agaacaccaaggacatcaagatcaacgccaccaagtccatgatcgg





ccactgcctgggcgcctccggcggcctggaggccatcgccaccatc





aagggcatcaccaccggctggctgcacccctccatcaaccagttca





accccgagccctccgtggagttcgacaccgtggccaacaagaagca





gcagcacgaggtgaacgtggccatctccaactccttcggcttcggc





ggccacaactccgtggtggccttctccgccttcaagcccaccatgt





acccctacgacgtgcccgactacgcctga






C. pulcherrima KASI (D3343, pSZ4512) codon



optimized for Prototheca


SEQ ID NO: 54


atgcactccctgcagtccccctccctgcgcgcctcccccctggacc





ccttccgccccaagtcctccaccgtgcgccccctgcaccgcgcctc





catccccaacgtgcgcgccgcctcccccaccgtgtccgcccccaag





cgcgagaccgaccccaagaagcgcgtggtgatcaccggcatgggcc





tggtgtccgtgttcggctccgacgtggacgcctactacgacaagct





gctgtccggcgagtccggcatcggccccatcgaccgcttcgacgcc





tccaagttccccacccgcttcggcggccagatccgcggcttcaact





ccatgggctacatcgacggcaagaacgaccgccgcctggacgactg





cctgcgctactgcatcgtggccggcaagaagtccctggaggacgcc





gacctgggcgccgaccgcctgtccaagatcgacaaggagcgcgccg





gcgtgctggtgggcaccggcatgggcggcctgaccgtgttctccga





cggcgtgcagtccctgatcgagaagggccaccgcaagatcaccccc





ttcttcatcccctacgccatcaccaacatgggctccgccctgctgg





ccatcgagctgggcctgatgggccccaactactccatctccaccgc





ctgcgccacctccaactactgcttccacgccgccgccaaccacatc





cgccgcggcgaggccgacctgatgatcgccggcggcaccgaggccg





ccatcatccccatcggcctgggcggcttcgtggcctgccgcgccct





gtcccagcgcaacgacgacccccagaccgcctcccgcccctgggac





aaggaccgcgacggcttcgtgatgggcgagggcgccggcgtgctgg





tgctggagtccctggagcacgccatgaagcgcggcgcccccatcat





cgccgagtacctgggcggcgccatcaactgcgacgcctaccacatg





accgacccccgcgccgacggcctgggcgtgtcctcctgcatcgagt





cctccctggaggacgccggcgtgtcccccgaggaggtgaactacat





caacgcccacgccacctccaccctggccggcgacctggccgagatc





aacgccatcaagaaggtgttcaagaacaccaaggacatcaagatca





acgccaccaagtccatgatcggccactgcctgggcgcctccggcgg





cctggaggccatcgccaccatcaagggcatcaacaccggctggctg





cacccctccatcaaccagttcaaccccgagccctccgtggagttcg





acaccgtggccaacaagaagcagcagcacgaggtgaacgtggccat





ctccaactccttcggcttcggcggccacaactccgtggtggccttc





tccgccttcaagcccaccatgtacccctacgacgtgcccgactacg





cctga






C. avigera mitochondrial KAS (D3344, pSZ4513)



codon optimized for Prototheca


SEQ ID NO: 55


atggtgttcctgccctggcgcaagatgctgtgcccctcccagtacc





gcttcctgcgccccctgtcctcctccaccaccttcgacccccgccg





cgtggtggtgaccggcctgggcatggtgacccccctgggctgcggc





gtgaacaccacctggaagcagctgatcgagggcaagtgcggcatcc





gcgccatctccctggaggacctgaagatggacgccttcgacatcga





cacccaggcctacgtgttcgaccagctgacctccaaggtggccgcc





accgtgcccaccggcgtgaaccccggcgagttcaacgaggacctgt





ggttcaaccagaaggagcaccgcgccatcgcccgcttcatcgccta





cgccctgtgcgccgccgacgaggccctgaaggacgccaactgggag





cccaccgagcccgaggagcgcgagatgaccggcgtgtccatcggcg





gcggcaccggctccatctccgacgtgctggacgccggccgcatgat





ctgcgagaagaagctgcgccgcctgtcccccttcttcatcccccgc





atcctgatcaacatggcctccggccacgtgtccatgaagtacggct





tccagggccccaaccacgccgccgtgaccgcctgcgccaccggcgc





ccactccatcggcgacgccgcccgcatgatccagttcggcgacgcc





gacgtgatggtggccggcggcaccgagtcctccatcgacgccctgt





ccatcgccggcttctgccgctcccgcgccctgaccaccaagtacaa





ctcctgcccccaggaggcctcccgccccttcgacaccgaccgcgac





ggcttcgtgatcggcgagggctccggcgtgctggtgctggaggagc





tggaccacgcccgcaagcgcggcgccaagatgtacgccgagttctg





cggctacggcatgtccggcgacgcccaccacatcacccagccccac





tccgacggccgcggcgccatcctggccatgacccgcgccctgaagc





agtccaacctgcaccccgaccaggtggactacgtgaacgcccacgc





cacctccacctccctgggcgacgccatcgaggccaaggccatcaag





accgtgttctccgaccacgccatgtccggctccctggccctgtcct





ccaccaagggcgccatcggccacctgctgggcgccgccggcgccgt





ggaggccatcttctccatcctggccatcaagaacggcctggccccc





ctgaccctgaacgtggcccgccccgaccccgtgttcaccgagcgct





tcgtgcccctgaccgcctccaaggagatgcacgtgcgcgccgccct





gtccaactccttcggcttcggcggcaccaacaccaccctgctgttc





acctcccccccccagaacaccatgtacccctacgacgtgcccgact





acgcctga






C. avigera KASIII (D3345, pSZ4514) Codon



optimized for Prototheca.


SEQ ID NO: 56


atggccaacgcctacggcttcgtgggctcctccgtgcccaccgtgg





gccgcgccgcccagttccagcagatgggctccggcttctgctccgt





ggacttcatctccaagcgcgtgttctgctgctccgccgtgcagggc





gccgacaagcccgcctccggcgactcccgcgccgagtaccgcaccc





cccgcctggtgtcccgcggctgcaagctgatcggctccggctccgc





catccccaccctgcaggtgtccaacgacgacctggccaagatcgtg





gacaccaacgacgagtggatctccgtgcgcaccggcatccgcaacc





gccgcgtgctgaccggcaaggactccctgaccaacctggccaccga





ggccgcccgcaaggccctggagatggcccaggtggacgccgaggac





gtggacatggtgctgatgtgcacctccacccccgaggacctgttcg





gctccgccccccagatccagaaggccctgggctgcaagaagaaccc





cctgtcctacgacatcaccgccgcctgctccggcttcgtgctgggc





ctggtgtccgccgcctgccacatccgcggcggcggcttcaacaacg





tgctggtgatcggcgccgactccctgtcccgctacgtggactggac





cgaccgcggcacctgcatcctgttcggcgacgccgccggcgccgtg





ctggtgcagtcctgcgacgccgaggaggacggcctgttcgccttcg





acctgcactccgacggcgacggccagcgccacctgcgcgccgtgat





caccgagaacgagaccgaccacgccgtgggcaccaacggctccgtg





tccgacttccccccccgccgctcctcctactcctgcatccagatga





acggcaaggaggtgttccgcttcgcctgccgctccgtgccccagtc





catcgagctggccctgggcaaggccggcctgaacggctccaacatc





gactggctgctgctgcaccaggccaaccagcgcatcatcgacgccg





tggccacccgcctggaggtgccccaggagcgcgtgatctccaacct





ggccaactacggcaacacctccgccgcctccatccccctggccctg





gacgaggccgtgcgcggcggcaaggtgaagcccggccacctgatcg





ccaccgccggcttcggcgccggcctgacctggggctccgccatcgt





gcgctggggcaccatgtacccctacgacgtgcccgactacgcctga






C. hookeriana FATB2 (“Ch FATB2”)



SEQ ID NO: 57


MVAAAASSAFFPVPAPGASPKPGKFGNWPSSLSPSFKPKSIPNGGF





QVKANDSAHPKANGSAVSLKSGSLNTQEDTSSSPPPRTFLHQLPDW





SRLLTAITTVFVKSKRPDMHDRKSKRPDMLVDSFGLESTVQDGLVF





RQSFSIRSYEIGTDRTASIETLMNHLQETSLNHCKSTGILLDGFGR





TLEMCKRDLIWVVIKMQIKVNRYPAWGDTVEINTRFSRLGKIGMGR





DWLISDCNTGEILVRATSAYAMMNQKTRRLSKLPYEVHQEIVPLFV





DSPVIEDSDLKVHKEKVKTGDSIQKGLTPGWNDLDVNQHVSNVKYI





GWILESMPTEVLETQELCSLALEYRRECGRDSVLESVTAMDPSKVG





VRSQYQHLLRLEDGTAIVNGATEWRPKNAGANGAISTGKTSNGNSV





S





23S rRNA for UTEX 1439, UTEX 1441, UTEX 1435,


UTEX 1437 Prototheca moriformis


SEQ ID NO: 58


TGTTGAAGAATGAGCCGGCGACTTAAAATAAATGGCAGGCTAAGAG





AATTAATAACTCGAAACCTAAGCGAAAGCAAGTCTTAATAGGGCGC





TAATTTAACAAAACATTAAATAAAATCTAAAGTCATTTATTTTAGA





CCCGAACCTGAGTGATCTAACCATGGTCAGGATGAAACTTGGGTGA





CACCAAGTGGAAGTCCGAACCGACCGATGTTGAAAAATCGGCGGAT





GAACTGTGGTTAGTGGTGAAATACCAGTCGAACTCAGAGCTAGCTG





GTTCTCCCCGAAATGCGTTGAGGCGCAGCAATATATCTCGTCTATC





TAGGGGTAAAGCACTGTTTCGGTGCGGGCTATGAAAATGGTACCAA





ATCGTGGCAAACTCTGAATACTAGAAATGACGATATATTAGTGAGA





CTATGGGGGATAAGCTCCATAGTCGAGAGGGAAACAGCCCAGACCA





CCAGTTAAGGCCCCAAAATGATAATGAAGTGGTAAAGGAGGTGAAA





ATGCAAATACAACCAGGAGGTTGGCTTAGAAGCAGCCATCCTTTAA





AGAGTGCGTAATAGCTCACTG





Amino acid sequence of the C. hookeriana KASIV


(D3668, pSZ4756). The algal transit


peptide is underlined.


SEQ ID NO: 59



MASAAFTMSACPAMTGRAPGARRSGRPVATRLRGSTFQCLDPCNQQ






RFLGDNGFASLFGSKPLRSNRGHLRLGRTSHSGEVMAVAMQPAQEV





STNKKPATKQRRVVVTGMGVVTPLGHDPDVYYNNLLDGISGISEIE





NFDCSQFPTRIAGEIKSFSTDGWVAPKFSERMDKFMLYMLTAGKKA





LADGGITEDAMKELNKRKCGVLIGSGLGGMKVFSDSIEALRTSYKK





ISPFCVPFSTTNMGSAILAMDLGWMGPNYSISTACATSNFCILNAA





NHIIKGEADMMLCGGSDAAVLPVGLGGFVACRALSQRNNDPTKASR





PWDSNRDGFVMGEGAGVLLLEELEHAKKRGATIYAEFLGGSFTCDA





YHMTEPHPEGAGVILCIEKALAQSGVSREDVNYINAHATSTPAGDI





KEYQALAHCFGQNSELRVNSTKSMIGHLLGGAGGVEAVAVVQAIRT





GWIHPNINLEDPDEGVDAKLLVGPKKEKLKVKVGLSNSFGFGGHNS





SILFAPCN





Nucleotide sequence of the C. hookeriana KASIV


(D3668, pSZ4756) expression vector. The 5′ and


3′ homology arms enabling targeted integration 


into the SAD2-1 locus are noted with


lowercase. The endogenous SAD2-1 promoter


(present within the 5′ homology targeting arm)


drives the expression of the codon optimized


Ch KASIV (noted with lowercase bold text) and


is terminated with the PmHSP90 3′UTR noted in


underlined, lower case bold. The PmHXT1-2


promoter is noted in uppercase italic which


drives expression of the ScMelibiase


selection marker noted with lowercase italic


followed by the PmPGK 3′UTR terminator


highlighted in uppercase. Restriction cloning


sites and spacer DNA fragments are noted as


underlined, uppercase plain lettering.


SEQ ID NO: 60


gccggtcaccacccgcatgctcgtactacagcgcacgcaccgcttc





gtgatccaccgggtgaacgtagtcctcgacggaaacatctggttcg





ggcctcctgcttgcactcccgcccatgccgacaacctttctgctgt





taccacgacccacaatgcaacgcgacacgaccgtgtgggactgatc





ggttcactgcacctgcatgcaattgtcacaagcgcttactccaatt





gtattcgtttgttttctgggagcagttgctcgaccgcccgcgtccc





gcaggcagcgatgacgtgtgcgtggcctgggtgtttcgtcgaaagg





ccagcaaccctaaatcgcaggcgatccggagattgggatctgatcc





gagtttggaccagatccgccccgatgcggcacgggaactgcatcga





ctcggcgcggaacccagctttcgtaaatgccagattggtgtccgat





acctggatttgccatcagcgaaacaagacttcagcagcgagcgtat





ttggcgggcgtgctaccagggttgcatacattgcccatttctgtct





ggaccgctttactggcgcagagggtgagttgatggggttggcaggc





atcgaaacgcgcgtgcatggtgtgcgtgtctgttttcggctgcacg





aattcaatagtcggatgggcgacggtagaattgggtgtggcgctcg





cgtgcatgcctcgccccgtcgggtgtcatgaccgggactggaatcc





cccctcgcgaccatcttgctaacgctcccgactctcccgaccgcgc





gcaggatagactcttgttcaaccaatcgacaGGTACCatggcttcc






gcggcattcaccatgtcggcgtgccccgcgatgactggcagggccc







ctggggcacgtcgctccggacggccagtcgccacccgcctgagggg







cagcaccttccagtgcctggacccctgcaaccagcagcgcttcctg







ggcgacaacggcttcgcgtcgctgttcggctccaagcccctgcgca







gcaaccgcggccacctgcgcctgggccgcacctcgcactccggcga







ggtgatggccgtcgcgatgcagcccgcccaggaggtgagcaccaac







aagaagcccgcgaccaagcagcgccgcgtggtcgtgaccggcatgg







gcgtcgtgacccccctgggccacgaccccgacgtgtattataacaa







cctgctggacggcatctcgggcatctccgagatcgagaacttcgac







tgcagccagttccccacccgcatcgccggcgagatcaagtcgttct







ccaccgacggctgggtcgcgcccaagttcagcgagcgcatggacaa







gttcatgctgtatatgctgaccgccggcaagaaggcgctggccgac







ggcggcatcaccgaggacgcgatgaaggagctgaacaagcgcaagt







gcggcgtgctgatcggctcgggcctgggcggcatgaaggtcttctc







cgacagcatcgaggccctgcgcacctcgtataagaagatctccccc







ttctgcgtgcccttcagcaccaccaacatgggctcggcgatcctgg







cgatggacctgggctggatgggccccaactattccatcagcaccgc







gtgcgccacctcgaacttctgcatcctgaacgcggccaaccacatc







atcaagggcgaggcggacatgatgctgtgcggcggctccgacgccg







cggtgctgcccgtcggcctgggcggcttcgtggcctgccgcgcgct







gagccagcgcaacaacgaccccaccaaggcctcgcgcccctgggac







tccaaccgcgacggcttcgtcatgggcgagggcgcgggcgtgctgc







tgctggaggagctggagcacgccaagaagcgcggcgcgaccatcta







tgccgagttcctgggcggcagcttcacctgcgacgcgtatcacatg







accgagccccaccccgagggcgccggcgtcatcctgtgcatcgaga







aggcgctggcccagtcgggcgtgtcccgcgaggacgtgaactatat







caacgcgcacgccaccagcacccccgcgggcgacatcaaggagtat







caggccctggcgcactgcttcggccagaactcggagctgcgcgtca







actccaccaagagcatgatcggccacctgctgggcggcgccggcgg







cgtggaggcggtcgccgtggtccaggcgatccgcaccggctggatc







caccccaacatcaacctggaggaccccgacgagggcgtggacgcca







agctgctggtcggccccaagaaggagaagctgaaggtgaaggtcgg







cctgtcgaactccttcggcttcggcggccacaacagctcgatcctg







ttcgcgccctgcaactga
CTCGAGacagacgaccttggcaggcgtc








gggtagggaggtggtggtgatggcgtctcgatgccatcgcacgcat









ccaacgaccgtatacgcatcgtccaatgaccgtcggtgtcctctct









gcctccgt
ttt
gtgagatgtctcaggcttggtgcatcctcgggtgg









ccagccacgttgcgcgtcgtgctgcttgcctctcttgcgcctctgt









ggtactggaaaatatcatcgaggcccgtt
ttt
ttgctcccatttcc









ttt
ccgctacatcttgaaagcaaacgacaaacgaagcagcaagcaa









agagcacgaggacggtgaacaagtctgtcacctgtatacatctatt









tccccgcgggtgcacctactctctctcctgccccggcagagtcagc









tgccttacgtgacCCTAGG

TGCGGTGAGAATCGAAAATGCATCGTT







TCTAGGTTCGGAGACGGTCAATTCCCTGCTCCGGCGAATCTGTCGG







TCAAGCTGGCCAGTGGACAATGTTGCTATGGCAGCCCGCGCACATG







GGCCTCCCGACGCGGCCATCAGGAGCCCAAACAGCGTGTCAGGGTA







TGTGAAACTCAAGAGGTCCCTGCTGGGCACTCCGGCCCCACTCCGG







GGGCGGGACGCCAGGCATTCGCGGTCGGTCCCGCGCGACGAGCGAA







ATGATGATTCGGTTACGAGACCAGGACGTCGTCGAGGTCGAGAGGC







AGCCTCGGACACGTCTCGCTAGGGCAACGCCCCGAGTCCCCGCGAG







GGCCGTAAACATTGTTTCTGGGTGTCGGAGTGGGCATTTTGGGCCC







GATCCAATCGCCTCATGCCGCTCTCGTCTGGTCCTCACGTTCGCGT







ACGGCCTGGATCCCGGAAAGGGCGGATGCACGTGGTGTTGCCCCGC







CATTGGCGCCCACGTTTCAAAGTCCCCGGCCAGAAATGCACAGGAC







CGGCCCGGCTCGCACAGGCCATGCTGAACGCCCAGATTTCGACAGC







AACACCATCTAGAATAATCGCAACCATCCGCGTTTTGAACGAAACG







AAACGGCGCTGTTTAGCATGTTTCCGACATCGTGGGGGCCGAAGCA







TGCTCCGGGGGGAGGAAAGCGTGGCACAGCGGTAGCCCATTCTGTG







CCACACGCCGACGAGGACCAATCCCCGGCATCAGCCTTCATCGACG







GCTGCGCCGCACATATAAAGCCGGACGCCTAACCGGTTTCGTGGTT







ATG
ACTAGT
atgttcgcgttctacttcctgacggcctgcatctccc







tgaagggcgtgttcggcgtctccccctcctacaacggcctgggcct







gacgccccagatgggctgggacaactggaacacgttcgcctgcgac







gtctccgagcagctgctgctggacacggccgaccgcatctccgacc







tgggcctgaaggacatgggctacaagtacatcatcctggacgactg







ctggtcctccggccgcgactccgacggcttcctggtcgccgacgag







cagaagttccccaacggcatgggccacgtcgccgaccacctgcaca







acaactccttcctgttcggcatgtactcctccgcgggcgagtacac







gtgcgccggctaccccggctccctgggccgcgaggaggaggacgcc







cagttcttcgcgaacaaccgcgtggactacctgaagtacgacaact







gctacaacaagggccagttcggcacgcccgagatctcctaccaccg







ctacaaggccatgtccgacgccctgaacaagacgggccgccccatc







ttctactccctgtgcaactggggccaggacctgaccttctactggg







gctccggcatcgcgaactcctggcgcatgtccggcgacgtcacggc







ggagttcacgcgccccgactcccgctgcccctgcgacggcgacgag







tacgactgcaagtacgccggcttccactgctccatcatgaacatcc







tgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctg







gaacgacctggacaacctggaggtcggcgtcggcaacctgacggac







gacgaggagaaggcgcacttctccatgtgggccatggtgaagtccc







ccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctccta







ctccatctactcccaggcgtccgtcatcgccatcaaccaggactcc







aacggcatccccgccacgcgcgtctggcgctactacgtgtccgaca







cggacgagtacggccagggcgagatccagatgtggtccggccccct







ggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtg







tcccgccccatgaacacgaccctggaggagatcttcttcgactcca







acctgggctccaagaagctgacctccacctgggacatctacgacct







gtgggcgaaccgcgtcgacaactccacggcgtccgccatcctgggc







cgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagt







cctacaaggacggcctgtccaagaacgacacccgcctgttcggcca







gaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtc







cccgcccacggcatcgcgttctaccgcctgcgcccctcctcctg
AT







ACAACTTATTACGTATTCTGACCGGCGCTGATGTGGCGCGGACGCC






GTCGTACTCTTTCAGACTTTACTCTTGAGGAATTGAACCTTTCTCG





CTTGCTGGCATGTAAACATTGGCGCAATTAATTGTGTGATGAAGAA





AGGGTGGCACAAGATGGATCGCGAATGTACGAGATCGACAACGATG





GTGATTGTTATGAGGGGCCAAACCTGGCTCAATCTTGTCGCATGTC





CGGCGCAATGTGATCCAGCGGCGTGACTCTCGCAACCTGGTAGTGT





GTGCGCACCGGGTCGCTTTGATTAAAACTGATCGCATTGCCATCCC





GTCAACTCACAAGCCTACTCTAGCTCCCATTGCGCACTCGGGCGCC





CGGCTCGATCAATGTTCTGAGCGGAGGGCGAAGCGTCAGGAAATCG





TCTCGGCAGCTGGAAGCGCATGGAATGCGGAGCGGAGATCGAATCA






GATATCAAGCTCCATCGAGCTCcagccacggcaacaccgcgcgcct






tgcggccgagcacggcgacaagaacctgagcaagatctgcgggctg





atcgccagcgacgagggccggcacgagatcgcctacacgcgcatcg





tggacgagttcttccgcctcgaccccgagggcgccgtcgccgccta





cgccaacatgatgcgcaagcagatcaccatgcccgcgcacctcatg





gacgacatgggccacggcgaggccaacccgggccgcaacctcttcg





ccgacttctccgcggtcgccgagaagatcgacgtctacgacgccga





ggactactgccgcatcctggagcacctcaacgcgcgctggaaggtg





gacgagcgccaggtcagcggccaggccgccgcggaccaggagtacg





tcctgggcctgccccagcgcttccggaaactcgccgagaagaccgc





cgccaagcgcaagcgcgtcgcgcgcaggcccgtcgccttctcctgg





atctccgggcgcgagatcatggtctagggagcgacgagtgtgcgtg





cggggctggcgggagtgggacgccctcctcgctcctctctgttctg





aacggaacaatcggccaccccgcgctacgcgccacgcatcgagcaa





cgaagaaaaccccccgatgataggttgcggtggctgccgggatata





gatccggccgcacatcaaagggcccctccgccagagaagaagctcc





tttcccagcagactcct





Nucleotide sequence of the C. hookeriana KASIV


CDS codon optimized for P. moriformis.


