This application claims the priority benefit of TW application serial No. 105132927, filed on Oct. 12, 2016. The entirety of the above-mentioned patent application is hereby incorporated by references herein and made a part of specification.
The disclosure relates to a key and a keyboard device.
A consumer electronic device, such as an ultrabook or a Bluetooth keyboard for a tablet computer trends to be thin and light. Consequently, reducing the thickness of the key facilitates would minimize the thickness of the whole keyboard. A keycap is usually made of plastic. To keep a key in a high strength, a thickness of the plastic keycap cannot be thin. Consequently, the whole keyboard device is difficult to be thin. A plastic piece can be easily manufactured into a complicated connecting structure via an injection molding method where a metal materiel cannot. A metal piece needs to be placed on a plastic substrate and following with a further forming process. As a result, the forming process with a metal is complicated.
According to an aspect of the disclosure, a key is provided. The key is disposed on a baseplate of a keyboard device and comprises a sheet metal keycap and a supporting structure. The sheet metal keycap includes a body portion and two bending portions. And the two bending portions are formed by extending downwardly from a side of two punching holes of the body portion, respectively. The supporting structure is disposed between the sheet metal keycap and the baseplate. And two sides of the supporting structure are pivotally connected to the bending portions and the baseplate, respectively.
According to another aspect of the disclosure, a keyboard device is provided. The keyboard device comprises a baseplate and a plurality of keys. The baseplate includes a fixing portion and a slot. The keys are disposed on the baseplate. The key includes a sheet metal keycap and a supporting structure. The sheet metal keycap includes a body portion and two bending portions. The two bending portions are formed by extending downwardly from a side of two punching holes of the body portion, respectively. The supporting structure is disposed between the sheet metal keycap and the baseplate, and two sides of the supporting structure are pivotally connected to the bending portions and the baseplate, respectively.
These and other features, aspects and advantages of the invention will become better understood with regard to the following embodiments and accompanying drawings.
A key and a keyboard device with a sheet metal keycap are illustrated by referring to related drawings. The similar components are denoted by the same symbols.
Please refer to
In an embodiment, the key 1 is disposed on a baseplate 3 of the keyboard device K. The keyboard device K includes a rubber cap 2 disposed on the baseplate 3. The baseplate 3 includes a fixing portion 31 and a slot 32. The key 1 includes a sheet metal keycap 11 and a supporting structure 12. The sheet metal keycap 11 includes a body portion 111 and at least two bending portions 112A, 112B. The body portion 111 includes at least two punching holes O1, O2 corresponding to the bending portions 112A, 112B. The bending portions 112A, 112B are extended downwardly along a side of the corresponding punching holes O1, O2 from the body portion 111, respectively. The bending portions 112A, 112B are connected the supporting structure 12 pivotally. The supporting structure 12 is disposed between the sheet metal keycap 11 and the baseplate 3. The two sides of the supporting structure 12 are pivotally connected to the two bending portions 112A, 112B and the baseplate 3, respectively. The rubber cap 2 is disposed between the sheet metal keycap 11 and the baseplate 3.
In an embodiment, the supporting structure 12 of the key 1 includes a first support 121 and a second support 122. The rubber cap 2 is disposed between the first support 121 and the second support 122. A side of the first support 121 is pivotally connected to the bending portion 112A. The other side of the first support 121 is pivotally connected to the fixing portion 31 of the baseplate 3. A side of the second support 122 is pivotally connected to the bending portion 112B. The other side of the second support 122 is disposed inside the slot 32 of the baseplate 3. The first support 121 is connected to the second support 122 via the pivot connection between a portion 122c adjacent to a middle of the second support with a portion 121c adjacent to a middle of the first support. In an embodiment, the pivot position of the first support 121 and the second support 122 is in the middle. In an embodiment, the pivot position of the first support 121 and the second support 122 is adjacent to the middle portion.
In an embodiment, the bending portions 112A, 112B of the key 1 are formed by bending the body portion 111 after the punching holes O1, O2 are formed. The bending portions 112A, 112B and the body portion 111 are integratedly formed. The bending portion 112 is configured to be pivotally connected to a side of the first support 121 or a side of the second support 122.
In an embodiment, the material of the sheet metal keycap 11 includes but not limited to: steel plate, galvanized iron sheet, tin plated steel sheet, stainless steel plate, copper and copper alloy plate, aluminum and aluminum alloy plate and so on. The material of the supporting structure 12 includes but not limited to metal, plastic, rubber or other high polymer material.
In an embodiment, the rubber cap 2 is elastic. When the sheet metal keycap 11 is pressed, the rubber cap 2 is deformed with the movement of the sheet metal keycap 11. When the pressure applied on the sheet metal keycap 11 is eliminated, the sheet metal keycap 11 restores to an original position via a returning force provided by the rubber cap 2, the first support 121 and the second support 122.
In an embodiment, the bending portions 112 are in different shapes. Please refer to
In an embodiment, the bending portion 112 shown in
In an embodiment, in
In an embodiment, the bending portions 112g, 112h shown in
In an embodiment, the sheet metal keycap 11 is made of a metal with high intensity. As a result, the thickness of the sheet metal keycap 11 can be reduced while the key 1 strength is satisfied. Additionally, the body portion 111 of the sheet metal keycap 11 and the bending portion 112 are integratedly formed. When the sheet metal keycap 11 is combined with the supporting structure 12, the bending portions 112 in
As shown in
In an embodiment, the sheet metal keycap 11 is treated with an anodic surface treatment such as pull hair, laser engraving, or sandblasting. Comparing with the surface treatment for a conventional plastic keycap, it is diversified for the sheet metal keycap 11.
The key 1 and the keyboard device K are applied to an electronic device such as a notebook computer, or a tablet computer, or an ultrabook, which is not limited herein.
Comparing with a conventional plastic keycap, the thickness of the sheet metal keycap disclosed herein is reduced. Thus, the key and the keyboard can be produced thinner. Furthermore, lots of surface treatment that currently used in the area is applicable for the metal keycap.
In addition, the bending portion of the sheet metal keycap is punched from the body portion, and then a punching hole corresponding to the bending portion is formed. The shapes of the bending portions are a duckbill type, a double hook type, a double slot type or a double circle type. The shape of the bending portion is configured corresponding to the component to be connected. When a same keycap includes a plurality of bending portions, the shapes of the bending portions are the same or different. The connecting structure is not needed for the key and keyboard in embodiments of the disclosure. The sheet metal keycap and the bending portions are integratedly formed. Thus, the manufacturing process is simplified.
Although the invention has been disclosed with reference to certain embodiments thereof, the disclosure is not for limiting the scope. Persons having ordinary skill in the art may make various modifications and changes without departing from the scope of the invention. Therefore, the scope of the appended claims should not be limited to the description of the embodiments described above.
Number | Date | Country | Kind |
---|---|---|---|
105132927 A | Oct 2016 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5399822 | Sato | Mar 1995 | A |
6689977 | Ito | Feb 2004 | B2 |
7312414 | Yatsu | Dec 2007 | B2 |
Number | Date | Country |
---|---|---|
202042399 | Nov 2011 | CN |
202067711 | Dec 2011 | CN |
M512202 | Nov 2015 | TW |
M512738 | Nov 2015 | TW |
M524990 | Jul 2017 | TW |
Number | Date | Country | |
---|---|---|---|
20180102225 A1 | Apr 2018 | US |