SEQ ID NO: 61


atggcttccgcggcattcaccatgtcggcgtgccccgcgatgactg





gcagggcccctggggcacgtcgctccggacggccagtcgccacccg





cctgaggggcagcaccttccagtgcctggacccctgcaaccagcag





cgcttcctgggcgacaacggcttcgcgtcgctgttcggctccaagc





ccctgcgcagcaaccgcggccacctgcgcctgggccgcacctcgca





ctccggcgaggtgatggccgtcgcgatgcagcccgcccaggaggtg





agcaccaacaagaagcccgcgaccaagcagcgccgcgtggtcgtga





ccggcatgggcgtcgtgacccccctgggccacgaccccgacgtgta





ttataacaacctgctggacggcatctcgggcatctccgagatcgag





aacttcgactgcagccagttccccacccgcatcgccggcgagatca





agtcgttctccaccgacggctgggtcgcgcccaagttcagcgagcg





catggacaagttcatgctgtatatgctgaccgccggcaagaaggcg





ctggccgacggcggcatcaccgaggacgcgatgaaggagctgaaca





agcgcaagtgcggcgtgctgatcggctcgggcctgggcggcatgaa





ggtcttctccgacagcatcgaggccctgcgcacctcgtataagaag





atctcccccttctgcgtgcccttcagcaccaccaacatgggctcgg





cgatcctggcgatggacctgggctggatgggccccaactattccat





cagcaccgcgtgcgccacctcgaacttctgcatcctgaacgcggcc





aaccacatcatcaagggcgaggcggacatgatgctgtgcggcggct





ccgacgccgcggtgctgcccgtcggcctgggcggcttcgtggcctg





ccgcgcgctgagccagcgcaacaacgaccccaccaaggcctcgcgc





ccctgggactccaaccgcgacggcttcgtcatgggcgagggcgcgg





gcgtgctgctgctggaggagctggagcacgccaagaagcgcggcgc





gaccatctatgccgagttcctgggcggcagcttcacctgcgacgcg





tatcacatgaccgagccccaccccgagggcgccggcgtcatcctgt





gcatcgagaaggcgctggcccagtcgggcgtgtcccgcgaggacgt





gaactatatcaacgcgcacgccaccagcacccccgcgggcgacatc





aaggagtatcaggccctggcgcactgcttcggccagaactcggagc





tgcgcgtcaactccaccaagagcatgatcggccacctgctgggcgg





cgccggcggcgtggaggcggtcgccgtggtccaggcgatccgcacc





ggctggatccaccccaacatcaacctggaggaccccgacgagggcg





tggacgccaagctgctggtcggccccaagaaggagaagctgaaggt





gaaggtcggcctgtcgaactccttcggcttcggcggccacaacagc





tcgatcctgttcgcgccctgcaactga





Amino acid sequence of the C. aequipetala


KASIV. The algal transit peptide is underlined.



C aeque KASIV



SEQ ID NO: 62



MAAAASMVASPLCTWLVAACMSTSFDNDPRSPSIKRIPRRRRILSQ






SSLRGSTFQCLVTSYIDPCNQFSSSASLSFLGDNGFASLFGSKPFR





SIRGHRRLGRASHSGEAMAVALEPAQEVATKKKPVVKQRRVVVTGM





GVVTPLGHEPDVYYNNLLDGVSGISEIETFDCNQFPTRIAGEIKSF





STDGWVAPKLSKRMDKFMLYLLTAGKKALADGGITDDVMKELDKRK





CGVLIGSGLGGMKLFSDSIEALRISYKKMNPFCVPFATTNMGSAML





AMDLGWMGPNYSISTACATSNFCILNSANHIVRGEADMMLCGGSDA





VIIPIGLGGFVACRALSQRNNDPTKASRPWDSNRDGFVMGEGAGVL





LLEELEHAKKRGATIYAEFLGGSFTCDAYHMTEPHPEGAGVILCIE





KALAQAGVSREDVNYINAHATSTPAGDIKEYQALAHCFGHNSELRV





NSTKSMIGHLIGAAGGVEAVTVVQAIRTGWIHPNLNLEDPDKAVDA





KLLVGPKKERLNVKVGLSNSFGFGGHNSSILFAPYN





Amino acid sequence of the C. glassostoma


KASIV. The algal transit peptide is


underlined.


S07_Cg_Locus_4548_Transcript_4/9_translation


SEQ ID NO: 63


MAAAASSQLCTWLVAACMSTSFDNNPRSPSIKRLPRRRRVLSHCSL





RGSTFQCLVTSYIDPCNQYCSSASLSFLGDNGFTPLIGSKPFRSNR





GHPRLGRASHSGEAMAVALQPAQEVATKKKPAMKQRRVVVTGMGVV





TPLGHEPDVYYNNLLDGVSGISEIETFDCTQFPTRIAGEIKSFSTD





GWVAPKLSKRMDKFMLYLLTAGKKALADGGITDDVMKELDKRKCGV





LIGSGMGGMKLFNDSIEALRVSYKKMNPFCVPFATTNMGSAMLAMD





LGWMGPNYSISTACATSNFCILNAANHIVRGEADMMLCGGSDAVII





PIGLGGFVACRALSQRNNDPTKASRPWDSNRDGFVMGEGAGVLLLE





ELEHAKKRGATIYAEFLGGSFTCDAYHMTEPHPEGAGVILCIEKAL





AQAGVSREDVNYINAHATSTPAGDIKEYQALAHCFGQNSELRVNST





KSMIGHLLGAAGGVEAVTVIQAIRTGWIHPNLNLDDPDKAVDAKFL





VGPKKERLNVKVGLSNSFGFGGHNSSILFAPYN





Amino acid sequence of the C. hookeriana


KASIV. The algal transit peptide is


underlined.


S26_ChookKASIV_trinity_43853-translation


SEQ ID NO: 64



MAASSCMVGSPFCTWLVSACMSTSFDNDPRSLSHKRLRLSRRRRTL







SSHCSLRGSTPQCLDPCNQHCFLGDNGFASLFGSKPPRSDLGHLRL






GRTSHSGEVMAVAQEVSTNKKPATKQRRVVVTGMGVVTPLGHDPDV





YYNNLLDGVSGISEIETFDCTQFPTRIAGEIKSFSTDGLVAPKLSK





RMDKFMLYILTAGKKALADGGITEDVMKELDKRKCGVLIGSGLGGM





KVFSDSVEALRISYKKISPFCVPFSTTNMGSAILAMDLGWMGPNYS





ISTACATSNFCILNAANHITKGEADMMLCGGSDAAILPIGMGGFVA





CRALSQRNNDPTKASRPWDSNRDGFVMGEGAGVLLLEELEHAKKRG





ATIYAEFLGGSFTCDAYHMTEPHPEGAGVILCIEKALAQAGVSRED





VNYINAHATSTPAGDIKEYQALAHCFGQNSELRVNSTKSMIGHLIG





AAGGVEAVTVIQAIRTGWIHPNLNLENPDKAVDAKLLVGPKKERLD





VKVGLSNSFGFGGHNSSILFAPYN





Amino acid sequence of the C. glassostoma


KASIV. The algal transit peptide is


underlined


S07_Cg_Locus_3059_Transcript_2/2_translation


SEQ ID NO: 65



MAAASSMVASSFSTSLVAACMSTSFDNDPRFLSHKRIRLSLRRGST







FQCLGDNGFASLIGSKPPRSNHGHRRLGRTSHSGEAMAVAMQPAQE






ASTKNKHVTKQRRVVVTGMGVVTPLGHDPDVYYNNLLDGVSGISEI





ENFDCSQFPTRIAGEIKSFSTEGYVIPKFAKRMDKFMLYLLTAGKK





ALEDGGITEDVMKELDKRKCGVLIGSGMGGMKIINDSIAALNVSYK





KMTPFCVPFSTTNMGSAMLAIDLGWMGPNYSISTACATSNYCILNA





ANHIIRGEANMMLCGGSDAVVIPVGLGGFVACRALSQRNNDPTKAS





RPWDSNRDGFVMGEGAGVLLLEELEHAKKRGATIYAEFLGGSFTCD





AYHMTEPHPDGAGVILCIEKALAQSGVSREDVNYINAHATSTPAGD





IKEYQALAHCFGQNSELRVNSTKSMIGHLLGAAGGVEAVSVVQAIR





TGWIHPNINLEDPDEAVDAKLLVGPKKEKLKVKVGLSNSFGFGGHN





SSILFAPCN





Amino acid sequence of the C. carthagenesis


KASIV. The algal transit peptide is


underlined


S05_CcrKASIV_17190_Seq_7/7_translation


SEQ ID NO: 66


MAAAAAFASPFCTWLVAACMSSASRHDPLPSPSSKPRLRRKILFQC





AGRGSSAGSGSSFHSLVTSYLGCLEPCHEYYTSSSSLGFSSLFGST





PGRTSRRQRRLHRASHSGEAMAVALQPAQEVTTKKKPSIKQRRVVV





TGMGVVTPLGHDPDVFYNNLLDGASGISEIETFDCAQFPTRIAGEI





KSFSTDGWVAPKLSKRMDKFMLYMLTAGKKALADGGISEDVMKELD





KRKCGVLIGSAMGGMKVFNDAIEALRISYKKMNPFCVPFATTNMGS





AMLAMDLGWMGPNYSISTACATSNFCILNAANHITRGEADMMLCGG





SDAVIIPIGLGGFVACRALSQRNNDPTKASRPWDSNRDGFVMGEGA





GVLLLEELEHAKKRGATIYAEFLGGSFTCDAYHMTEPHPKGAGVIL





CIERALAQSGVSREDVNYINAHATSTPAGDIKEYQALAHCFGQNSE





LRVNSTKSMIGHLLGAAGGVEAVTVVQAIRTGWVHPNINLENPDEG





VDAKLLVGPKKEKLKVKVGLSNSFGFGGHNSSILFAPYN





Amino acid sequence of the C. carthagenesis


KASIV. The algal transit peptide is


underlined


S05_CcrKASIV_17190_Seq_6/7_translation


SEQ ID NO: 67



MAAAASVVASPFCTWLVAACMSASFDNEPRSLSPKRRRSLSRSSSA







SLRFLGGNGFASLFGSDPLRPNRGHRRLRHASHSGEAMAVALQPAQ






EVSTKKKPVTKQRRVVVTGMGVVTPLGHDPDVYYNNLLDGVSGISE





IETFDCTQFPTRIAGEIKSFSTDGWVAPKLSKRMDKFMLYMLTAGK





KALADGGITEEVMKELDKRKCGVLIGSGMGGMKLFNDSIEALRISY





KKMNPFCVPFATTNMGSAMLAMDLGWMGPNYSISTACATSNFCILN





AANHITRGEADMMLCGGSDAVIIPIGLGGFVACRALSQRNNDPTKA





SRPWDSNRDGFVMGEGAGVLLLEELEHAKKRGATIYAEFLGGSFTC





DAYHMTEPHPKGAGVILCIERALAQSGVSREDVNYINAHATSTPAG





DIKEYQALAHCFGQNSELRVNSTKSMIGHLLGAAGGVEAVTVVQAI





RTGWVHPNINLENPDEGVDAKLLVGPKKEKLKVKVGLSNSFGFGGH





NSSILFAPYN





Amino acid sequence of the C. pulcherrima


KASIV. The algal transit peptide is


underlined


pSZ2181-CpulcKASIV


SEQ ID NO: 68


MPAASSLLASPLCTWLLAACMSTSFHPSDPLPPSISSPRRRLSRRR





ILSQCAPLPSASSALRGSSFHTLVTSYLACFEPCHDYYTSASLFGS





RPIRTTRRHRRLNRASPSREAMAVALQPEQEVTTKKKPSIKQRRVV





VTGMGVVTPLGHDPDVFYNNLLDGTSGISEIETFDCAQFPTRIAGE





IKSFSTDGWVAPKLSKRMDKFMLYMLTAGKKALTDGGITEDVMKEL





DKRKCGVLIGSAMGGMKVFNDAIEALRISYKKMNPFCVPFATTNMG





SAMLAMDLGWMGPNYSISTACATSNFCIMNAANHIIRGEADVMLCG





GSDAVIIPIGMGGFVACRALSQRNSDPTKASRPWDSNRDGFVMGEG





AGVLLLEELEHAKKRGATIYAEFLGGSFTCDAYHMTEPHPDGAGVI





LCIEKALAQSGVSREDVNYINAHATSTPAGDIKEYQALIHCFGQNR





ELKVNSTKSMIGHLLGAAGGVEAVSVVQAIRTGWIHPNINLENPDE





GVDTKLLVGPKKERLNVKVGLSNSFGFGGHNSSILFAPYI





Clade 1 KASIV consensus C8 and C10


SEQ ID NO: 69



MAAASCMVASPFCTWLVAACMSTSXDNDPRSLSHKRLRLSRRRRTL







SSHCSLRGSTFQCLDPCNQHCFLGDNGFASLFGSKPPRSNRGHLRL







GRTSHSGEVMAVAXQXAQEVSTNKKPATKQRRVVVTGMGVVTPLGH






DPDVYYNNLLDGVSGISEIENFDCSQFPTRIAGEIKSFSTDGWVAP





KLSKRMDKFMLYILTAGKKALADGGITEDVMKELDKRKCGVLIGSG





LGGMKVFSDSIEALRTSYKKISPFCVPFSTTNMGSAILAMDLGWMG





PNYSISTACATSNFCILNAANHITKGEADMMLCGGSDAAILPIGMG





GFVACRALSQRNNDPTKASRPWDSNRDGFVMGEGAGVLLLEELEHA





KKRGATIYAEFLGGSFTCDAYHMTEPHPEGAGVILCIEKALAQSGV





SREDVNYINAHATSTPAGDIKEYQALAHCFGQNSELRVNSTKSMIG





HLLGGAGGVEAVTVVQAIRTGWIHPNINLEDPDEGVDAKLLVGPKK





EKLKVKVGLSNSFGFGGHNSSILFAPCN





Clade 2 KASIV consensus C10 only


SEQ ID NO: 70



MAAAASMXXSPLCTWLVAACMSTSFDNDPRSPSIKRLPRRRRVLSQ







CSLRGSTFQCLVTSYIDPCNQYCSSASLSFLGDNGFASLFGSKPFR







SNRGHRRLGRASHSGEAMAVALQPAQEVATKKKPVIKQRRVVVTGM






GVVTPLGHEPDVYYNNLLDGVSGISEIETFDCTQFPTRIAGEIKSF





STDGWVAPKLSKRMDKFMLYLLTAGKKALADGGITDDVMKELDKRK





CGVLIGSGMGGMKLFNDSIEALRXSYKKMNPFCVPFATTNMGSAML





AMDLGWMGPNYSISTACATSNFCILNAANHIVRGEADMMLCGGSDA





VIIPIGLGGFVACRALSQRNNDPTKASRPWDSNRDGFVMGEGAGVL





LLEELEHAKKRGATIYAEFLGGSFTCDAYHMTEPHPEGAGVILCIE





KALAQAGVSREDVNYINAHATSTPAGDIKEYQALAHCFGQNSELRV





NSTKSMIGHLLGAAGGVEAVTVXQAIRTGWIHPNLNLEDPDKAVDA





KLLVGPKKERLNVKVGLSNSFGFGGHNSSILFAPYNV





Clade 1 KASIV consensus mature protein


SEQ ID NO: 71


KQRRVVVTGMGVVTPLGHDPDVYYNNLLDGVSGISEIENFDCSQFP





TRIAGEIKSFSTDGWVAPKLSKRMDKFMLYILTAGKKALADGGITE





DVMKELDKRKCGVLIGSGLGGMKVFSDSIEALRTSYKKISPFCVPF





STTNMGSAILAMDLGWMGPNYSISTACATSNFCILNAANHITKGEA





DMMLCGGSDAAILPIGMGGFVACRALSQRNNDPTKASRPWDSNRDG





FVMGEGAGVLLLEELEHAKKRGATIYAEFLGGSFTCDAYHMTEPHP





EGAGVILCIEKALAQSGVSREDVNYINAHATSTPAGDIKEYQALAH





CFGQNSELRVNSTKSMIGHLLGGAGGVEAVTVVQAIRTGWIHPNIN





LEDPDEGVDAKLLVGPKKEKLKVKVGLSNSFGFGGHNSSILFAPCN





Clade 2 KASIV consensus mature protein


SEQ ID NO: 72


KQRRVVVTGMGVVTPLGHEPDVYYNNLLDGVSGISEIETFDCTQFP





TRIAGEIKSFSTDGWVAPKLSKRMDKFMLYLLTAGKKALADGGITD





DVMKELDKRKCGVLIGSGMGGMKLFNDSIEALRXSYKKMNPFCVPF





ATTNMGSAMLAMDLGWMGPNYSISTACATSNFCILNAANHIVRGEA





DMMLCGGSDAVIIPIGLGGFVACRALSQRNNDPTKASRPWDSNRDG





FVMGEGAGVLLLEELEHAKKRGATIYAEFLGGSFTCDAYHMTEPHP





EGAGVILCIEKALAQAGVSREDVNYINAHATSTPAGDIKEYQALAH





CFGQNSELRVNSTKSMIGHLLGAAGGVEAVTVXQAIRTGWIHPNLN





LEDPDKAVDAKLLVGPKKERLNVKVGLSNSFGFGGHNSSILFAPYN





V








Claims
  • 1. A recombinant polynucleotide or a complement thereof encoding a polypeptide having at least 94% sequence identity to amino acids 34 to 502 of SEQ ID NO: 8 or 92% sequence identity to amino acids 34 to 525 of SEQ ID NO: 14 wherein said polypeptide has β-keto-acyl ACP synthase (KASIV) activity.
  • 2. A transformation vector comprising the polynucleotide of claim 1.
  • 3. The vector of claim 2, comprising promoter and 3′UTR sequences in operable linkage to the polynucleotide, and optionally a flanking sequence for homologous recombination.
  • 4. A host cell comprising the vector of claim 2.
  • 5. The host cell of claim 4, wherein the host cell is a plastidic oleaginous cell having a type II fatty acid biosynthesis pathway.
  • 6. The host cell of claim 5, wherein the host cell is a microalga.
  • 7. The host cell of claim 6, wherein the host cell is of Trebouxiophyceae, and optionally of the genus Chlorella or Prototheca.
  • 8. The host cell of claim 7, wherein the microalga is of the species Prototheca moriformis.
  • 9. A method for making a cell-oil, the method comprising cultivating a host cell of any one of claim 4, so as produce the cell-oil, wherein the oil comprises triglcyerides and microalgal sterols.
  • 10. The method of claim 9, wherein the cell oil comprises sterols characterized by a sterol profile and the sterol profile has an excess of ergosterol over β-sitosterol and/or the presence of 22, 23-dihydrobrassicasterol, poriferasterol or clionasterol.
  • 11. A host cell comprising a recombinant polynucleotide or a complement thereof encoding a polypeptide having at least 94% sequence identity to amino acids 34 to 502 of SEQ ID NO: 8 or 92% sequence identity to amino acids 34 to 525 of SEQ ID NO: 14 wherein said polypeptide has β-keto-acyl ACP synthase (KASIV) activity.
  • 12. The host cell of claim 11, further comprising a polynucleotide encoding a fatty acyl-ACP thioesterase (FATB) polypeptide, wherein the FATB polypeptide has at least 90% amino acid sequence identity to SEQ ID NO: 1 or SEQ ID NO: 57.
  • 13. The host cell of claim 12, wherein the host cell produces a cell oil characterized by a fatty acid profile with (i) at least 30, 40, 50, or 55% C14:0, (ii) at least 7, 8, 9, 10, 11, 12, 13, or 14% C8:0, (ii) at least 10, 15, 20, 25, 30, or 35 area % for the sum of C8:0 and C10:0, or (iii) a C8/C10 ratio in the range of 2.2-2.5, 2.5-3.0, or 3.0-3.4.
  • 14. The host cell of any one of claim 11, wherein the host cell is a plastidic oleaginous cell having a type II fatty acid biosynthesis pathway.
  • 15. The host cell of claim 14, wherein the host cell is a microalga.
  • 16. The host cell of claim 15, wherein the host cell is of Trebouxiophyceae, and optionally of the genus Chlorella or Prototheca.
  • 17. The host cell of claim 16, wherein the microalga is of the species Prototheca moriformis.
  • 18. The host cell of claim 11, wherein one or more of the polynucleotides is codon-optimized for expression in the host cell such that the polynucleotide's coding sequence contains the most or second most preferred codon for at least 60% of the codons of the coding sequence such that the codon-optimized sequence is more efficiently translated in the host cell relative to a non-optimized sequence.
  • 19. The host cell of claim 18, wherein the coding sequence comprises the most preferred codon for at least 80% of the codons of the coding sequence.
  • 20. A method for making a cell-oil, the method comprising cultivating a host cell of claim 11, so as produce the cell-oil, wherein the oil comprises triglcyerides and microalgal sterols.
  • 21. The recombinant polynucleotide of claim 1, wherein the polynucleotide is codon-optimized for expression in microalgae.
  • 22. The recombinant polynucleotide of claim 21, wherein the polynucleotide's coding sequence comprises the most or second most preferred codon for at least 60% of the codons.
  • 23. The recombinant polynucleotide of claim 22, wherein the coding sequence comprises the most preferred codon for at least 80% of the codons.
  • 24. The recombinant polynucleotide of claim 1, wherein the polynucleotide comprises nucleic acids 105 to 1515 of SEQ ID NO: 27 or nucleic acids 150 to 1629 of SEQ ID NO: 33.
  • 25. The recombinant polynucleotide of claim 22, wherein the polynucleotide comprises nucleic acids 102 to 1542 of SEQ ID NO: 45 or nucleic acids 100 to 1611 of SEQ ID NO: 51.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 14/796,406, filed Jul. 10, 2015, entitled “Novel Ketoacyl ACP Synthase Genes and Uses Thereof”, which claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Patent Application No. 62/023,112, filed Jul. 10, 2014, and U.S. Provisional Patent Application No. 62/081,143, filed Nov. 18, 2014, each of which is incorporated herein by reference in its entirety. This application includes subject matter related to that disclosed in U.S. provisional patent application No. 62/023,109, entitled “Tailored Oils,” filed Jul. 10, 2014, which is hereby incorporated by reference in its entirety for all purposes.

US Referenced Citations (358)
Number Name Date Kind
2235056 Walmesley Mar 1941 A
2383602 Gerald et al. Aug 1945 A
2967700 Lee et al. Jan 1961 A
3142135 Kathrein Jul 1964 A
3280502 Farrow et al. Oct 1966 A
3320693 Shirota et al. May 1967 A
3475274 Harned Oct 1969 A
3957578 Narita et al. May 1976 A
3962466 Nakabayashi Jun 1976 A
3983008 Shinozaki et al. Sep 1976 A
4005062 Schnell Jan 1977 A
4103039 Mandai et al. Jul 1978 A
4182777 Saunders Jan 1980 A
4273790 Bosco et al. Jun 1981 A
4341038 Bloch et al. Jul 1982 A
4373434 Alexander et al. Feb 1983 A
4390561 Blair et al. Jun 1983 A
4519845 Ou May 1985 A
4627192 Fick Dec 1986 A
4673490 Subramanian et al. Jun 1987 A
4755467 Scopes et al. Jul 1988 A
4901635 Williams Feb 1990 A
4992605 Craig et al. Feb 1991 A
5001059 Skatrud et al. Mar 1991 A
5091116 Krishnamurthy et al. Feb 1992 A
5130242 Barclay Jul 1992 A
5212087 Fournier et al. May 1993 A
5252198 Harrison et al. Oct 1993 A
5270175 Moll et al. Dec 1993 A
5270177 Ramos Lazcano et al. Dec 1993 A
5304481 Davies et al. Apr 1994 A
5330913 Nakayama Jul 1994 A
5338673 Thepenier et al. Aug 1994 A
5354878 Connemann et al. Oct 1994 A
5360730 Orndorff et al. Nov 1994 A
5391724 Kindl et al. Feb 1995 A
5395455 Scott et al. Mar 1995 A
5436394 Willmitzer et al. Jul 1995 A
5455167 Voelker et al. Oct 1995 A
5460870 Arthurs Oct 1995 A
5492938 Kyle et al. Feb 1996 A
5518918 Barclay et al. May 1996 A
5547699 Lizuka et al. Aug 1996 A
5563058 Davies et al. Oct 1996 A
5595965 Wiggins Jan 1997 A
5597400 Nonomura et al. Jan 1997 A
5680812 Linsgeseder Oct 1997 A
5685218 Kemper Nov 1997 A
5693507 Daniell et al. Dec 1997 A
5711983 Kyle et al. Jan 1998 A
5723761 Voelker et al. Mar 1998 A
5756135 Seeley May 1998 A
5826500 Kemper Oct 1998 A
5888947 Lambert et al. Mar 1999 A
5900370 Running May 1999 A
5910630 Davies et al. Jun 1999 A
5945585 Hitz et al. Aug 1999 A
5968791 Davis et al. Oct 1999 A
6139897 Goto et al. Oct 2000 A
6166231 Hoeksema Dec 2000 A
6255505 Bijl et al. Jul 2001 B1
6338866 Criggall et al. Jan 2002 B1
6344231 Nakajo et al. Feb 2002 B1
6355861 Thomas Mar 2002 B1
6372460 Gladue et al. Apr 2002 B1
6410281 Barclay Jun 2002 B1
6441208 Bijl et al. Aug 2002 B2
6534261 Cox, III et al. Mar 2003 B1
6620427 Lasekan et al. Sep 2003 B2
6680426 Daniell et al. Jan 2004 B2
6727373 Bijl et al. Apr 2004 B2
6750048 Ruecker et al. Jun 2004 B2
6762345 Cahoon et al. Jul 2004 B1
6763345 Hempleman et al. Jul 2004 B1
6867308 Bartok et al. Mar 2005 B2
7053267 Knauf et al. May 2006 B2
7063957 Chen Jun 2006 B2
7081567 Xue et al. Jul 2006 B2
7109392 Broglie et al. Sep 2006 B1
7135620 Daniell et al. Nov 2006 B2
7214297 Wang et al. May 2007 B2
7268276 Ruezinsky et al. Sep 2007 B2
7309602 David Dec 2007 B2
7351558 Ruecker et al. Apr 2008 B2
7468267 Monod et al. Dec 2008 B2
7504259 Yadav et al. Mar 2009 B2
7588931 Damude et al. Sep 2009 B2
7622570 Oswald et al. Nov 2009 B2
7652156 Hillion et al. Jan 2010 B2
7662598 Ruecker et al. Feb 2010 B2
7678931 Fichtali et al. Mar 2010 B2
7781193 Ruecker et al. Aug 2010 B2
7851199 Bailey et al. Dec 2010 B2
7879591 Damude et al. Feb 2011 B2
7883882 Franklin et al. Feb 2011 B2
7914832 Uchino Mar 2011 B2
7935515 Franklin et al. May 2011 B2
7939710 Apt et al. May 2011 B1
8003365 Yoshikuni Aug 2011 B2
8029579 Knuth et al. Oct 2011 B2
8043496 Schuh et al. Oct 2011 B1
8088718 Bicerano et al. Jan 2012 B2
8119583 Day et al. Feb 2012 B2
8163675 Navarrete et al. Apr 2012 B2
8187860 Franklin et al. May 2012 B2
8222010 Franklin et al. Jul 2012 B2
8268610 Franklin et al. Sep 2012 B2
8278261 Day et al. Oct 2012 B2
8283483 Williams et al. Oct 2012 B2
8435767 Franklin et al. May 2013 B2
8450083 Day et al. May 2013 B2
8476059 Trimbur et al. Jul 2013 B2
8497116 Trimbur et al. Jul 2013 B2
8512999 Trimbur et al. Aug 2013 B2
8518689 Trimbur et al. Aug 2013 B2
8530207 Watts et al. Sep 2013 B2
8592188 Franklin et al. Nov 2013 B2
8633012 Franklin et al. Jan 2014 B2
8647397 Trimbur et al. Feb 2014 B2
8674180 Franklin et al. Mar 2014 B2
8697402 Trimbur et al. Apr 2014 B2
8697427 Franklin et al. Apr 2014 B2
8765424 Franklin et al. Jul 2014 B2
8772575 Franklin et al. Jul 2014 B2
8790914 Trimbur et al. Jul 2014 B2
8802422 Trimbur et al. Aug 2014 B2
8822176 Day et al. Sep 2014 B2
8822177 Day et al. Sep 2014 B2
8846352 Chua et al. Sep 2014 B2
8846375 Franklin et al. Sep 2014 B2
8852885 Franklin et al. Oct 2014 B2
8889401 Trimbur et al. Nov 2014 B2
8889402 Trimbur et al. Nov 2014 B2
8945908 Franklin et al. Feb 2015 B2
8951777 Franklin et al. Feb 2015 B2
9062294 Franklin et al. Jun 2015 B2
9066527 Franklin et al. Jun 2015 B2
9109239 Franklin et al. Aug 2015 B2
9068213 Franklin et al. Oct 2015 B2
9102973 Franklin et al. Oct 2015 B2
9200307 Franklin et al. Dec 2015 B2
9249252 Ngantung Feb 2016 B2
9249436 Franklin et al. Feb 2016 B2
9249441 Franklin et al. Feb 2016 B2
9255282 Franklin et al. Feb 2016 B2
9279136 Franklin et al. Mar 2016 B2
9353389 Franklin et al. May 2016 B2
9388435 Franklin et al. Jul 2016 B2
9434909 Trimbur et al. Sep 2016 B2
9464304 Franklin et al. Oct 2016 B2
9551017 Franklin et al. Jan 2017 B2
9593351 Franklin et al. Mar 2017 B2
9657299 Franklin et al. May 2017 B2
9719114 Franklin et al. Aug 2017 B2
9909155 Franklin et al. Mar 2018 B2
9969990 Davis et al. May 2018 B2
10006034 Franklin et al. Jun 2018 B2
10053715 Franklin et al. Aug 2018 B2
20020012979 Berry et al. Jan 2002 A1
20020059661 Dehesh May 2002 A1
20020122868 Floeter et al. Sep 2002 A1
20020144455 Bertrand et al. Oct 2002 A1
20020178467 Dehesh Nov 2002 A1
20030054524 Spener et al. Mar 2003 A1
20030079249 Shanklin et al. Apr 2003 A1
20030082595 Jiang et al. May 2003 A1
20030097686 Knauf et al. May 2003 A1
20030145350 Spener et al. Jul 2003 A1
20030211594 Rosebrook Nov 2003 A1
20030229237 Haas et al. Dec 2003 A1
20040053235 Smirnoff et al. Mar 2004 A1
20040074760 Portnoff et al. Apr 2004 A1
20040230085 Jakkula et al. Nov 2004 A1
20040235123 Liao et al. Nov 2004 A1
20040033557 Scott et al. Dec 2004 A1
20050005333 Ruezinsky et al. Jan 2005 A1
20050102716 Venkatramesh et al. May 2005 A1
20050112735 Zappi et al. May 2005 A1
20050153002 Socia Rosales et al. Jul 2005 A1
20050170479 Weaver et al. Aug 2005 A1
20050262588 Dehesh et al. Nov 2005 A1
20050266537 Chen Dec 2005 A1
20050272611 Lord et al. Dec 2005 A1
20060048240 Alexandrov et al. Mar 2006 A1
20060075522 Cleveland et al. Apr 2006 A1
20060094088 Picataggio et al. May 2006 A1
20060094089 Barclay May 2006 A1
20060094090 Damude et al. May 2006 A1
20060107346 Schneeberger et al. May 2006 A1
20060122410 Fichtali et al. Jun 2006 A1
20060130182 Heim et al. Jun 2006 A1
20060153826 Arnould et al. Jul 2006 A1
20060156436 Nakamura et al. Jul 2006 A1
20060162006 Sherman et al. Jul 2006 A9
20060199984 Kuechler et al. Sep 2006 A1
20060225341 Rohr et al. Oct 2006 A1
20060286205 Fichtali et al. Dec 2006 A1
20070004016 Picataggio et al. Jan 2007 A1
20070009988 Monod et al. Jan 2007 A1
20070048848 Sears Mar 2007 A1
20070099280 Barclay May 2007 A1
20070118916 Puzio et al. May 2007 A1
20070167396 Dillon et al. Jul 2007 A1
20070218183 Nakhasi et al. Sep 2007 A1
20070248531 Debryun et al. Oct 2007 A1
20070254354 Millis et al. Nov 2007 A1
20070261138 Graham et al. Nov 2007 A1
20070275438 David Nov 2007 A1
20080014620 Op Den Camp et al. Jan 2008 A1
20080038804 Du et al. Feb 2008 A1
20080040822 Metz et al. Feb 2008 A1
20080107776 Prakash et al. May 2008 A1
20080160593 Oyler Jul 2008 A1
20080194029 Hegemann et al. Aug 2008 A1
20080206379 Fabritius et al. Aug 2008 A1
20080229451 Cao et al. Sep 2008 A1
20080256666 Zhu et al. Oct 2008 A1
20080283803 Rapp et al. Nov 2008 A1
20090004715 Trimbur et al. Jan 2009 A1
20090011480 Trimbur et al. Jan 2009 A1
20090018300 Bloom et al. Jan 2009 A1
20090035842 Trimbur et al. Feb 2009 A1
20090047721 Trimbur et al. Feb 2009 A1
20090061493 Trimbur et al. Mar 2009 A1
20090064567 Lippmeier et al. Mar 2009 A1
20090099260 Namal Senanayake et al. Apr 2009 A1
20090117253 Hong et al. May 2009 A1
20090142322 Ye Jun 2009 A1
20090145392 Clark et al. Jun 2009 A1
20090148918 Trimbur et al. Jun 2009 A1
20090176272 Champagne et al. Jul 2009 A1
20090211150 Wu et al. Aug 2009 A1
20090234146 Cooney et al. Sep 2009 A1
20090271892 Thomasset et al. Oct 2009 A1
20090274736 Dillon et al. Nov 2009 A1
20090298143 Roessler et al. Dec 2009 A1
20090298159 Wu et al. Dec 2009 A1
20090305942 Day et al. Dec 2009 A1
20090317878 Champagne et al. Dec 2009 A1
20100010088 Chilton et al. Jan 2010 A1
20100021912 Farese et al. Jan 2010 A1
20100035309 Havemen et al. Feb 2010 A1
20100035320 Blanchard et al. Feb 2010 A1
20100058651 Knuth et al. Mar 2010 A1
20100093031 Kobayashi et al. Apr 2010 A1
20100105955 Alibhai et al. Apr 2010 A1
20100120643 Brown et al. May 2010 A1
20100137647 Bradin Jun 2010 A1
20100151112 Franklin et al. Jun 2010 A1
20100151535 Franklin et al. Jun 2010 A1
20100151538 Franklin et al. Jun 2010 A1
20100151539 Franklin et al. Jun 2010 A1
20100151567 Franklin et al. Jun 2010 A1
20100154293 Hom et al. Jun 2010 A1
20100170144 Day et al. Jul 2010 A1
20100186117 Fabijanski et al. Jul 2010 A1
20100196575 Sanchez et al. Aug 2010 A1
20100237279 Hulse et al. Sep 2010 A1
20100239712 Brooks et al. Sep 2010 A1
20100248322 Pfeiffer et al. Sep 2010 A1
20100249260 Casati et al. Sep 2010 A1
20100297292 Brooks et al. Nov 2010 A1
20100297295 Brooks et al. Nov 2010 A1
20100297296 Brooks et al. Nov 2010 A1
20100297323 Brooks et al. Nov 2010 A1
20100297325 Brooks et al. Nov 2010 A1
20100297331 Brooks et al. Nov 2010 A1
20100303957 Brooks et al. Dec 2010 A1
20100303961 Brooks et al. Dec 2010 A1
20100303989 Brooks et al. Dec 2010 A1
20100303990 Brooks et al. Dec 2010 A1
20100323413 Trimbur et al. Dec 2010 A1
20100323414 Trimbur et al. Dec 2010 A1
20110014665 Trimbur et al. Jan 2011 A1
20110015417 Trimbur et al. Jan 2011 A1
20110047863 Trimbur et al. Mar 2011 A1
20110065821 Abraham et al. Mar 2011 A1
20110072714 Gaertner Mar 2011 A1
20110111470 Berry et al. May 2011 A1
20110165634 Franklin et al. Jul 2011 A1
20110190522 Trimbur et al. Aug 2011 A1
20110203168 Franklin et al. Aug 2011 A1
20110250658 Franklin et al. Oct 2011 A1
20110252696 Franklin et al. Oct 2011 A1
20110256268 Franklin et al. Oct 2011 A1
20110256282 Piechocki et al. Oct 2011 A1
20110270001 Ishihara et al. Nov 2011 A1
20110284215 Pfeiffer et al. Nov 2011 A1
20110293785 Franklin et al. Dec 2011 A1
20110294174 Franklin et al. Dec 2011 A1
20120009636 Berry et al. Jan 2012 A1
20120021495 Vanzin Jan 2012 A1
20120028319 Trimbur et al. Feb 2012 A1
20120034662 Hu et al. Feb 2012 A1
20120060242 Senger et al. Mar 2012 A1
20120119862 Franklin et al. May 2012 A1
20120122192 Trimbur et al. May 2012 A1
20120128851 Brooks et al. May 2012 A1
20120156717 Allnutt et al. Jun 2012 A1
20120164701 Trimbur et al. Jun 2012 A1
20120203018 Franklin et al. Aug 2012 A1
20120277452 Franklin Nov 2012 A1
20120277453 Franklin et al. Nov 2012 A1
20120283460 Franklin et al. Nov 2012 A1
20120288930 Trimbur et al. Nov 2012 A1
20120324784 Franklin et al. Dec 2012 A1
20120329109 Chua et al. Dec 2012 A1
20130004646 Franklin et al. Jan 2013 A1
20130006006 Day et al. Jan 2013 A1
20130031678 Zheng et al. Jan 2013 A1
20130034887 Franklin et al. Feb 2013 A1
20130078709 Franklin et al. Mar 2013 A1
20130089916 Franklin et al. Apr 2013 A1
20130096211 Franklin et al. Apr 2013 A1
20130102039 Franklin et al. Apr 2013 A1
20130116462 Durrett et al. May 2013 A1
20130122180 Brooks et al. May 2013 A1
20130157917 Fluck Jun 2013 A1
20130165677 Franklin et al. Jun 2013 A1
20130197247 Franklin et al. Aug 2013 A1
20130273621 Franklin et al. Oct 2013 A1
20130295268 Day et al. Nov 2013 A1
20130296591 Day et al. Nov 2013 A1
20130316410 Franklin et al. Nov 2013 A1
20130317240 Franklin et al. Nov 2013 A1
20130323382 Franklin et al. Dec 2013 A1
20130323823 Franklin et al. Dec 2013 A1
20130330790 Trimbur et al. Dec 2013 A1
20130331584 Franklin et al. Dec 2013 A1
20130338385 Franklin et al. Dec 2013 A1
20140170716 Trimbur et al. Jun 2014 A1
20140249342 Franklin et al. Sep 2014 A1
20140256024 Franklin et al. Sep 2014 A1
20140256600 Dillon et al. Sep 2014 A1
20140305031 Day et al. Oct 2014 A1
20140315267 Franklin et al. Oct 2014 A1
20140336100 Day et al. Nov 2014 A1
20140357746 Ngantung et al. Dec 2014 A1
20140377847 Franklin et al. Dec 2014 A1
20150073163 Chua et al. Mar 2015 A1
20150125914 Franklin et al. May 2015 A1
20150218604 Franklin et al. Aug 2015 A1
20150275149 Dummer et al. Oct 2015 A1
20150344917 Franklin et al. Dec 2015 A1
20160010066 Davis et al. Jan 2016 A1
20160024538 Franklin et al. Jan 2016 A1
20160032332 Davis et al. Feb 2016 A1
20160186191 Franklin et al. Jun 2016 A1
20160186219 Franklin et al. Jun 2016 A1
20160194672 Franklin et al. Jul 2016 A1
20160348119 Franklin et al. Dec 2016 A1
20160376617 Franklin et al. Dec 2016 A1
20170022436 Trimbur et al. Jan 2017 A1
20170145450 Franklin et al. May 2017 A1
20170314048 Franklin et al. Nov 2017 A1
20180142218 Moseley et al. May 2018 A1
20180216144 Rakitsky Aug 2018 A1
20180237811 Franklin et al. Aug 2018 A1
Foreign Referenced Citations (113)
Number Date Country
2011323288 Sep 2016 AU
1251108 Apr 2000 CN
1852986 Oct 2006 CN
101037639 Sep 2007 CN
101092353 Dec 2007 CN
101108997 Jan 2008 CN
101611125 Dec 2009 CN
101765661 Jun 2010 CN
101824440 Sep 2010 CN
2756977 Jun 1978 DE
0 562 504 Nov 1995 EP
1 178 118 Feb 2002 EP
1 642 959 Apr 2006 EP
1 681 337 Jul 2006 EP
1 741 767 Jan 2007 EP
1 947 189 Jul 2008 EP
2 327 776 Jun 2011 EP
2 152 849 Feb 2013 EP
2924126 May 2009 FR
824151 Nov 1959 GB
57-150379 Sep 1982 JP
06-253872 Sep 1994 JP
07-008217 Jan 1995 JP
07-075557 Mar 1995 JP
09-511650 Nov 1997 JP
10-46181 Feb 1998 JP
2000-136199 May 2000 JP
2000-175696 Jun 2000 JP
2002-125601 May 2002 JP
2002-523864 Jul 2002 JP
2003-102467 Apr 2003 JP
2003-325067 Nov 2003 JP
2007-314549 Dec 2007 JP
2008-081559 Apr 2008 JP
2008-514221 May 2008 JP
2008-148663 Jul 2008 JP
2008-178871 Aug 2008 JP
2010-528627 Aug 2010 JP
2015-500009 Jan 2015 JP
6071904 Feb 2017 JP
10-2007-00085649 Aug 2007 KR
10-2010-0022473 Mar 2010 KR
WO 91018105 Nov 1991 WO
WO 92011373 Jul 1992 WO
WO 93006712 Apr 1993 WO
WO 94010288 May 1994 WO
WO 9513390 May 1995 WO
WO 9527791 Oct 1995 WO
WO 95031553 Nov 1995 WO
WO 97040698 Nov 1997 WO
WO 98032770 Jul 1998 WO
WO 99037166 Jul 1999 WO
WO 9964618 Nov 1999 WO
WO 00011682 Mar 2000 WO
WO 00061740 Oct 2000 WO
WO 00066750 Nov 2000 WO
WO 0074471 Dec 2000 WO
WO 02008403 Jan 2002 WO
WO 02085293 Oct 2002 WO
WO 2004016282 Feb 2004 WO
WO 04101753 Nov 2004 WO
WO 2005003310 Jan 2005 WO
WO 2005035693 Apr 2005 WO
WO 06055322 May 2006 WO
WO 2006052807 May 2006 WO
WO 2006122299 Nov 2006 WO
WO 2007027669 Mar 2007 WO
WO 200738566 Apr 2007 WO
WO 07106903 Sep 2007 WO
WO 07117511 Oct 2007 WO
WO 07121100 Oct 2007 WO
WO 07134294 Nov 2007 WO
WO 2007141257 Dec 2007 WO
WO 08002643 Jan 2008 WO
WO 2008011811 Jan 2008 WO
WO 08060571 May 2008 WO
WO 2008058664 May 2008 WO
WO 08083352 Jul 2008 WO
WO 08130372 Oct 2008 WO
WO 2008134836 Nov 2008 WO
WO 08151149 Dec 2008 WO
WO 09076559 Jun 2009 WO
WO 09105620 Aug 2009 WO
WO 09126843 Oct 2009 WO
WO 2009124070 Oct 2009 WO
WO 10019813 Feb 2010 WO
WO 2010017346 Feb 2010 WO
WO 10045368 Apr 2010 WO
WO 2010037209 Apr 2010 WO
WO 10063031 Jun 2010 WO
WO 10063032 Jun 2010 WO
WO 10111698 Sep 2010 WO
WO 10120923 Oct 2010 WO
WO 10120939 Oct 2010 WO
WO 11026008 Mar 2011 WO
WO 2011075716 Jun 2011 WO
WO 11090730 Jul 2011 WO
WO 11130573 Oct 2011 WO
WO 11130576 Oct 2011 WO
WO 11130578 Oct 2011 WO
WO 11150410 Dec 2011 WO
WO 11150411 Dec 2011 WO
WO 12061647 May 2012 WO
WO 12106560 Aug 2012 WO
WO 12154626 Nov 2012 WO
WO 13082186 Jun 2013 WO
WO 2013096891 Jun 2013 WO
WO 13158938 Oct 2013 WO
WO 14176515 Oct 2014 WO
WO 15051319 Apr 2015 WO
WO 2016007862 Jan 2016 WO
WO 2016164495 Oct 2016 WO
WO 2017058802 Apr 2017 WO
Non-Patent Literature Citations (810)
Entry
Dehesh. AF060519.2—GenBank. 2003.
U.S. Appl. No. 14/184,288, Notice of Allowance dated Feb. 3, 2016.
U.S. Appl. No. 15/173,335, Requirement for Restriction/Election dated Jul. 5, 2017.
U.S. Appl. No. 12/628,140, Final Office Action dated Feb. 2, 2016.
U.S. Appl. No. 12/628,140, Non-Final Office Action dated Nov. 21, 2016.
U.S. Appl. No. 12/628,144, Final Office Action dated Mar. 1, 2016.
U.S. Appl. No. 12/628,144, Notice of Allowance dated Jun. 13, 2016.
U.S. Appl. No. 14/285,354, Notice of Allowance dated Feb. 1, 2016.
U.S. Appl. No. 13/555,009, Non-Final Office Action dated Sep. 16, 2014.
U.S. Appl. No. 14/626,505, Requirement for Restriction/Election dated Apr. 26, 2016.
U.S. Appl. No. 14/626,505, Non-Final Office Action dated Jul. 19, 2016.
U.S. Appl. No. 13/118,365, Notice of Allowance dated Sep. 20, 2013.
U.S. Appl. No. 14/276,943, Notice of Allowance dated Sep. 22, 2015.
U.S. Appl. No. 14/975,016, Notice of Allowance dated Jan. 10, 2017.
U.S. Appl. No. 14/975,016, Notice of Allowance dated Jan. 31, 2017.
U.S. Appl. No. 14/975,016, Notice of Allowance dated Feb. 24, 2017.
U.S. Appl. No. 13/118,369, Requirement for Restriction/Election dated Dec. 13, 2012.
U.S. Appl. No. 13/118,369, Non-Final Office Action dated Mar. 28, 2013.
U.S. Appl. No. 13/118,369, Final Office Action dated Mar. 28, 2014.
U.S. Appl. No. 13/630,757, Notice of Allowance dated Oct. 23, 2015.
U.S. Appl. No. 13/630,757, Supplemental Notice of Allowance dated Dec. 3, 2015.
U.S. Appl. No. 13/630,757, Miscellaneous Communication dated Dec. 17, 2015.
U.S. Appl. No. 13/630,757, Notice of Allowance (Supplemental Notice of Allowability) dated Jan. 15, 2016.
U.S. Appl. No. 14/819,117, Requirement for Restriction/Election dated Apr. 11, 2016.
U.S. Appl. No. 14/819,117, Non-Final Office Action dated Nov. 2, 2016.
U.S. Appl. No. 14/819,117, Final Office Action dated Mar. 22, 2017.
U.S. Appl. No. 14/819,117, Notice of Allowance dated Sep. 7, 2017.
U.S. Appl. No. 13/288,815, Requirement for Restriction/Election dated Feb. 11, 2014.
U.S. Appl. No. 14/730,671, Notice of Allowance dated Mar. 21, 2016.
U.S. Appl. No. 13/365,253, Non-Final Office Action dated Mar. 25, 2015.
U.S. Appl. No. 13/365,253, Notice of Allowance dated Sep. 24, 2015.
U.S. Appl. No. 13/365,253, Notice of Allowance (Notice of Allowability) dated Nov. 6, 2015.
U.S. Appl. No. 14/974,983, Requirement for Restriction/Election dated Jul. 28, 2016.
U.S. Appl. No. 14/974,983, Non-Final Office Action dated Dec. 5, 2016.
U.S. Appl. No. 14/974,983, Final Office Action dated Jul. 19, 2017.
U.S. Appl. No. 13/804,185, Final Office Action dated Dec. 11, 2015.
U.S. Appl. No. 13/804,185, Non-Final Office Action dated Jul. 20, 2016.
U.S. Appl. No. 13/804,185, Notice of Allowance dated Jan. 27, 2017.
U.S. Appl. No. 13/941,353, Notice of Allowance dated May 21, 2014.
U.S. Appl. No. 14/474,244, Notice of Allowance dated Sep. 18, 2015.
U.S. Appl. No. 14/975,137, Notice of Allowance dated Sep. 6, 2016.
U.S. Appl. No. 15/369,557, Non-Final Office Action dated Jun. 23, 2017.
U.S. Appl. No. 14/506,491, Requirement for Restriction/Election dated Jan. 19, 2017.
U.S. Appl. No. 14/506,491, Non-Final Office Action dated Jun. 1, 2017.
U.S. Appl. No. 13/087,305, Non-Final Office Action dated Aug. 15, 2012.
U.S. Appl. No. 13/087,305, Final Office Action dated Mar. 18, 2013.
Australian Patent Examination Report No. 1 dated Jan. 23, 2013 issued in AU 2008259834.
Australian Patent Examination Report No. 1 dated May 4, 2015 issued in AU 2013251198.
Canadian Examination Report dated Nov. 30, 2015 issued in Application No. CA 2,689,724.
Chinese First Office Action dated Apr. 23, 2012 issued in Application No. CN 200880100976.9.
Chinese Second Office Action dated Jan. 21, 2013 issued in Application No. CN 200880100976.9.
Chinese Third Office Action dated May 28, 2013 issued in Application No. CN 200880100976.9.
Chinese Fourth Office Action dated Sep. 11, 2013 issued in Application No. CN 200880100976.9.
Chinese Fifth Office Action dated Jan. 23, 2014 issued in Application No. CN 200880100976.9.
Chinese First Office Action dated May 18, 2016 issued in Application No. CN 201410321130.5.
Columbian Opposition dated Sep. 5, 2011 [Brief Communication dated Sep. 5, 2011 re Application No. EP 06 075 479.3, D50-Declaration of Dr. Matthias Staufenbiel; D51-WO-A-2004/016282; D52-Sturchler-Pierrat et al. Proc Natl. Acad. Sci. USA, 94:13287-13292 (1997)].
European Office Action dated Mar. 9, 2012 issued in Application No. EP 08 769 988.0.
Indonesian first Office Action dated Apr. 13, 2016 issued in Application No. W00200903371.
Indonesian second Office Action dated Aug. 4, 2016 issued in Application No. W00200903371.
Indian Examination Report dated Oct. 4, 2016 issued in Application No. IN 8573/DELNP/2009.
Korean Office Action dated Aug. 25, 2014 [no translation] issued in Application No. KR 10-2009-7027618.
Australian Patent Examination Report No. 1 dated Dec. 9, 2014 issued in AU 2009319722.
Canadian Examination Report dated Oct. 3, 2016 issued in Application No. CA 2,745,129.
Chinese First Office Action dated Apr. 26, 2013 issued in CN 200980155465.1.
Chinese Second Office Action dated Jan. 16, 2014 issued in CN 200980155465.1.
Chinese Third Office Action dated Aug. 28, 2014 issued in CN 200980155465.1.
Chinese Rejection Decision dated Mar. 24, 2015 issued in CN 200980155465.1.
Columbian Office Action dated Feb. 13, 2013 issued in CO 11.080.882.
Columbian Office Action dated Nov. 24, 2014 issued in CO 11.080.882.
Columbian Office Action dated Mar. 16, 2015 issued in CO 11.080.882.
Columbian Office Action dated Mar. 1, 2016 issued in CO 11.080.882.
European Extended Search Report dated Sep. 12, 2014 issued in EP 09 829 851.6.
European Office Action dated Jun. 25, 2015 issued in EP 09 829 851.6.
European Partial Search Report dated Sep. 12, 2016 issued in EP 16 16 6059.2.
European Extended Search Report dated Dec. 14, 2016 issued in EP 16 16 6059.2.
Israel Office Action dated Sep. 30, 2013 issued in IL 213157.
Japanese Office Action dated Jul. 1, 2016 issued in JP 2011-538719.
Japanese Office Action dated Oct. 31, 2016 issued in JP 2011-538719.
Japanese Office Action [no translation] dated May 9, 2016 issued in JP 2015-126360.
Japanese Final Office Action [no translation] dated Nov. 24, 2016 issued in JP 2015-126360.
Korean Office Action dated Nov. 14, 2015 issued in KR 10-2011-7014923.
Korean Office Action dated Oct. 5, 2016 issued in KR 10-2011-7014923.
Malaysian Examination Report dated Mar. 31, 2016 issued in MY PI2011002435.
Mexican Office Action dated Sep. 21, 2012 issued in MX/a/2010/011065.
Australian Patent Examination Report No. 1 dated Feb. 25, 2014 issued in AU 2009319721.
Australian Patent Examination Report No. 2 dated Oct. 29, 2015 issued in AU 2009319721.
Canadian Office Action dated Dec. 1, 2015 issued in CA 2,745,040.
Chinese First Office Action dated Dec. 23, 2013 issued in CN 200980155463.2.
Chinese Second Office Action dated Oct. 20, 2014 issued in CN 200980155463.2.
Columbian Office Action dated Mar. 21, 2013 issued in CO 11.080.835.
European Office Action dated Mar. 21, 2016 issued in EP 09 829 850.8.
European Extended Search Report dated May 16, 2016 issued in EP 09 829 850.8.
Israel Office Action dated Apr. 8, 2014 issued in IL 213154.
Israel Office Action dated Jun. 30, 2015 issued in IL 213154.
Israel Office Action dated Sep. 14, 2016 issued in IL 213154.
Japanese Office Action dated May 13, 2014 issued in JP 2011-538718.
Japanese Office Action dated Jun. 1, 2015 issued in JP 2011-538718.
Japanese Office Action dated Oct. 16, 2016 issued in JP 2014-227718.
Japanese Final Office Action [no translation] dated Jul. 13, 2016 issued in JP 2014-227718.
Korean Office Action dated Jan. 4, 2016 issued in KR 10-2011-7014925.
Korean Office Action dated Jul. 18, 2016 issued in KR 10-2011-7014925.
Korean Office Action dated Feb. 23, 2017 issued in KR 10-2011-7014925.
Mexican Office Action [no translation] dated Dec. 6, 2012 issued in MX/a/2011/005630.
Mexican Office Action [no translation] dated May 14, 2013 issued in MX/a/2011/005630.
Australian Patent Examination Report No. 1 dated Jul. 21, 2016 issued in Application No. AU 2011257982.
Canadian Examination Report dated Feb. 23, 2017 issued in Application No. CA 2,801,057.
Chinese First Office Action dated May 29, 2014 issued in Application No. CN 201180036870.9.
Chinese Second Office Action dated Apr. 15, 2015 issued in Application No. CN 201180036870.9.
Chinese Third Office Action dated Nov. 4, 2015 issued in Application No. CN 201180036870.9.
Chinese Rejection Decision dated Apr. 14, 2016 issued in Application No. CN 201180036870.9.
Chinese Notification of Reexamination dated Jan. 26, 2017 issued in Application No. CN 201180036870.9.
European Extended Search Report dated Jun. 9, 2016 issued in Application No. EP 11 787 551.8.
European Office Action dated Jan. 25, 2017 issued in Application No. EP 11 787 551.8.
Japanese Office Action dated Jul. 7, 2015 issued in Application No. JP 2013-512064.
Japanese Office Action dated Dec. 16, 2016 issued in Application No. JP 2016-001030.
Mexican Office Action dated Aug. 11, 2015 issued in Application No. MX/a/2012/013777.
Mexican Office Action dated Jan. 15, 2016 issued in Application No. MX/a/2012/013777.
Malaysian Examination Report dated Sep. 15, 2015 issued in MY PI 2012005117.
PCT International Search Report dated Nov. 3, 2011 issued in PCT/US2011/038464.
PCT Written Opinion of the International Searching Authority dated Nov. 3, 2011 issued in PCT/US2011/038464.
PCT International Preliminary Report on Patentability dated Jun. 28, 2012 issued in PCT/US2011/038464.
Australian Patent Examination Report No. 1 dated Feb. 26, 2015 issued in Application No. AU 2011257983.
Australian Examination Report dated Feb. 1, 2017 issued in Application No. AU 2016202905.
Canadian Examination Report dated May 17, 2017 issued in Application No. CA 2,801,024.
Chinese First Office Action dated Oct. 29, 2013 issued in Application No. CN 201180036696.8.
Chinese Second Office Action dated Jun. 5, 2014 issued in Application No. CN 201180036696.8.
Chinese Rejection Decision dated Jan. 14, 2015 issued in Application No. CN 201180036696.8.
Chinese Re-examination Decision dated May 26, 2015 issued in Application No. CN 201180036696.8.
Chinese Third Office Action dated Jul. 31, 2015 issued in Application No. CN 201180036696.8.
Chinese Fourth Office Action dated Dec. 30, 2015 issued in Application No. CN 201180036696.8.
European Extended Search Report dated Feb. 19, 2016 issued in Application No. EP 11 787 552.6.
European Office Action dated Oct. 11, 2016 issued in Application No. EP 11 787 552.6.
Japanese Office Action dated Jul. 7, 2015 issued in Application No. JP 2013-512605.
Japanese Final Office Action dated Feb. 29, 2016 issued in Application No. JP 2013-512605.
Japanese Office Action [no translation] dated Jul. 8, 2016 issued in Application No. JP 2013-512605.
Japanese Office Action [no translation] dated Sep. 6, 2016 issued in Application No. JP 2015-199078.
Malaysian Examination Report dated Sep. 15, 2015 issued in Application No. MY PI 2012005120.
Australian Patent Examination Report No. 1 dated Jul. 22, 2015 issued in Application No. AU 2012212079.
Chinese First Office Action dated Apr. 7, 2015 issued in Application No. CN 201280007593.3.
Chinese Second Office Action dated Nov. 17, 2015 issued in Application No. CN 201280007593.3.
Chinese Third Office Action dated Apr. 26, 2016 issued in Application No. CN 201280007593.3.
Chinese Fourth Office Action dated Oct. 17, 2016 issued in Application No. CN 201280007593.3.
Chinese Rejection Decision dated May 26, 2017 issued in Application No. CN 201280007593.3.
European Partial Supplementary Search Report dated May 8, 2015 issued in Application No. EP 12 741 997.6.
European Office Action dated Feb. 6, 2017 issued in Application No. EP 12 741 997.6.
Japanese Office Action dated Jan. 25, 2016 issued in Application No. JP 2013-552645.
Japanese Office Action [no translation] dated Apr. 20, 2016 issued in Application No. JP 2016-145348.
Mexican First Office Action dated Nov. 6, 2015 issued in Application No. MX/a/2013/008651.
Mexican Second Office Action dated Mar. 23, 2016 issued in Application No. MX/a/2013/008651.
Mexican Third Office Action dated Jul. 25, 2016 issued in Application No. MX/a/2013/008651.
Mexican First Office Action dated Apr. 24, 2017 issued in Application No. MX/a/2016/015902.
Malaysia Office Action dated Sep. 30, 2016 issued in Application No. MY PI2013002880.
PCT International Preliminary Report on Patentability dated Oct. 30, 2014 issued in PCT/US2013/037261.
Australian Patent Examination Report No. 1 dated Apr. 20, 2016 issued in Application No. AU 2013249172.
Australian Examination Report No. 2 dated Jan. 25, 2017 issued in Application No. AU 2013249172.
Chinese First Office Action dated Jul. 7, 2016 issued in Application No. CN 201380031877.0.
Chinese Second Office Action dated Mar. 24, 2017 issued in Application No. CN 201380031877.0.
European Supplementary Search Report dated Jan. 25, 2016 issued in Application No. EP 13 778 920.2.
European Examination Report dated Mar. 6, 2017 issued in Application No. EP 13 778 920.2.
Japanese First Office Action dated Mar. 10, 2017 issued in Application No. JP 2015-507197.
Mexican First Office Action dated Jul. 27, 2017 issued in Application No. MX/a/2014/012552.
Singapore Search Report and Written Opinion dated Mar. 24, 2016 issued in Application No. SG 11201406711T.
PCT International Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 5, 2016 issued in PCT/US2014/059161.
Singapore Search Report and Written Opinion dated Aug. 7, 2017 issued in Application No. SG 11201602638S.
PCT Invitation to Pay Additional Fees dated Nov. 20, 2015 issued in PCT/U52015/039951.
PCT International Search Report and Written Opinion of the International Searching Authority dated Jan. 29, 2016 issued in Application No. PCT/US2015/039951.
PCT International Preliminary Report on Patentability and Written Opinion dated Jan. 10, 2017 issued in PCT/US2015/039951.
PCT International Search Report and Written Opinion of the International Searching Authority dated Jan. 3, 2017 issued in PCT/US2016/053979.
PCT International Search Report and Written Opinion of the International Searching Authority dated Jul. 18, 2016 issued in PCT/US2016/026265.
Geneseq: Database Accession No. AXE01814, “Palmitic acid production-related gene, SEQ:20024,” XP002750550, Oct. 14, 2010.
Geneseq: Database Accession No. ADJ49365, “Oil-associated gene related protein #865,” XP002750551, Jun. 15, 2007.
Blatti, Jillian L. et al. (Jun. 2013) “Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel,” Current Opinion in Chemical Biology, 17(3):496-505.
Dehesh et al., (2001) “Overexpression of 3-Ketoacyl-Acyl-Carrier Protein Synthase IIIs in Plants Reduces the Rate of Lipid Synthesis,” Plant Physiology, 125:1103-1114.
Facciotti et al., (May 1998) “Molecular dissection of the plant acyl-acyl carrier protein thioesterases,” Fett/Lipid, Lipid-Weinheim, 100(4-5), S.:167-172 [<URL:http://www.researchgate.net/publication/247961590>].
Hsieh et al., (2012) “Accumulation of Lipid Production in Chlorella minutissima by Triacylglycerol Biosynthesis-Related Genes Cloned from Saccharomyces cerevisiae and Yarrowia lipolytica,” The Journal of Microbiology, 50(3):526-534.
Khozin-Goldberg et al. (2011) “Unravelling algal lipid metabolism: Recent advances in gene identification,” Biochemie, 93:91-100.
Kosa et al., (Feb. 2011) “Lipids from heterotrophic microbes: advances in metabolism research,” Trends in Biotechnology, 29(2):53-61.
Leonard et al., (Mar. 1998) A Cuphea β-ketoacyl-ACP synthase shifts the synthesis of fatty acids toward shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases, The Plant Journal, 13(5):621-628.
Lu et al., (2008) “Overproduction of free fatty acids in E. coli: Implications for biodiesel production,” Metabolic Engineering, 10:333-339.
Pidkowich et al., (Mar. 13, 2007) “Modulating seed β-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil,” PNAS, 104(11):4742-4747.
Radakovits et al., (2011) “Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum,” Metabolic Engineering, 13:89-95.
Schütt et al., (2002) “β-Ketoacyl-acyl carrier protein synthase IV: a key enzyme for regulation of medium-chain fatty acid synthesis in Cuphea lanceolata seeds,” Planta, 215:847-854.
U.S. Appl. No. 15/173,335, Non-Final Office Action dated Oct. 12, 2017.
U.S. Appl. No. 14/819,117, Supplemental Notice of Allowance dated Nov. 13, 2017.
U.S. Appl. No. 15/179,253, Requirement for Restriction/Election dated Sep. 28, 2017.
U.S. Appl. No. 14/974,983, Non-Final Office Action dated Oct. 26, 2017.
U.S. Appl. No. 15/369,557, Notice of Allowance dated Oct. 17, 2017.
U.S. Appl. No. 14/506,491, Final Office Action dated Dec. 5, 2017.
U.S. Appl. No. 15/092,538, Requirement for Restriction/Election dated Oct. 6, 2017.
Declaration of Dr. Matthias Staufenbiel, Opposition Document for European Patent No. EP-B-1679080 dated Aug. 2, 2011; Patentee: Janssen Alzheimer Immunotherapy; Opponent: Dr. Alexander Esslinger, 19 pp.
Colombian Office Action dated Jan. 28, 2013 issued in Application No. CO 09149183.
Colombian Office Action dated Jun. 13, 2013 issued in Application No. CO 09149183.
Colombian Office Action dated Sep. 25, 2013 issued in Application No. CO 09149183.
Japanese Notice of Reason for Denial [no translation] dated May 24, 2016 issued in Application No. JP 2016-095504.
Korean Office Action dated Aug. 25, 2014 issued in Application No. KR 10-2009-7027618 .
Mexican Office Action dated Oct. 13, 2011 issued in Application No. MX/a/2009/012850.
Mexican First Office Action dated Sep. 30, 2013 issued in Application No. MX/a/2012/000844.
Mexican Second Office Action dated Jan. 22, 2014 issued in Application No. MX/a/2012/000844.
Mexican Third Office Action dated Oct. 13, 2014 issued in Application No. MX/a/2012/000844.
Mexican Fourth Office Action dated Apr. 1, 2015 issued in Application No. MX/a/2012/000844.
Mexican Office Action dated Feb. 23, 2017 issued in Application No. MX/a/2015/008626.
Malaysian Examination and Search Report dated Dec. 31, 2013 issued in Application No. PI20095102.
Malaysian Examination and Adverse Report dated Dec. 31, 2014 issued in Application No. PI20095102.
Malaysian Examination and Clear Report dated Jul. 15, 2015 issued in Application No. PI20095102.
Malaysian Examination and Search Report dated May 15, 2017 issued in Application No. PI2014000965.
New Zealand First Examination Report dated Oct. 19, 2010 issued in Application No. NZ 581700.
New Zealand Examination Report dated Sep. 22, 2011 issued in Application No. NZ 581700.
New Zealand Examination Report dated Sep. 8, 2011 issued in Application No. NZ 595029.
New Zealand Examination Report dated Dec. 19, 2012 issued in Application No. NZ 595029.
Philippines Examination Report dated Apr. 7, 2014 issued in Application No. PH 1-2009-502294.
Philippines Examination Report dated Nov. 18, 2014 issued in Application No. PH 1-2009-502294.
Singapore Written Opinion and Search Report dated Apr. 29, 2011 issued in Application No. SG 200907978-1.
Thailand Office Action dated Feb. 22, 2011 issued in Application No. TH 0901005340.
Thailand Office Action dated Jul. 26, 2017 issued in Application No. TH 0901005340.
Australian Patent Examination Report No. 1 dated Jul. 20, 2017 issued in Application No. AU 2016250460.
Canadian Examination Report dated Aug. 18, 2015 issued in Application No. CA 2,745,129.
Canadian Examination Report dated Nov. 16, 2017 issued in Application No. CA 2,745,129.
Chinese Reexamination notification dated Nov. 10, 2016 issued in Application No. CN 200980155465.1.
Chinese Reexamination Decision dated Apr. 27, 2017 issued in Application No. CN 200980155465.1.
Chinese Fourth Office Action dated Sep. 25, 2017 issued in Application No. CN 200980155465.1.
Colombian Office Action dated Jun. 18, 2013 issued in Application No. CO 11.080.882.
Indonesia Substantive Examination Report Stage 1 dated Aug. 5, 2015 issued in Application No. ID W-00 2011 02343.
Japanese Office Action dated May 27, 2014 issued in Application No. JP 2011-538719.
Japanese Final Office Action dated Feb. 24, 2015 issued in Application No. JP 2011-538719.
Japanese Pre-Appeal Examination Report dated Aug. 27, 2015 issued in Application No. JP 2011-538719.
PCT International Search Report dated Nov. 5, 2010 issued in PCT/US2009/066141.
PCT International Preliminary Report on Patentability and Written Opinion dated Oct. 26, 2012 issued in PCT/US2009/066141.
Indonesian Examination Report dated Feb. 22, 2017 issued in Application No. W-00201102342.
Indian Examination Report dated Sep. 1, 2017 issued in Application No. In 4959/DELNP/2011.
Mexican Office Action [no translation] dated Dec. 9, 2013 issued in Application No. MX/a/2011/005630.
Malaysian Examination Report dated Mar. 15, 2017 issued in Application No. MY PI2011002435.
European Consultation by telephone dated May 29, 2017 issued in Application No. EP 11 787 551.8.
European Office Action dated Aug. 23, 2017 issued in Application No. EP 11 787 551.8.
Indonesian Office Action dated Sep. 21, 2017 issued in Application No. W00201205280.
Korean Office Action dated Nov. 29, 2017 issued in Application No. KR 10-2012-7034232.
Australian Examination Report No. 2 dated Aug. 28, 2017 issued in Application No. AU 2016202905.
Korean Office action [no translation] dated Dec. 11, 2017 issued in Application No. KR 10-2012-7034225.
Mexican Office Action dated Sep. 12, 2017 issued in Application No. MX/a/2012/013756.
Australian Patent Examination Report No. 1 dated May 20, 2015 issued in Application No. AU 2011323288.
Australian Patent Examination Report No. 2 dated Mar. 23, 2016 issued in Application No. AU 2011323288.
Australian Patent Examination Report No. 1 dated Aug. 21, 2017 issued in Application No. AU 2016202999.
Canadian Office Action dated Aug. 8, 2017 issued in Application No. CA 2,816,125.
Chinese First Office Action dated Apr. 15, 2014 issued in Application No. CN 201180053258.2.
Chinese Second Office Action dated Feb. 2, 2015 issued in Application No. CN 201180053258.2.
Chinese Third Office Action dated Jul. 3, 2015 issued in Application No. CN 201180053258.2.
Chinese Fourth Office Action dated Dec. 16, 2015 issued in Application No. CN 201180053258.2.
Chinese Fifth Office Action dated Jun. 6, 2016 issued in Application No. CN 201180053258.2.
Chinese Sixth Office Action (Rejection Decision) dated Nov. 2, 2016 issued in Application No. CN 201180053258.2.
Chinese Notification of Reexamination dated Aug. 31, 2017 issued in Application No. CN 201180053258.2.
European Office Action dated Aug. 15, 2014 issued in Application No. EP 11 785 851.4.
European Office Action dated Apr. 11, 2017 issued in Application No. EP 11 785 851.4.
Japanese Office Action dated Oct. 21, 2015 issued in Application No. JP 2013-537836.
Japanese Office Action dated Feb. 12, 2016 issued in Application No. JP 2013-537836.
Japanese Office Action dated Apr. 3, 2017 issued in Application No. JP 2016-009933.
Mexican First Office Action dated Jul. 19, 2016 issued in Application No. MX/a/2013/004631.
Mexican Second Office Action dated Jan. 16, 2017 issued in Application No. MX/a/2013/004631.
Mexican Third Office Action dated May 10, 2017 issued in Application No. MX/a/2013/004631.
Mexican Fourth Office Action dated Jul. 18, 2017 issued in Application No. MX/a/2013/004631.
Malaysian Examination Report dated May 31, 2016 issued in Application No. MY PI2013001587.
Canadian Examination Report dated Nov. 22, 2017 issued in Application No. CA 2,825,691.
European Examination Report dated Oct. 10, 2017 issued in Application No. EP 12 741 997.6.
Japanese Office Action dated Dec. 1, 2017 issued in Application No. JP 2016-145348.
Chinese Rejection Decision dated Oct. 10, 2017 issued in Application No. CN 201380031877.0.
PCT International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Oct. 19, 2017 issued in PCT/US2016/026265.
GenBank Accession No. M94159.1 “California Bay Tree thioesterase mRNA, complete cds”, (Apr. 27, 1993), 2pp.
GenBank: U31813 “Cinnamomum camphora acyl-ACP thioesterase mRNA, complete cds,” Jan. 31, 1996, 2pp.
Abbadi et al., (2000) “Knockout of the regulatory site of 3-ketoacyl-ACP synthase III enhances short- and medium-chain acyl-ACP synthesis,” The Plant Journal, 24(1):1-9.
Blatti, Jillian L. et al., (Sep. 2012) “Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions,” PLoS ONE, 7(9):e42949, 12pp.
Chen et al., (2011) “Structural classification and properties of ketoacyl synthases,” Protein Science, 20(10):1659-1667.
Gimpel et al., (Dec. 15, 2015) “In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity,” Metabolic Engineering of Eukaryotic Microalgae, Frontiers in Microbiology, 6(Article 1376):14pp.
Snyder et al., (2009) “Acyltransferase action in the modification of seed oil biosynthesis,” New Biotechnology, 26(1/2): 11-16.
U.S. Appl. No. 15/725,222, filed Oct. 4, 2017, Moseley et al.
“Soybean Oil Innovations, 3rd Edition,” United Soybean Board, www.soyconnection.com, 8 pages, (2009). [Available from the Internet on Jan. 15, 2009: <URL: http://www.soyconnection.com/sites/default/files/soy-oil-solutions.pdf>].
“Codex Standard for Named Vegetable Oils,” CODEX Alimentarius, CODEX STAN 210-1999, pp.1-16, (1999).
Aggelis et al., “Enhancement of single cell oil production by Yarrowia lipolytica growing in the presence of Teucrium polium L. aqueous extract,” Biotechnology Letters, 21:747-749, (1999).
Aguirre et al., “Engineering challenges in biodiesel production from microalgae,” Critical Reviews in Biotechnology, 33(3): 293-308, (2013).
Altschul et al., “Basic local alignment search tool,” J Mol Biol, 215(3):403-410, (1990).
Amaro et al., “Advances and perspectives in using microalgae to produce biodiesel,” Applied Energy, 88:3402-3410, (2011).
Andersen, “Biology and Systematics of Heterokont and Haptophyte Algae,” American Journal of Botany, 91(10):1508-1522, (2004).
Appel et al., “A multicopy vector system for genetic studies in Mucor circinelloides and other zygomycetes,” Molecular Genetics and Genomics, 271(5):595-602, (2004).
Apt et al., “Stable nuclear transformation of the diatom Phaeodactylum tricornutum,” Mol Gen Genet, 252(5):572-579, (1996).
Barnes et al., “Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes,” Mol Genet Genomics, 274(6):625-636, (2005).
Beale et al., “Chlorophyll Synthesis in Chlorella: Regulation by Degree of Light Limitation of Growth,” Plant Physiol., 47:230-235, (1971).
Bhunia et al., “Algal Biodiesel Production: Challenges and Opportunities,” Bioenergy and Biofuel from Biowastes and Biomass, American Society of Civil Engineers, pp. 313-345, (2010).
Bigogno et al., “Biosynthesis of arachidonic acid in the oleaginous microalga Parietochloris incisa (Cholorphyceae): Radiolabeling studies,” Lipids 37(2):209-216 (2002); Abstract Only.
Bigogno et al., “Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid,” Pytochemistry, 60:497-503, (2002).
Blowers et al., “Studies on Chlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome,” Plant Cell, 1(1):123-132, (1989).
Bohacenko et al., “Detection of Olive Oils Authenticity by Determination of their Sterol Content using LC/GC,” Czech J. Food Sci., 19(3):97-103, (2001).
Bonaventure et al., “Disruption of the FATB Gene in Arabidopsis Dethonstrates an Essential Role of Saturated Fatty Acids in Plant Growth,” The Plant Cell 15:1020-1033, (2003).
Bordes et al., “A new recombinant protein expression system for high-throughput screening in the yeast Yarrowia lipolytica,” Journal of Microbiological Methods, 70(3):493-502, (2007).
Bornscheuer et al. (ed), “Enzymes in Lipid Modification,” Wiley-VCH Verlag Gmbh & Co. KGaA, 1st Edition, ISBN: 3-527-30176-3, Sections 1-11, 231 pages, (2000). (part 1 of 2 of book).
Bornscheuer et al. (ed), “Enzymes in Lipid Modification,” Wiley-VCH Verlag Gmbh & Co. KGaA, 1st Edition, ISBN: 3-527-30176-3, Sections 12-18, 133 pages, (2000). (part 2 of 2 of book).
Borza et al., “Multiple Metabolic Roles for the Nonphotosynthetic Plastid of the Green Alga Prototheca Wickerhamii,” Eukaryotic Cell, 4(2):253-261, (2005).
Boutry et al., “Targeting of bacterial chloramphenicol acetyltransferase to mitochondria in transgenic plants,” Nature, 328(6128):340-2, (1987).
Boynton et al., “Chloroplast Transformation in Chlamydomonas with High Velocity Microprojectiles,” Science, 240(4858):1534-1538, (1988).
Broun et al., “Accumulation of Ricinoleic, Lesquerolic, and Densipolic Acids in Seeds of Transgenic Arabidopsis Plants That Express a Fatty Acyl Hydroxylase cDNA from Castor Bean,” Plant Physiol., 113:933-942, (1997).
Broun et al., “Catalytic Plasticity of Fatty Acid Modification Enzymes Underlying Chemical Diversity of Plant Lipids,” Science, 282:1315-1317, (1998). [Retrieved from the Internet Feb. 27, 2007: <URL: http://www.sciencemag.org>].
Brown et al., “The amino-acid and sugar composition of 16 species of micralgae used in mariculture,” J. Exp. Mar. Biol. Ecol. 145:79-99 abstract (1991).
Burgal et al., “Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil,” Plant Biotechnol J., 6(8):819-831, (2008).
Campbell et al., “Codon Usage in Higher Plants, Green Algae, and Cyanobacteria,” Plant Physiol., (92):1-11, (1990).
Chasan, “Engineering Fatty Acids—The Long and Short of It,” Plant Cell, 7:235-237, (1995).
Chattopadhyay et al., “Effect of single amino acid mutations in the conserved GDNQ motif of L protein of Rinderpest virus on RNA synthesis in vitro and in vivo,” Virus Research, 99:139-145, (2004).
Chen et al., “Recognition of prokaryotic transcription terminators by spinach chloroplast RNA polymerase,” Nucleic Acids Research, 16(17):8411-8431, (1988).
Chen et al., “Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana,” Journal of Applied Phycology, 3:203-209, (1991).
Chen et al., “Highly Effective Expression of Rabbit Neutrophil Peptide-1 Gene in Chlorella Ellipsoidea Cells,” Current Genetics, 39:365-370, (2001).
Chica et al., “Semi-rational approaches to engineering enzyme activity: combining the benefits of direced evolution and rational design ,” Current Opinion in Biotechnology, 16:378-384, (2005).
Chow et al., “Electrotranformation of Chlorella Vulgaris,” Plant Cell Reports, 18:778-780, (1999).
Ciferri, “Thiamine-deficiency of Prototheca, a Yeast-like Achloric Alga,” Nature, 178:1475-1476, (1956).
Co et al., “Matching the Functionality of Single-Cell Algal Oils with Different Molecular Compositions,” J Am Oil Chem Soc, doi: I0.1007/s11746-013-2405-y, 16 pages, (2014).
Cobley et al., “CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR),” Molecular Microbiology, 44(6):1517-153.
Cobley et al., Construction of Shuttle Plasmids Which Can Be Efficiently Mobilized From Escherichia coli Into the Chromatically Adapting Cyanobacterium, Plasmid, 30:90-105, (1993).
Cohen et al., “The Heterotrophic Connection in a Photoautotrophic Chlorella Vulgaris Dominant in W Astew Ater Oxidation Ponds,” War. Sci. Tech., 27(7-8):151-155, (1993).
Comai et al., “Chloroplast Transport of a Ribulose Biphosphate Carboxylase Small Subunit-5-Enolpyruvyl 3-Phosphoshikimate Synthase Chimeric Protein Requires Part of the Mature Small Subunit in Addition to the Transit Peptide,” Journal of Biological Chemis.
Cordy et al., “Chlorellasis in a Lamb,” Vet. Path., 10:171-176, (1973).
Courchesne et al., “Enhancement of Lipid Production Using Biochemical, Genetic and Transcription Factor Engineering Approaches,” J Biotechnol. Epub, 141(1-2):31-41, (2009).
Davies et al.,“Expression of the Arylsulfatase Gene from the Beta 2-Tubulin Promoter in Chlamydomonas reinhardtii,” Nucleic Acids Research, 20(12):2959-2965, (1992).
Dawson et al., “Stable Transformation of Chlorella: Rescue of Nitrate Reductase-Deficient Mutants with the Nitrate Reductase Gene,” Current Microbiology, 35:356-362, (1997).
Day, Al. et al., “Safety evaluation of a high-lipid algal biomass from Chlorella protorhecoides,” Rego!. Toxicol. Pharmacol., doi:10.1016/j.yrtph.2009.06.014, 15 pages, (2009).
De Cock, “Structure development in confectionery products: importance of triacylglycerol composition,” Master Thesis, Masters in Bioscience Engineering, Ghent University, 73 pages, (2011).
Debuchy et al., “The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus,” EMBO J., 8(10):2803-2809, (1989).
Dehesh et al., “KAS IV: a 3-ketoacyl-ACP synthase from Cuphea sp. is a medium chain specific condensing enzyme,” The Plant Journal, 15:383-390, (1998).
Dehesh et al., “Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana,” The Plant Journal, 9(2):167-172, (1996).
Demirbas et al., “Importance of algae oil as a source of biodiesel,” Energy Conversion and Management, 52:163-170, (2011).
Deshnium et al., “Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress,” Plant Mol Biol, 29(5):897-907, (1995).
Desmond et al., “Phylogenomics of Sterol Synthesis: Insights into the Origin, Evolution, and Diversity of a Key Eukaryotic Feature,” Genome. Biol. Evol., 1:364-381, (2009).
Devos et al., “Practical Limits of Function Prediction,” PROTEINS: Structure, Function, and Genetics, 41:98-107, (2000).
Dormann et al., “Cloning and Expression in Escherichia coli of a Novel Thioesterase from Arabidopsis thaliana Specific for Long-Chain Acyl-Acyl Carrier Proteins,” Archives of Biochemistry and Biophysics, 316(1):612-618, (1995).
Dunahay et al., “Genetic Engineering of Microalgae for Fuel Production,” Applied Biochemistry and Biotechnology, 34/35:331-339 (1992).
Dunahay et al., “Manipulation of Microalgal Lipid Production Using Genetic Engineering,” Applied Biochemistry and Biotechnology, 57/58:223-231, (1996).
Eccleston et al., “Medium-chain Fatty Acid Biosynthesis and Utilization in Brassica mapus Plants Expressing Lauroyl-Acyl Carrier Protein Thioesterase,” Planta 198:46-53, (1996).
El-Fadaly et al., “Single Cell Oil Production by an Oleaginous Yeast Strain in a Low Cost Cultivation Medium,” Research Journal of Microbiology, 4(8):301-313, (2009).
El-Sheekh, MM., “Stable Transformation with the Intact Cells of Chlorella Kessleri With High Velocity Microprojectiles,” Biologia Plantarium 42(2): 209-216, (1999).
EPO Supplementary European Search Report and European Search Opinion for application EP 12782478.7 dated Oct. 22, 2014.
EPO Supplementary European Search Report and European Search Opinion for application EP08769988.0 dated Jul. 1, 2011.
EPO Supplementary European Search Report and European Search Opinion for application EP11158642.6 dated Jul. 1, 2011.
EPO Supplementary European Search Report and European Search Opinion for application EP12741997.6 dated Aug. 31, 2015.
EPO Supplementary European Search Report and European Search Opinion for application EP 09829850.8 dated May 16, 2014.
Erhan, “Vegetable Oils as Lubricants, Hydraulic Fluids, and Inks,” Bailey's Industrial Oil and Fat Products, 6:259-278, (2005).
Evans et al., “A comparison of the oleaginous yeast, Candida curvata, grown on different carbon sources in continuous and batch culture,” Lipids, 18(09):623-629, (1983).
Facciotti et al., “Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase,” Nat Biotechnol., 17(6):593-597, (1999).
Falciatore et al., “Transformation of Nonselectable Reporter Genes in Marine Diatoms,” Marine Biotechnology; 1:239-251, (1999).
Fall et al., “Bioconversion of Xylan to Triglycerides by By Oil-Rich Yeasts,” Applied and Environmental Microbiology, 47(5):1130-1134, (1984).
Fernandez-Reiriz et al., “Biomass Production and Variation in the Biochemical Profile (Total Protein, Carbohydrates, RNA, Lipids and Fatty Acids) of Seven Species of Marine Microalgae,” Aquaculture, 83:17-37, (1989).
Ferrentino, “Microalgal oil extraction and in situ transesterification,” University of New Hampshire, Pub. No. MT 1447885, 8 pages, (2007).
Ferrentino, et al., “Microalgal Oil Extraction and In-situ Transesterification,” AIChE Annual Mtg, San Francisco, CA, Nov. 11-13, 2006. Abstract.
Franklin et al., “Prospects for molecular farming in the green alga Chlamydomonas reinhardtii,” Current Opinion in Plant Biology, 7:159-165, (2004).
Franzen et al., “Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii share features with both mitochondrial and higher plant chloroplast presequences,” FEBS Letters, 260(2):165-168, (1990).
Frenz et al., “Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii,” Enzyme Microb Technol, 11(11):717-724, (1989).
Frohns et al., “Potassium ion channels of Chlorella viruses cause rapid depolarization of host cells during infection,” J Virol, 80(5):2437-2444, (2006).
Fromm et al., “Expression of Genes Transferred into Monocot and Dicot Plant Cells by Electroporation,” Proc Natl Acad Sci, 82:5824-5828, (1985).
Funes et al., “The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0-ATPase is encoded by a nuclear gene in Chlamydomonas reinhardtii,” J Biol Chem, 277(8):6051-6058, (2002).
Gabay et al., “Stigmasterol: a phytosterol with potential anti-osteoarthritic properties,” Osteoarthritis and Cartilage,18:106-116, (2010).
GenBank: “Codon Usage Database file for Chlorella vulgaris,” Jun. 2007. [Retrieved from the Internet Aug. 26, 2010: <URL: http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=3077 >].
GenBank: Accession No. AAC49001.1, May 1995. [Retrieved from the Internet Oct. 14, 2014: <URL: http://www.ncbi.nlrrtnih.gov/protein/595955?sat=13&satkey=6522409>].
Gill et al., “Lipid Accumulation in an Oleaginous Yeast (Candida 107) Growing on Glucose in Single-Stage Continuous Culture,” Applied and Environmental Microbiology, 33(02):231-239, (1977).
Gouveia et al., “Microalgae in Novel Food Products,” Food Chemistry Research Developments, Chapter 2, Nova Science Publishers, Inc., ISBA 978-1-60456-262-0, 37 pages, (2008).
Graves et al., “Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae,” Virology, 257(1):15-23, (1999).
Grima et al., “Recovery of microalgal biomass and metabolites: process options and economics,” Biotechnology Advances, 20:491-515, (2003).
Gruber et al., “Escherichia coli-Anacystis nidulans plasmid shuttle vectors containing the PL promoter from bacteriophage lambda,” Current Microbiology, 22(1):15-19, (1991).
Guiry et al., “How Many Species of Algae are There?,” J. Phycol., 48:1057-1063, (2012).
Gul et al., “Sterols and the Phytosterol Content in Oilseed Rape (Brassica napus L.),” Journal of Cell and Molecular Biology, 5:71-79 (2006).
Gunstone, “Enzymes as biocatalysts in the modification of natural lipids,” Journal of the Science of Food and Agriculture, 79:1535-1549, (1999).
Guo-Zhong et al., “The Actin Gene Promoter-driven Bar as a Dominant Selectable Marker for Nuclear Transformation of Dunaliella Salina,” Acta Genetica Sinica, 32(4): 424-433, (2005).
Guschina et al., “Lipids and lipid metabolism in eukaryotic algae,” Progress in Lipid Research, 45:160-186, (2006).
Hall et al., “Expression of a foreign gene in Chlamydomonas reinhardtii,” Gene, 124(1):75-81, (1993).
Hall et al., “Lipid Accumulation in an Oleaginous Yeast (Candida 107) Growing on Glucose Under Various Conditions in a One- and Two-Stage Continuous Culture,” Applied and Environmental Microbiology, 33(3):577-584, (1977).
Hallmann et al., “Reporter Genes and Highly Regulated Promoters as Tools for Transformation Experiements in Volvox Carteri,” Proc Natl Acad Sci U S A., 91(24):11562-11566, (1994).
Hanley-Bowdoin et al., “Chloroplast promoters,” Trends in Biochemical Sciences, 12:67-70, (1987).
Hawkins et al., “Expression of Human Growth Hormone by the Eukaryotic Alga, Chlorella,” Current Microbiology, 38:335-341, (1999).
Heifetz, “Genetic Engineering of the Chloroplast,” Biochimie, 82:655-666, (2000).
Heise et al., “Factors Controlling Medium-Chain Fatty Acid Synthesis in Plastids From Cuphea Embryos,” Prog. Lipid Res., 33(1/2):87-95, (1994).
Henderson et al., “Lipid Composition and Biosynthesis in the Marine Dinoflagellate Crypthecodznzum Cohnii,” Phytochem. 27(6):1679-1683 (1988).
Henikoff et al., “Amino Acid Substitution Matrices from Protein Blocks,” Proc Natl Acad of Sci, 89(22):10915-10919, (1992).
Heredia et al., “Simultaneous utilization of glucose and xylose by Candida curvata D in continuous culture,” Biotechnology Letters, 10(01):25-30, (1988).
Heredia-Arroyo et al., “Oil Accumulation via Heterotrophic/Mixotrophic Chlorella protothecoides,” Appl Biochem Biotechnol, 162:1978-1995, (2010).
Hillen et al., “Hydrocracking of the Oils of Botryococcus braunii to Transport Fuels,” Biotechnology and Bioengineering, 24(1):193-205, (1982).
Hiramatsu et al., “Expression of a chitinase gene and lysis of the host cell wall during Chlorella virus CVK2 infection,” Virology, 260(2):308-315, (1999).
Hitz et al.,“Cloning of a Higher-Plant Plastid Omega-6 Fatty Acid Desaturase cDNA and Its Expression in a Cyanobacterium,” Plant Physiology, 105(2):635-641, (1994).
Hu et al., “Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances,” The Plant Journal 54:621-639, (2008).
Huang et al., “Sterols as ecological indicators,” Geochimica et Cosmochimica Acta, 43:739-745, (1979).
Huang et al., “Expression of Mercuric Reductase From Bacillus Megaterium MB1 in Eukaryotic Microalga Chlorella sp. DT: An Approach for Mercury Phytoremediation,” Appl. Microbiol. Biotechnol., 72:197-205, (2006).
Huss et al., “Deoxyribonucleic acid reassociation in the taxonomy of the genus Chlorella,” Arch Microbiol, 150:509-511, (1988).
Inoue et al., “Analysis of oil derived from liquefaction of Botryococcus Braunii,” Biomass and Bioenergy, 6(4):269-274, (1994).
Itoh et al., “Sterol Compositoin of 19 Vegetable Oils,” Journal of the American Oil Chmists' Society, 50:122-125, (1973).
Iturriaga et al. “Heterologous transformation of Mucor circinelloides with the Phycomyces blakesleeanus leu1 gene,” Current Genetics, 21(3):215-223, (1992).
Jakobiak et al., “The Bacterial Paromomycin Resistance Gene, aphH, as a Dominant Selectable Marker in Volvox carteri,” Protist, 55: 381-393, (2004).
Jarvis et al. “Transient Expression of Firefly Luciferase in Protoplasts of the Green Alga Chlorella Ellipsoidea,” Current Genet., 19: 317-322, (1991).
Jaworski et al., “Industrial oils from transgenic plants,” Current Opinion in Plant Biology, 6:178- 184, (2003).
Jha et al., “Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli,” Plant Physiology and Biochemistry, 44:645-655, (2006).
Jiang et al., “The actin gene promoter-driven bar as a dominant selectable marker for nuclear transformation of Dunaliella salina,” Yi Chuan Xue Bao, 32(4):424-433, (2005).
Jones et al., “Palmitoyl-Acyl Carrier Protein (ACP) Thioesterase and the Evolutionary Origin of Plant Acyl-ACP Thioesterases,” Plant Cell, 7:359-371, (1995).
Kalscheuer et al., “Establishment of a Gene Transfer System for Rhodococcus Opacus PD630 Based on Electroporation and its Application for Recombinant Biosynthesis of Poly(3-hyroxyalkanoic acids),” Applied Microbiology and Biotechnology, 52(4):508-515, (1999).
Kamiya, “Effects of Blue Light and Ammonia on Nitrogen Metabolism in a Colorless Mutant of Chlorella,” Plant Celll Physiol., 30(4):513-521, (1989).
Kamurthy et al., “Antinocieptive Activity of Stigmosterol-3-Glyceryl-2-Linoleiate, Campesterol and Daucosterol Isolated From Aerva Lanata Linn. Aerial Parts,” Asian J Pharm Clin Res, 6(1):149-152, (2013).
Kang et al., “Genetic diversity in chlorella viruses flanking kcv, a gene that encodes a potassium ion channel protein,” Virology, 326(1):150-159, (2004).
Kang et al., “The regulation activity of Chlorella virus gene 5′ upstream sequence in Escherichia coli and eucaryotic alage,” Institute of Microbiology, Chinese Academy of Sciences, Beijing, 16(4):443-6, (2000). Abstract only.
Karabulut et al., “Determination of changes in some physical and chemical properties of soybean oil during hydrogenation,” Food Chemistry, 81:453-456, (2003).
Karlin et al., “Applications and statistics for multiple high-scoring segments in molecular sequences,” Proc Natl Acad Sci, 90(12):5873-5877, (1993).
Katayama et al., “Alpha-Linolenate and Photosynethetic Activity in Chlorella Protothecoides,” Plant Physiol., 42:308-313, (1967).
Kawasaki et al., “Characterization of Immediate Early Genes Expressed in Chlorovirus Infections,” Nucleic Acids Symp Ser, 44:161-162, (2000).
Kawasaki et al., “Immediate Early Genes Expressed in Chlorovirus Infections,” Virology, 318(1):214-223, (2004).
Kenyon, “Fatty Acid Composition of Unicellular Strains of Blue-Green Algae,” J. Bacteriology 109(2):827-834 (1972).
Kim et al. “Stable Integraion and Functional Expression of Flounder Growth Hormone Gene in Tranformed Microalga, Chlorella Ellipsoidea,” Mar. Biotechnol. 4:63-73 (2002).
Kimchi-Sarfaty et al., “ a ‘Silent’ Polymorphism in the MDR1 Gene Changes Substrate Specificity,” Science, 315:525-528, (2007). [Retrieved from the Internet Nov. 1, 2007: <URL: http://www.sciencemag.org>].
Kindle, “High-Frequency Nuclear Transformation of Chlamydomonas reinhardtii,” Proc Natl Acad Sci, 87(3):1228-1232, (1990).
Kisselev, “Polypeptide Release Factors in Prokaryotes and Eukaryotes: Same Function, Different Structure,” Structure, 10:8-9, (2002).
Klein et al., “High-velocity microprojectiles for delivering nucleic acids into living cells,” Nature, 327:70-73, (1987).
Klosty et al., “Sterols of Algae. The Occurrence of Ergosterol in Chiorelia pyrarwidosa,” J. Am. Chem. Soc., Notes, 74(6):1601-1601, (1952).
Knauf, “The application of genetic engineering to oilseed crops,” Trends in Biotechnology, 5(2):40-47, (1987).
Knothe, “‘Designer’ Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties,” Energy & Fuels, 22:1358-1364, (2008).
Knothe, “Analyzing Biodiesel: Standards and Other Methods,” JAOCS, 83(10):823-833, (2006).
Kohler et al., “The green fluorescent protein as a marker to visualize plant mitochondria in vivo,” Plant J, 11(3):613-621, (1997).
Koksharova, “Genetic Tools for Cyanobacteria,” Appl Microbiol Biotechnol, 58(2):123-37, (2002).
Kong et al., “Microbial production of lipids by cofermentation of glucose and xylose with Lipomyces starkeyi 2#,” Chinese Journal of Bioprocess Engineering, 05(02):36, (2007). Abstract.
Krebbers et al., “The maize chloroplast genes for the beta and epsilon subunits of the photosynthetic coupling factor CF1 are fused,” Nucleic Acids Res, 10(16): 4985-5002, (1982).
Kris-Etherton et al., “Monounsaturated Fatty Acids and Risk of Cardiovascular Disease,” Circulation, 100:1253-1258, (1999).
La Scala et al., “The effect of fatty acid composition on the acrylation kinetics of epoxidized triacylglycerols,” Journal of the American Oil Chemists' Society, 79(1):59-63, (2002).
Lapidot et al., “Stable Chloroplast Transformation of the Unicellular Red Alga Porphyridium Species,” Plant Physiol, 129:7-12, (2002).
Larson et al., “Acyl CoA profilesof transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds,” The Plant Journal, 32(4):519-527, (2002).
Lawford et al., “Performance Testing of Zymomonas Mobilis Metabolically Engeineered for Confermation of Glucose, Xylose, and Arabinose,” Appl Biochem Biotechnol., 98-100:429-48, (2002).
Leema et al., “Heterotrophic Production of Lutein and Biomass by Chlorella Vulgaris with Different Nitrogen Sources,” Algae Biofuel, Studium Press (India) Pvt. Ltd., pp. 91-101, (2011).
Leon-Banares et al., “Transgenic microalgae as green cell-factories,” TRENDS in Biotechnology, 22(1):45-52, (2004).
Levitan et al., “Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum,” Proc Natl Acad Sci, 102(17):6225-6230, (2005).
Li et al., “Broad-spectrum oil-producing yeast carbon filter,” China Biotechnology, 25(12):39-44 (2005), and machine translation.
Li et al., “High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture,” Enzyme and Microbial Technology, 41:312-317, (2007).
Lindley, “The impact of food processing antioxidants in vegetable oils, fruits, and vegetables,” Trends in Food Science & Technology. 9:336-340, (1998).
List et al., “Melting properties of some structured lipids native to high stearic acid soybean oil,” Grasas y Aceites, 55(Fasc. 2):135-137, (2004).
Lu, “Biosynthesis and Gene Engineering of Plant Fatty Acids,” Chinese Bulletin of Botany, 17(6):481-491, (2000). Abstract only.
Lubitz, “The Protein Quality, Digestibility, and Composition of Algae, Chlorella 71105,” J. Food Sci. 28(2):229-232 (1963).
Lumbreras et al., “Efficient Foreign Gene Expression in Chlamydomonas Reinhardtii Mediated by an Endogenous Intron,” Plant Journal, 14(4):441-447, (1998).
Madzak et al., “Functional analysis of upstream regulating regions from Yarrowia lipolytica XPR2 promoter,” Microbiology, 145:75-87, (1999).
Manuell et al., “Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast,” Plant Biotech J, 5(3):402-412, (2007).
Maruyama et al., “Introduction of Foreign DNA Into Chlorella Saccharophila by Electroporation,” Biotechnology Techniques, 8:821-826, (1994).
Mayer et al., “A Structural Model of the Plant Acyl-Acyl Carrier Protein Thioesterase FatB Comprises Two Helix/4-Stranded Sheet Domains, the N-terminal Domain Containing Residues That Affect Specificity and the C-terminal Domain Containing Catalytic Residues,” The Journal of Biological Chemistry, 280(5):3621-3627, (2005).
Mayer et al., “Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach,” BMC Plant Biology, 7(1):1-11, (2007).
Mayfield et al., “Expression and Assembly of a Fully Active Antibody in Algae,” Proc Natl Acad Sci, 100(2):438-442, (2003).
Mayfield et al., “Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker,” Proc. Natl. Acad. Sci. USA, Cell Biology, 87:2087-2091, (1990).
Meesters et al., “High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source,” Applied Microbiology and Biotechnology, 45:575-579, (1996).
Meguro et al., “Original Communication Solubilization of phytosterols in diacylglycerol versus triacylglycerol improves the serum cholesterol-lowering effect,” European Journal of Clinical Nutrition, 55:513-517, (2001).
Mekhedov et al., “Toward a Functional Catalog of the Plant Genome. A Survey of Genes for Lipid Biosynthesis,” Plant Physiology, 122:389-401, (2000).
Mendes et al., “Supercritical Carbon Dioxide Extraction of Compounds With Pharmaceutical Importance from Microalgae,” Inorganica Chimica Acta, 356:328-334, (2003).
Meng et al., “Biodiesel production from oleaginous microorganisms,” Renewable Energy, 34:1-5, (2009).
Metzger et al., “Botryococcus braunii: A Rich Source for Hydrocarbons and Related Ether Lipids,” Applied Microbiology and Biotechnology, 66(5):486-496, (2005).
Miao et al., “High Yield Bio-Oil Production from Fast Pyrolysis by Metabolic Controlling of Chlorella Protothecoides,” J. Biotech., 110:85-93, (2004).
Minowa et al., “Oil Production from Algal Cells of Dunaliella tertiolecta By Direct Thermochemical Liquefaction,” Fuel, 74(12):1735-1738, (1995).
Mitra et al., “A Chlorella Virus Gene Promoter Functions as a Strong Promoter Both in Plants and Bacteria,” Biochemical and Biophysical Research Communications, 204(1):189-194, (1994).
Mitra et al., “The Chlorella Virus Adenine Methyltransferase Gene Promoter is a Strong Promoter in Plants,” Plant Molecular Biology, 26(1):85-93, (1994).
Moreno-Perez et al., “Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds,” Planta, 235:629-639, (2012).
Morris, “Effect of Growth Temperature on the Cryopreservation of Prototheca,” Journal of General Microbiology, 94:395-399, (1976).
Mullet et al., “Multiple transcripts for higher plantrbcL andatpB genes and localization of the transcription initiation site of therbcL gene,” Plant Molecular Biology, 4(1):39-54, (1985).
Murakami et al., “Lipid Composition of Commercial Bakers' Yeasts Having Different Freeze- tolerance in Frozen Dough,” Biosci. Biotechnol. Biochem., 60(11)1874-1876, (1996).
Murakami et al., “Lipids and Fatty Acid Custipvsi lions of Chlorella,” Nihon Yuka gakkai-shi, 46(4):423-427, (1997).
Nackley et al., “Human Catechol-O-Methyltransferase Haplotypes Modulate Protein Expression by Altering mRNA Secondary Structure,” Science, 314:1930-1933, (2006).[Retrieved from the Internet Nov. 1, 2007: <URL: http://www.sciencemag.org>].
Nahm, “Quality Characteristics of West African Shea Butter (Vitellaria paradoxa) and Approaches to Extend Shelf-Life,” Master Thesis, Master of Science in Food Service, Rutgers, The State University of New Jersey, 133 pages, (2011).
Napier et al., “Tailoring plant lipid composition: designer oilseeds come of age,” Current Opinion in Plant Biology, 13:330-337, (2010).
Nazaruddin et al., “The Effect of Enzymatic Alcoholysis on the Physicochemical Properties of Commercial Cocoa Butter Substitutes,” Pakistan Journal of Nutrition, 10(8):718-723, (2011).
Needleman et al., “A general method applicable to the search for similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology, 48(3):443-453, (1970).
Nes et al., “Biosynthesis of Cholesterol and Other Sterols,” Chem. Rev., 111:6423-6451, (2011).
Norton et al., “Identification of Ergosta-6(7),8(14),25(27)-trien-3β-ol and Ergosta-5(6),7(8),25(27)-trien-3β-ol, Two New Steroidal Trienes Synthesized by Prototheca wickerhamii,” Lipids, 26: 247-249, (1991).
Onai et al., “Natural Tranformation of the Termophillic Cyanbacterium Thermosynechococcus Elongatus BP-1: A Simple and Efficicent Method for Gene Transfer,” Mol Genet Genomics, 271(1):50-9, (2004).
Papanikolaou et al., “Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures,” Appl. Microbiol. Biotechnol., 58:308-312, (2002).
Papanikolaou et al., “Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture,” Bioresource Technology, 82:43-49, (2002).
Park et al., “Isolation and Characterization of Chlorella Virus From Fresh Water in Korea and Application in Chlorella Transformation System,” Plant Pathol. J., 21(1):13-20, (2005).
Patil et al., “Fatty acid composition of 12 microalgae for possible use in aquaculture feed,” Aquacult Int , 15:1-9, (2007).
Patterson et al., “Sterols of Chlorella. II. The Occurrence of an Unusual Sterol Mixture in Chlorella vulgaris,” Plant Physiol., 42:1457-1459, (1967).
Patterson et al., “Sterols of Chlorella-III. Species Containing Ergosterol,” Comp. Biochem. Physiol., 31:391-394, (1969).
PCT International Preliminary Report on Patentability (Chapter I) dated May 31, 2011 for application PCT/US09/066142.
PCT International Preliminary Report on Patentability (Chapter I) dated Aug. 13, 2012 for application PCT/US11/38463.
PCT International Preliminary Report on Patentability (Chapter I) dated Dec. 7, 2009 for application PCT/US08/65563.
PCT International Preliminary Report on Patentability for application PCT/US2011/059224 dated May 16, 2013.
PCT International Search Report and Written Opinion of the International Searching Authority for application PCT/US2013/037261 dated Aug. 23, 2013.
PCT International Search Report and Written Opinion of the International Searching Authority for application PCT/US2014/035476 dated Feb. 18, 2015.
PCT International Search Reort and Written Opinion of the International Searching Authority for application PCT/US2014/059161 dated Jun. 1, 2015.
PCT International Search Reort and Written Opinion of the International Searching Authority for application PCT/US2015/023181 dated Jul. 28, 2015.
PCT International Search Report for application PCT/US2011/032582 dated Aug. 9, 2011.
PCT International Search Report for application PCT/US2011/038463 dated Jan. 18, 2012.
PCT International Search Report for application PCT/US2011/059224 dated Jun. 27, 2012.
PCT International Search Report for application PCT/US2012/023696 dated May 23, 2012.
PCT International Search Report for application PCT/US2012/036690 dated Aug. 30, 2012.
PCT International Search Report dated Aug. 20, 2010 for application PCT/US2009/066142.
PCT International Search Report dated Nov. 5, 2010 for application PCT/US2009/066141.
PCT International Search Report dated Nov. 6, 2008 for application PCT/US2008/065563.
PCT Invitation to Pay Additional Fees for application PCT/US2014/059161 dated Mar. 9, 2015.
PCT Invitation to Pay Additional Fees from the International Searching Authority for application PCT/US2014/035476 dated Dec. 1, 2014.
PCT Written Opinion of the International Search Authority dated Aug. 20, 2010 for application PCT/US2009/066142.
PCT Written Opinion of the International Searching Authority for application PCT/US2011/032582 dated Aug. 9, 2011.
PCT Written Opinion of the International Searching Authority for application PCT/US2011/038463 dated Jan. 18, 2012.
PCT Written Opinion of the International Searching Authority for application PCT/US2012/023696 dated May 23, 2012.
PCT Written Opinion of the International Searching Authority for application PCT/US2012/036690 dated Aug. 30, 2012.
PCT Written Opinion of the International Searching Authority dated Nov. 5, 2010 for application PCT/US2009/066141.
PCT Written Opinion of the International Searching Authority dated Nov. 6, 2008 for application PCT/US2008/065563.
Pearson et al., “Improved tools for biological sequence comparison,” Proc Natl Acad Sci, 85(8):2444-2448, (1988).
Petkov et al., “Which are fatty acids of the green alga Chlorella?,” Biochemical Systematics and Ecology, 35:281-285, (2007).
Phippen et al., “Total seed oil and fatty acid methyl ester contents of Cuphea accessions,” Industrial Crops and Products, 24:52-59, (2006).
Powell et al., “Algae Feeding in Humans,” J. Nutrition, 75:7-12, (1961).
Pratoomyot et al., “Fatty acids composition of 10 microalgal species,” Songklanakarin J. Sci. Technol., 27(6):1179-1187, (2005).
Proschold et al., “Portrait of a Species: Chlamydomonas reinhardtii,” Genetics, 170(4):1601-1610, (2005).
Puglia et al., “In viva spectrophotometric evaluation of skin barrier recovery after topical application of soybean phytosterols,” J. Cosmet. Sci., 59:217-224, (2008).
Qingyu et al., “Fine Cell Structure and Biochemical Compositions of Chlorella Protothecoides after Transferring from Autotrophic to Heterotrophic Metabolism,” Journal of Nanjing University, Natural Sciences Edition, 29(4):622-630, (1993). Abstract.
Radakovits et al., “Genetic Engineering of Algae for Enhanced Biofuel Production,” Eukaryotic Cell, 9(04): 486-501, (2010).
Radmer et al., “Commercial applications of algae: opportunities and constraints,” Journal of Applied Phycology, 6:93-98, (1994).
Randolph-Anderson et al., “Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation,” Mol Gen Genet, 236(2-3):235-244, (1993).
Ratledge, “Regulation of lipid accumulation in oleaginous micro-organisms,” Biochem Soc Trans., 30(Pt 6):1047-1050, (2002).
Rehm et al., “Heterologous expression of the acyl-acyl carrier protein thioesterase gene from the plant Umbellularia californica mediates polyhydroxyalkanoate biosynthesis in recombinant Escherichia coli,” Appl Microbiol Biotechnol, 55:205-209, (2001).
Rismani-Yazdi et al., “Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels,” BMC Genomics, 12:148, 17 pages; doi:10.1186/1471-2164-12-148, (2011).
Roessler et al., “Genetic Engineering Approaches for Enhanced Production of Biodiesel Fuel from Microalgae,” Enzymatic Conversion of Biomass for Fuels Production, Chapter 13, American Chemical Society, doi: 10.1021/bk-1994-0566.ch013, pp. 255-270, (1994).
Rosenberg et al., “A Green Light for Engineered Algae: Redirecting Metabolism to Fuel a Biotechnology Revolution,” Current Opinion in Biotechnology. Tissue, Cell and Pathyway Engineering, E-Pub 19:430-436, (2008).
Roy et al., “Production of Intracellular Fat by the Yeast Lipomyces starkeyi,” Indian Journal of Experimental Biology, 16(4):511-512, (1978).
Ruiz et al., “Lipids accumulation in Chlorella protothecoides through mixotrophic and heterotrophic cultures for biodiesel production,” New Biotechnology, 255:S266-S266, (2009).
Running et al., “Extracellular production of L-ascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of P. moriformis during aerobic culturing at low pH,” Journal of Industrial Microbiology & Biotechnology, 29:93-98, (2002).
Saha et al., “Transformation in Aspergillus ochraceus,” Current Microbiology, 30(2):83-86, (1995).
Sakuradani, “Studies of Metabolic Engineering of Useful Lipid-producing Microorganisms,” NISR Research Grant, (2004).
Sanchez et al., “Mixotrophic culture of Chlorella pyrenoidosa with olive-mill wastewater as the nutrient medium,” Journal of Applied Phycology, 13:443-449, (2001).
Sanford, “The biolistic process,” Trends in Biotechnology, 6(12):299-302, (1988).
Sauna et al., “Silent Polymorphisms Speak: How They Affect Pharmacogenomics and the Treatment of Cancer,” Cancer Res, 67(20):9609-9612 , (2007).
Sawayama et al., “Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae,” Biomass and Bioenergy, 17(1):33-39, (1999).
Schreier et al., “The use of nuclear-encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloroplasts,” EMBO J, 4(1):25-32, (1985).
Schultz et al., “A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota,” RNA, 11(4):361-364, (2005).
Schütt et al., “The role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids,” Publication, Planta, 205:263-268, (1998).
Seffernick et al., “Melamine Deaminase and Atrazine Chlorohdrolase: 98 Percent Identical but Functionally Different,” Journal of Bacteriology, 183(8):2405-2410, (2001).
Sen et al., “Developments in Directed Evolution for Improving Enzyme Functions,” Appl Biochem Biotechnol, 143:212-223, (2007).
Shao et al., “Cloning and expression of metalothionein mutant α-KKS-α in Anabaena sp. PCC 7120,” Marine Pollution Bulletine, 45(1012):163-167, (2002).
Shi et al., “High-Yield Production of Lutein by the Green Microalga Chlorella protothecoides in Heterotrophic Fed-Batch Culture,” Biotechnol. Prog., 18(4):723-727 (2002).
Shi et al., “Production and rapid extraction of lutein and the other lipid-soluble pigments from Chlorella protothecoides grown under heterotrophic and mixotrophic conditions,” Nahrung, 43:109-113, (1999).
Skolnick et al., “From genes to protein structure and function: novel applications of computational approaches in the genomic era,” TIBTECH, 18: 34-39, (2000).
Smallwood et al., “Different Substitutions at Conserved Amino Acids in Domains II and III in the Sendai L RNA Polymerase Protein Inactivate Viral RNA Synthesis,” Virology, 304:135-145, (2002).
Smith et al., “Comparison of Biosequences,” Adv Appl Math, 2(4):482-489, (1981).
Smith et al., “Production of hydroxy fatty acids in the seeds of Arabidopsis thaliana,” Biochemical Society Transactions, 28(6):947-950, (2000).
Sorger et al., “Triacylglycerol biosynthesis in yeast,” AppL Microbiol Biotechnol, 61:289-299, (2003).
Spolaore et al., “Commercial Applications of Microalgae,” J. Biosci. Bioeng. 101(2):87-96 (2006).
Stemmer et al., “Single-Step Assembly of a Gene and Entire Plasmid from Large Numbers of Oligodeoxyribonucleotides,” Gene, 164:49-53, (1995).
Sud et al., “Lipid Composition and Sensitivity of Prototheca wickerhamii to Membrane-Active Antimicrobial Agents,” Antimicrobial Agents and Chemotherapy, 16:486-490, (1979).
Suda, et al., “Evidence for a novel Chlorella virus-encoded alginate lyase,” FEMS Microbiology Letters, 180(1):45-53, (1999).
Suh et al., “What limits production of unusual monoenoic fatty acids in transgenic plants?,” Planta, 215:584-595, (2002).
Sun et al., “Characterization of two chitinase genes and one chitosanase gene encoded by Chlorella virus PBCV-1,” Virology, 263(2):376-387, (1999).
Sung et al., “The research on the lipid content and composition of microalgae and their impact factors,” Marine Science, 12(33)122-128, (2009). (English translation of first two pages).
Swern et al. “Fractionation of tallow fatty acids:Preparation of purified oleic acid and an inedible olive oil substitute,” Oil & Soap, 22(11):302-304 (1945).
Szabo et al., “Safety evaluation of a high lipid Whole Algalin Flour (WAF) from Chlorella protothecoides,” Regulatory Toxicology and Pharmacology, 63:155-165, (2012).
Szabo et al., “Safety evaluation of Whole Algalin Protein (WAP) from Chlorella protothecoides,” Food and Chemical Toxicology, 59:34-45, (2013).
Takaku et al., “Isolation of an Antitumor Compound from Agaricus blazei Murill and Its Mechanism of Action,” J. Nutr., 131:1409-1413, (2001). [Retrieved from the Internet May 14, 2013: <URL: http://jn.nutrition.org>].
Takeno et al., “Establishment of an overall transformation system for an oil-producing filamentous fungus, Mortierella alpina 1S-4,” Appl Microbiol Biotechnol, 65:419-425, (2004).
Talbot et al., “Formulation and Production of Confectionery Fats,” OFI Middle East 2007 Conference and Exhibition, 378 pages, (2007).
Talebi et al., “Genetic manipulation, a feasible tool to enhance unique characteristic of Chlarella vulgaris as a feedstock for biodiesel production,” Mol Biol Rep, 40:4421-4428, (2013).
Tan et al., “Establishment of a Micro-Particle Bombardment Transformation System for Dunaliella Salina,” J Microbiol.;43(4):361-365, (2005).
Tan et al., “Fatty acid production by heterotrophic Chlorella saccharophila,” Hydrobiologia, 215:13-19, (1991).
Tang et al., “Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA,” Biochem Mol Biol Int, 36(5):1025-1035, (1995).
Tomasinsig et al., “The Cathelicidins—Structure, Function and Evolution,” Current Protein and Peptide Science, 6: 23-34, (2005).
Tornabene et al., “Lipid composition of the nitrogen starved green alga Neochloris oleoabundans,” Enzyme Microb. Technol., 5:435-440, (1983).
U.S. Appl. No. 12/131,766, Advisory Action dated Oct. 13, 2011.
U.S. Appl. No. 12/131,766, Non-Final Office Action dated Aug. 1, 2011.
U.S. Appl. No. 12/131,766, Non-Final Office Action dated Nov. 23, 2010.
U.S. Appl. No. 12/131,766, Non-Final Office Action dated Dec. 10, 2009.
U.S. Appl. No. 12/131,766, Requirement for Restriction/Election dated Aug. 5, 2009.
U.S. Appl. No. 12/131,766, Requirement for Restriction/Election dated Aug. 17, 2010.
U.S. Appl. No. 12/131,773, Advisory Action dated Jan. 27, 2014.
U.S. Appl. No. 12/131,773, Final Office Action dated Mar. 21, 2011.
U.S. Appl. No. 12/131,773, Final Office Action dated Oct. 15, 2013.
U.S. Appl. No. 12/131,773, Non-Final Office Action dated Jun. 5, 2013.
U.S. Appl. No. 12/131,773, Non-Final Office Action dated Jun. 25, 2010.
U.S. Appl. No. 12/131,773, Non-Final Office Action dated Dec. 15, 2009.
U.S. Appl. No. 12/131,773, Notice of Allowance and Examiner Initiated Interview Summary dated Apr. 1, 2014.
U.S. Appl. No. 12/131,773, Requirement for Restriction/Election dated Aug. 6, 2009.
U.S. Appl. No. 12/131,783, Final Office Action dated Jan. 12, 2012.
U.S. Appl. No. 12/131,783, Final Office Action dated Dec. 13, 2013.
U.S. Appl. No. 12/131,783, Non-Final Office Action dated Jun. 6, 2011.
U.S. Appl. No. 12/131,783, Non-Final Office Action dated Jul. 18, 2013.
U.S. Appl. No. 12/131,783, Notice of Allowance and Examiner Initiated Interview Summary dated Mar. 24, 2014.
U.S. Appl. No. 12/131,783, Requirement for Restriction/Election dated Apr. 19, 2011.
U.S. Appl. No. 12/131,793, Final Office Action dated Mar. 30, 2010.
U.S. Appl. No. 12/131,793, Non-Final Office Action dated Jun. 21, 2012.
U.S. Appl. No. 12/131,793, Non-Final Office Action dated Sep. 16, 2009.
U.S. Appl. No. 12/131,793, Non-Final Office Action dated Nov. 13, 2012.
U.S. Appl. No. 12/131,793, Notice of Allowance dated Apr. 3, 2013.
U.S. Appl. No. 12/131,793, Requirement for Restriction/Election dated Aug. 6, 2009.
U.S. Appl. No. 12/131,804, Final Office Action dated Feb. 2, 2011.
U.S. Appl. No. 12/131,804, Non-Final Office Action dated Oct. 26, 2012.
U.S. Appl. No. 12/131,804, Non-Final Office Action dated Mar. 3, 2010.
U.S. Appl. No. 12/131,804, Non-Final Office Action dated Jun. 7, 2012.
U.S. Appl. No. 12/131,804, Requirement for Restriction/Election dated Sep. 17, 2009.
U.S. Appl. No. 12/131,804, Requirement for Restriction/Election dated Nov. 18, 2009.
U.S. Appl. No. 12/194,389, Final Office Action dated Jan. 5, 2011.
U.S. Appl. No. 12/194,389, Non-Final Office Action dated Feb. 4, 2010.
U.S. Appl. No. 12/194,389, Notice of Allowance dated Jan. 15, 2014.
U.S. Appl. No. 12/194,389, Requirement for Restriction/Election dated Oct. 5, 2010.
U.S. Appl. No. 12/194,389, Requirement for Restriction/Election dated Nov. 2, 2009.
U.S. Appl. No. 12/628,140, Final Office Action dated Mar. 15, 2013.
U.S. Appl. No. 12/628,140, Final Office Action dated May 22, 2014.
U.S. Appl. No. 12/628,140, Final Office Action dated Sep. 12, 2013.
U.S. Appl. No. 12/628,140, Final Office Action dated Oct. 8, 2014.
U.S. Appl. No. 12/628,140, Non-Final Office Action dated Jul. 17, 2015.
U.S. Appl. No. 12/628,140, Non-Final Office Action dated Oct. 30, 2012.
U.S. Appl. No. 12/628,144, Final Office Action dated Nov. 16, 2010.
U.S. Appl. No. 12/628,144, Final Office Action dated Dec. 5, 2011.
U.S. Appl. No. 12/628,144, Final Office Action dated Dec. 12, 2014.
U.S. Appl. No. 12/628,144, Non-Final Office Action dated May 16, 2014.
U.S. Appl. No. 12/628,144, Non-Final Office Action dated Jun. 7, 2011.
U.S. Appl. No. 12/628,144, Non-Final Office Action dated Jul. 8, 2010.
U.S. Appl. No. 12/628,144, Requirement for Restriction/Election and Examiner Initiated Interiew Summary dated Oct. 7, 2014.
U.S. Appl. No. 12/628,147, Examiner Interview Summary Record dated Mar. 3, 2011.
U.S. Appl. No. 12/628,147, Final Office Action dated Jul. 12, 2012.
U.S. Appl. No. 12/628,147, Final Office Action dated Oct. 1, 2010.
U.S. Appl. No. 12/628,147, Non-Final Office Action dated May 25, 2010.
U.S. Appl. No. 12/628,147, Non-Final Office Action dated Oct. 25, 2011.
U.S. Appl. No. 12/628,147, Notice of Allowance and Examiner Initiated Interview Summary dated Aug. 7, 2012.
U.S. Appl. No. 12/628,149, Non-Final Office Action dated Jun. 25, 2010.
U.S. Appl. No. 12/628,149, Non-Final Office Action dated Sep. 16, 2010.
U.S. Appl. No. 12/628,149, Notice of Allowance dated Dec. 15, 2010.
U.S. Appl. No. 12/628,150, Non-Final Office Action dated Apr. 29, 2010.
U.S. Appl. No. 12/628,150, Non-Final Office Action dated Oct. 13, 2010.
U.S. Appl. No. 12/628,150, Notice of Allowance dated Mar. 21, 2011.
U.S. Appl. No. 12/772,163, Non-Final Office Action dated May 25, 2012.
U.S. Appl. No. 12/772,163, Non-Final Office Action dated Dec. 12, 2012.
U.S. Appl. No. 12/772,163, Notice of Allowance dated May 28, 2013.
U.S. Appl. No. 12/772,163, Requirement for Restriction/Election dated Jun. 24, 2011.
U.S. Appl. No. 12/772,164, Final Office Action dated May 24, 2012.
U.S. Appl. No. 12/772,164, Non-Final Office Action dated Oct. 12, 2011.
U.S. Appl. No. 12/772,164, Requirement for Restriction/Election dated Jul. 20, 2011.
U.S. Appl. No. 12/772,170, Final Office Action dated Feb. 21, 2012.
U.S. Appl. No. 12/772,170, Non-Final Office Action dated Sep. 13, 2011.
U.S. Appl. No. 12/772,170, Non-Final Office Action dated Dec. 17, 2013.
U.S. Appl. No. 12/772,170, Notice of Allowance and Examiner-Initiated Interview Summary dated Jul. 11, 2014.
U.S. Appl. No. 12/772,170, Requirement for Restriction/Election dated Jul. 13, 2011.
U.S. Appl. No. 12/772,173, Final Office Action dated May 7, 2012.
U.S. Appl. No. 12/772,173, Non-Final Office Action dated Dec. 16, 2011.
U.S. Appl. No. 12/772,173, Notice of Allowance dated Mar. 29, 2013.
U.S. Appl. No. 12/772,173, Notice of Allowance dated Jul. 10, 2013.
U.S. Appl. No. 12/772,173, Requirement for Restriction/Election dated Oct. 26, 2011.
U.S. Appl. No. 12/772,174, Non-Final Office Action dated Nov. 29, 2011.
U.S. Appl. No. 12/772,174, Requirement for Restriction/Election dated Aug. 10, 2011.
U.S. Appl. No. 12/960,388, Notice of Allowance dated May 28, 2013.
U.S. Appl. No. 12/960,388, Requirement for Restriction/Election dated Apr. 1, 2013.
U.S. Appl. No. 12/981,409, Non-Final Office Action dated Jan. 6, 2012.
U.S. Appl. No. 12/981,409, Notice of Allowance dated May 29, 2012.
U.S. Appl. No. 12/981,409, Requirement for Restriction/Election dated Apr. 19, 2012.
U.S. Appl. No. 12/981,409, Requirement for Restriction/Election dated Oct. 28, 2011.
U.S. Appl. No. 13/029,061, Requirement for Restriction/Election dated Nov. 29, 2011.
U.S. Appl. No. 13/045,500, Non-Final Office Action dated Mar. 9, 2012.
U.S. Appl. No. 13/045,500, Non-Final Office Action dated Jun. 5, 2014.
U.S. Appl. No. 13/045,500, Final Office Action dated Sep. 26, 2012.
U.S. Appl. No. 13/073,757, Non-Final Office Action dated Aug. 15, 2011.
U.S. Appl. No. 13/073,757, Non-Final Office Action dated Dec. 29, 2011.
U.S. Appl. No. 13/073,757, Notice of Allowance dated Apr. 17, 2012.
U.S. Appl. No. 13/087,311, Final Office Action dated Dec. 16, 2013.
U.S. Appl. No. 13/087,311, Non-Final Office Action dated Apr. 23, 2013.
U.S. Appl. No. 13/087,311, Non-Final Office Action dated Jun. 24, 2014.
U.S. Appl. No. 13/118,365, Final Office Action dated Jul. 22, 2013.
U.S. Appl. No. 13/118,365, Non-Final Office Action dated Feb. 11, 2013.
U.S. Appl. No. 13/118,365, Requirement for Restriction/Election dated Oct. 11, 2012.
U.S. Appl. No. 13/273,179, Non-Final Office Action dated Jan. 28, 2014.
U.S. Appl. No. 13/273,179, Notice of Allowance dated Jul. 11, 2014.
U.S. Appl. No. 13/273,179, Requirement for Restriction/Election dated Nov. 14, 2013.
U.S. Appl. No. 13/288,815, Final Office Action dated Oct. 22, 2014.
U.S. Appl. No. 13/288,815, Non-Final Office Action dated Jun. 18, 2014.
U.S. Appl. No. 13/288,815, Notice of Allowance dated Feb. 26, 2015.
U.S. Appl. No. 13/288,815, Requirement for Restriction/Election dated Jan. 30, 2014.
U.S. Appl. No. 13/365,253, Requirement for Restriction/Election dated Dec. 16, 2014.
U.S. Appl. No. 13/406,417, Non-Final Office Action dated Nov. 5, 2012.
U.S. Appl. No. 13/406,417, Requirement for Restriction/Election dated Apr. 30, 2012.
U.S. Appl. No. 13/464,948, Final Office Action dated Feb. 13, 2014.
U.S. Appl. No. 13/464,948, Non-Final Office Action dated Oct. 9, 2013.
U.S. Appl. No. 13/464,948, Notice of Allowance dated May 25, 2014.
U.S. Appl. No. 13/464,948, Requirement for Restriction/Election dated Aug. 21, 2013.
U.S. Appl. No. 13/479,194, Non-Final Office Action dated Mar. 26, 2014.
U.S. Appl. No. 13/479,200, Non-Final Office Action dated Apr. 10, 2013.
U.S. Appl. No. 13/479,200, Non-Final Office Action dated Sep. 9, 2013.
U.S. Appl. No. 13/479,200, Notice of Allowance dated Nov. 25, 2013.
U.S. Appl. No. 13/479,200,Requirement for Restriction/Election dated Jan. 15, 2013.
U.S. Appl. No. 13/527,480, Final Office Action dated Jan. 16, 2014.
U.S. Appl. No. 13/527,480, Non-Final Office Action dated Jun. 26, 2013.
U.S. Appl. No. 13/527,480, Requirement for Restriction/Election dated May 3, 2013.
U.S. Appl. No. 13/543,666, Non-Final Office Action dated Sep. 5, 2013.
U.S. Appl. No. 13/543,666, Notice of Allowance dated Feb. 10, 2014.
U.S. Appl. No. 13/543,666, Requirement for Restriction/Election dated Jan. 3, 2013.
U.S. Appl. No. 13/547,457, Final Office Action dated Mar. 20, 2014.
U.S. Appl. No. 13/547,457, Non-Final Office Action dated Jul. 8, 2013.
U.S. Appl. No. 13/547,457, Notice of Allowance and Examiner-Initiated Interview Summary dated May 29, 2014.
U.S. Appl. No. 13/550,412, Non-Final Office Action dated Oct. 29, 2012.
U.S. Appl. No. 13/550,412, Notice of Allowance dated Feb. 21, 2013.
U.S. Appl. No. 13/555,009, Notice of Allowance dated Jan. 9, 2015.
U.S. Appl. No. 13/555,009, Requirement for Restriction/Election dated Jun. 16, 2014.
U.S. Appl. No. 13/558,252, Final Office Action dated Jul. 9, 2013.
U.S. Appl. No. 13/558,252, Non-Final Office Action dated Jan. 18, 2013.
U.S. Appl. No. 13/558,252, Notice of Allowance dated Oct. 23, 2013.
U.S. Appl. No. 13/601,928, Non-Final Office Action dated Jan. 31, 2013.
U.S. Appl. No. 13/601,928, Notice of Allowance dated Feb. 26, 2013.
U.S. Appl. No. 13/621,722, Requirement for Restriction/Election dated Jan. 31, 2013.
U.S. Appl. No. 13/621,722, Final Office Action dated Oct. 25, 2013.
U.S. Appl. No. 13/621,722, Non-Final Office Action dated May 9, 2013.
U.S. Appl. No. 13/621,722, Notice of Allowance and Examiner Initiated Interview Summary dated Jan. 10, 2014.
U.S. Appl. No. 13/628,039, Non-Final Office Action dated Jun. 4, 2013.
U.S. Appl. No. 13/628,039, Notice of Allowance and Examiner-Initiated Interview Summary dated Feb. 20, 2014.
U.S. Appl. No. 13/628,039, Requirement for Restriction/Election dated Mar. 7, 2013.
U.S. Appl. No. 13/630,757, Non-Final Office Action dated Apr. 23, 2015.
U.S. Appl. No. 13/630,757, Non-Final Office Action dated Oct. 27, 2014.
U.S. Appl. No. 13/630,757, Requirement for Restriction/Election dated Jun. 12, 2014.
U.S. Appl. No. 13/650,018, Non-Final Office Action dated Dec. 23, 2013.
U.S. Appl. No. 13/650,018, Notice of Allowance dated Apr. 1, 2015.
U.S. Appl. No. 13/650,018, Notice of Allowance dated Apr. 10, 2015.
U.S. Appl. No. 13/650,018, Notice of Allowance dated Aug. 14, 2014.
U.S. Appl. No. 13/650,018, Requirement for Restriction/Election dated Aug. 22, 2013.
U.S. Appl. No. 13/650,024, Non-Final Office Action dated Jul. 2, 2013.
U.S. Appl. No. 13/650,024, Notice of Allowance dated Oct. 17, 2013.
U.S. Appl. No. 13/804,185, Non-Final Office Action dated Jun. 1, 2015.
U.S. Appl. No. 13/804,185, Requirement for Restriction/Election dated Mar. 16, 2015.
U.S. Appl. No. 13/849,330, Requirement for Restriction/Election dated Jan. 21, 2015.
U.S. Appl. No. 13/852,116, Final Office Action dated Aug. 18, 2014.
U.S. Appl. No. 13/852,116, Non-Final Office Action dated Mar. 26, 2014.
U.S. Appl. No. 13/852,116, Notice of Allowance dated Nov. 7, 2014.
U.S. Appl. No. 13/865,974, Non-Final Office Action dated May 2, 2014.
U.S. Appl. No. 13/865,974, Notice of Allowance dated Oct. 22, 2014.
U.S. Appl. No. 13/865,974, Requirement for Restriction/Election dated Jan. 29, 2014.
U.S. Appl. No. 13/889,214, Non-Final Office Action dated Sep. 18, 2013.
U.S. Appl. No. 13/889,214, Notice of Allowance dated Apr. 28, 2014.
U.S. Appl. No. 13/889,221, Non-Final Office Action dated Sep. 6, 2013.
U.S. Appl. No. 13/889,221, Notice of Allowance dated Apr. 24, 2014.
U.S. Appl. No. 13/941,342, Notice of Allowance dated Jul. 24, 2015.
U.S. Appl. No. 13/941,342, Requirement for Restriction/Election dated Apr. 13, 2015.
U.S. Appl. No. 13/941,346, Final Office Action dated Jun. 26, 2014.
U.S. Appl. No. 13/941,346, Non-Final Office Action dated Jan. 21, 2014.
U.S. Appl. No. 13/941,346, Non-Final Office Action dated Nov. 3, 2014.
U.S. Appl. No. 13/941,346, Notice of Allowance dated Feb. 23, 2015.
U.S. Appl. No. 13/941,353, Requirement for Restriction/Election dated Jan. 16, 2014.
U.S. Appl. No. 13/941,357, Final Office Action dated Nov. 6, 2014.
U.S. Appl. No. 13/941,357, Non-Final Office Action dated Jun. 3, 2014.
U.S. Appl. No. 13/941,357, Notice of Allowance dated Mar. 30, 2015.
U.S. Appl. No. 13/941,357, Requirement for Restriction/Election dated Jan. 7, 2014.
U.S. Appl. No. 14/184,288, Non-Final Office Action dated Sep. 11, 2015.
U.S. Appl. No. 14/184,288, Requirement for Restriction/Election dated Jun. 9, 2015.
U.S. Appl. No. 14/262,070, Non-Final Office Action dated Jul. 10, 2015.
U.S. Appl. No. 14/276,943, Requirement for Restriction/Election dated Jun. 4, 2015.
U.S. Appl. No. 14/285,354, Requirement for Restriction/Election dated Jul. 20, 2015.
U.S. Appl. No. 14/474,244, Final Office Action dated Jul. 30, 2015.
U.S. Appl. No. 14/474,244, Non-Final Office Action dated Apr. 24, 2015.
Ueno et al., “Optimization of heterotrophic culture conditions for n-alkane utilization and phylogenetic position based on the 18S rDNA sequence of a thermotolerant Prototheca zopfii strain,” J Biosci Bioeng, 94(2):160-165, (2002). Abstract. [Retrieved from the Internet Dec. 1,.2014: <URL: http://www.ncbi.nlm.nih.gov/pubmed/16233286>].
Urano, et al., “Effect of Osmotic Stabilizers on Protoplast Generation of Chlorella ellipsoidea Yellow/White Color Mutants,” Journal of Bioscience and Bioengineering, 90(5):567-569, (2000).
Van Etten et al., “Giant viruses infecting algae,” Annu Rev Microbiol, 53:447-494, (1999).
Vazquez-Bermudez et al., “Carbon Supply and 2-Oxoglutarate Effects on Expression of Nitrate Reductase and Nitrogen-Regulated Genes in Synechococcus sp. strain PCC 7942,” FEMS Microbiology Letters, 221(2):155-159, (2003).
Vazquez-Bermudez et al., “Uptake of 2-Oxoglutarat in Synechococcus Strains Transformed with the Escherichia coli kgtP Gene,” Journal of Bacteriology, 182(1):211-215, (2000).
Voelker et al., “Alteration of the Specificity and Regulation of Fatty Acid Synthesis of Escherichia coli by Expression of a Plant Medium Chain Acyl-Acyl Carrier Protein Thioesterase,” Journal of Bacteriology, 176(23):7320-7327, (1994).
Voelker et al., “Broad-Range and Binary-Range Acyl-Acyl-Carrier-Protein Thioesterases Suggest an Alternative Mechanism for Medium-Chain Production in Seeds,” Plant Physiol., 114:669-677, (1997).
Voetz et al., “Three Different cDNAs Encoding Acyl Carrier Proteins from Cuphea lanceolata',” Plant Physiol., 106:785-786, (1994).
Volkman et al., “Sterols in microorganisms,” Appl Microbial Biotechnol, 60:495-506, (2003).
Walker et al., “Characrization of the Dunaliella tertiolecta RbcS Genes and Their Promoter Activity in Chlamydomonates reinhardtii,” Plant Cell Rep, 23(10-11):727-735, (2005).
Wang et al., “Rapid isolation and functional analysis of promoter sequences of the nitrate reductase gene from Chlorella ellipsoidea,” J. Appl. Phycol., 16:11-16, (2004).
Warner et al., “Analysis of Tocopherols and Phytosterols in Vegetable Oils by HPLC with Evaporative Light-Scattering Detection,” JAOCS, 67(11):827-831 (1990).
Westphal, et al., “Vipp1 Deletion Mutant of Synechocystis: A Connection Between Bacterial Phage Shock and Thylakoid Biogenesis,” Proc Natl Acad Sci U S A., 98(7):4243-4248, (2001).
Whisstock et al., “Prediction of protein function from protein sequence and structure,” Quarterly Reviews of Biophysics, 36(3):307-340, (2003).
Wiberg et al., “The distribution of caprylate, caprate and laurate in lipids from developing and mature seeds of transgenic Brassica napus L.,” Planta, 212:33-40, (2000).
Wirth et al., “Transforamtion of Various Species of Gram-Negitive Bacteria Belonging to 11 Difference Genera by Electroporation,” Mol Gen Genet.; 216(1):175-177, (1989).
Wishart et al., “A Single Mutation Converts a Novel Phosphotyrosine Binding Domain into a Dual-specificity Phosphatase,” The Journal of Biological Chemistry, 270(45):26782-26785, (1995).
Witkowski et al., “Conversion of a β-Ketoacyl Synthase to a Malonyl Decarboxylase by Replacement of the Active-Site Cysteine with Glutame,” Biochemistry, 38:11643-11650, (1999).
Wolk et al., “Construction of Shuttle Vectors Capable of Conjugative Transfer From Escherichia coli to Nitrogen-Fixing Filamentous Cyanobacteria,” Proc Natl Acad Sci U S A., 81(5):1561-1565, (1984).
Wong et al., “Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants,” Plant Mol Biol, 20(1):81-93, (1992).
Wu et al., “A Comparative Study of Gases Generated from Simulant Thermal Degradation of Autotrophic and Heterotrophic Chlorella,” Progress in Natural Science, 2(4):311-318, (1992).
Wu et al., “Comparative study on Liposoluble Compounds in Autotrophic and Heterotrophic Chlorella Protothecoides,” Acta Botanica Sinica, 35(11):849-858, (1992).
Wu et al., “New Discoveries in Study on Hydrocarbons From Thermal Degradation of Heterotrophically Yellowing Algae,” Science in China, 37(3):326-35, (1994).
Xiong et al., “High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production,” Appl. Microbiol. Biotechnol., 78:29-36, (2008).
Yamada et al., “Alternative expression of a chitosanase gene produces two different proteins in cells infected with Chlorella virus CVK2,” Virology, 230(2):361-368, (1997).
Yamada et al., “Chlorella viruses,” Adv Virus Res, 66:293-336, (2006).
Yu et al., “Modifications of the metabolic pathways of lipid and tracylglycerol production in microalgae,” Microbial Cell Factories, 10:91, (2011). [Retrieved from the Internet Jul. 24, 2012: <URL: http://www.microbialcellfactories.com/content/10/1/91>].
Yuan et al., “Modification of the substate specificity of an acyl-acyl carrier protein thioesterase by protein engineering,” Proc. NatL Acad. Sci. USA, Biochemistry, 92:10639-10643, (1995).
Yaidul et al., “Supercritical carbon dioxide (SC-0O2) extraction and fractionation of palm kernel oil from palm kernel as cocoa butter replacers blend,” Journal of Food Engineering, 73:210-216, (2006).
Zhang et al., “Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation,” Microbiology, 153(7):2013-2025, (2007).
Zhang et al., Geneseq Database, Accession No. AED66345, CN1618976, May 25, 2005.
Zhao et al., “Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi,” Eur. J. Lipid Sci. Technol., 110:405-412, (2008).
Zurawski et al., “Nucleotide sequence of the gene for the Mr 32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of Mr 38,950,” Proc Natl Acad Sci, 79(24):7699-7703, (1982).
U.S. Appl. No. 15/173,335, Final Office Action dated Apr. 9, 2018.
U.S. Appl. No. 15/173,335, Notice of Allowance dated Jul. 26, 2018.
U.S. Appl. No. 15/443,209, Requirement for Restriction/Election dated Jul. 3, 2018.
U.S. Appl. No. 14/819,117, Notice of Allowance dated Jan. 16, 2018.
U.S. Appl. No. 14/819,117, Notice of Allowance dated Feb. 9, 2018.
U.S. Appl. No. 15/179,253, Non-Final Rejection dated Feb. 14, 2018.
U.S. Appl. No. 15/179,253, Notice of Allowance dated Aug. 10, 2018.
U.S. Appl. No. 14/974,983, Notice of Allowance dated Jun. 8, 2018.
U.S. Appl. No. 14/974,983, Corrected Notice of Allowability dated Jun. 20, 2018.
U.S. Appl. No. 15/875,984, Non-Final Office Action dated Aug. 27, 2018.
U.S. Appl. No. 14/506,491, Notice of Allowance dated Apr. 9, 2018.
U.S. Appl. No. 14/796,406, Requirement for Restriction/Election dated Oct. 5, 2016.
U.S. Appl. No. 14/796,406, Non-Final Office Action dated Jan. 25, 2017.
U.S. Appl. No. 14/796,406, Notice of Allowance dated Jun. 15, 2017.
U.S. Appl. No. 14/796,406, Notice of Allowance dated Oct. 3, 2017.
U.S. Appl. No. 14/796,406, Notice of Allowance dated Jan. 11, 2018.
U.S. Appl. No. 15/092,538, Non-Final Office Action dated Jan. 8, 2018.
U.S. Appl. No. 15/092,538, Final Office Action dated Jul. 25, 2018.
First Examination Report, dated Nov. 23, 2017, issued in Inidina Patent Aplication No. 4960-DELNP-2011.
Japanese Office Action [no translation] dated Oct. 27, 2017 issued in Application No. JP 2017-015080.
Japanese Office Action [no translation] dated Jul. 4, 2018 issued in Application No. JP 2017-015080.
Korean Office Action dated Nov. 15, 2017 issued in Application No. KR 10-2017-7021034, with English translation.
Korean Office Action dated Jan. 4, 2018, issued in Application No. KR 10-2017-7026170.
Japanese Office Action dated Dec. 19, 2017 issued in Application No. JP 2017-48186, in Japanese Only.
Canadian Notice of Allowance dated Apr. 27, 2018, issued in Application No. CA 2,816,125.
Chinese Decision on the Reexamination dated Mar. 2, 2018 issued in Application No. CN 201180053258.2.
Japanese Office Action dated Dec. 14, 2017 issued in Application No. JP 2016-009933.
Mexican Notice of Allowance dated Dec. 13, 2017 issued in Application No. MX/a/2013/004631.
Australian Patent Examination Report No. 1 dated Oct. 19, 2017, issued in Application No. AU 2016247159.
Australian Patent Examination Report No. 2 dated Jun. 1, 2018, issued in Application No. AU 2016247159.
Korean Office action [with English translation] dated Jun. 18, 2018 issued in Application No. KR 10-2013-7023181.
Mexican First Office Action dated May 14, 2018 issued in Application No. MX/a/2017/072309, with English Translation.
First Office Action, Substantice Examination Report—Stage I, for Indomesian Patent Application No. W00201302051, dated Apr. 5, 2018, with English translation.
Japanese Office Action dated Jun. 13, 2018, for Japanese Patent Application No. 2016-009933.
Second Office Action for Malaysian Patent Application No. PI 2013001587, dated Jun. 14, 2018.
Notice to File a Response for Korean Patent Application No. 10-2013-7013979, dated Jun. 18, 2018.
Second Office Action for EPO Application No. 11 785 851.4, dated Jun. 28, 2018.
First Office Action for Indian Patent Application No. 4315/DELNP/2013, dated Jul. 31, 2018.
First Communication from the examining division, dated Dec. 7, 2017 issued in European Patent Application No. 15747630.0.
Second Communication from the examining division, dated Jul. 27, 2018 issued in European Patent Application No. 15747630.0.
Geneseq: Database Accession No. AWK61076, “Nucleotide sequence SEQ ID 134280,” retrieved from EBI accession No. GSB:AWK61076, Oct. 29, 2009.
Geneseq: Database Accession No. BAN54762, “Plasmid pSZ1491 DNA contract, SEQ ID 232,” retrieved from EBI accession No. GSB:BAN54762, Jun. 20, 2013.
Liu et al., (2013) “Lipid metabolism in microalgae distinguishes itself,” Current Opinion in Biotechnology, 24:300-309.
Wang et al., (Jun. 1998) Principle and Technology of Plant Genetic Engineering, Beijing: Science Press, pp. 34-35 [19pp].
Related Publications (1)
Number Date Country
20180230442 A1 Aug 2018 US
Provisional Applications (2)
Number Date Country
62081143 Nov 2014 US
62023112 Jul 2014 US
Divisions (1)
Number Date Country
Parent 14796406 Jul 2015 US
Child 15950048 US