The present invention relates to key cutting machines that duplicate and cut the key pattern from a master key on to a key blank and, more particularly, to key cutting machines having features for improved performance and ease of operation.
Key cutting machines typically comprise a pair of vise grips or clamps mounted on a carriage. A master key having a keyway groove or grooves if necessary and a key pattern already cut therein is placed in one of the vise grips or clamps on the carriage and a key blank awaiting to be cut having an identical keyway groove or grooves as necessary is placed in the adjacent vise grip or clamp on the carriage. The key pattern of the master key faces a stylus or tracer bar on the key cutting machine and the key blank faces a cutting wheel. The carriage is pivotally and linearly movable along a longitudinal supporting shaft and presses the key pattern of the master key against the tracer bar and the key blank against the cutting wheel. The carriage is then manually shifted longitudinally along supporting shaft thereby causing the key pattern on the master key to travel on the tracer bar and impart corresponding pivotal movement to the carriage so that the cutting wheel cuts the identical key pattern into the corresponding key blank. The key blank cut with the master key pattern is then removed from the vise or grip and buffed on a buffing wheel to remove any burrs.
While the above-identified description is directed to manual key cutting machines (machines in which the motion of the carriage results directly from user manipulation), there are also similar automatic key cutting machines. Such automatic key cutting machines can have a similar structure, but the carriage moves during the key cutting operation as driven by the motor of the key cutting machine.
Further, regardless of the particular operational characteristics of a key cutting machine, metal shavings result from the cutting wheel cutting a key pattern into a key blank. These metal shavings can accumulate if the key cutting machine is not cleaned on a regular basis and most advantageously after each key cutting operation. These metal shavings can fall into the housing of the key cutting machine and disrupt the operation of the machine or cause injury to the operator as they are very sharp and can cut an operator attempting to operate the key cutting machine.
It is an object of the present invention to provide a key cutting machine that can be operated in three different modes; automatic, semi-automatic, and manual.
It is a further object of the present invention to provide a key cutting machine that is adaptable to utilize a vacuum system for removing metal shavings from the cutter area.
Yet another object of the present invention is to provide a key cutting machine having all motors and working parts mounted to the underside of the housing away from any metal shavings and dirt which gather below.
Yet another object of the present invention is to provide a computer interface so that the key cutting machine may be operated according to instructions from a Key I.D. system (as described in U.S. patent application Ser. No. 10/633,933, now U.S. Pat. No. 7,890,878, filed on Aug. 4, 2003, herein incorporated by reference herein) or automatic feeder system.
Objects and advantages together with the operation of the invention may be better understood by reference to the following detailed description taken in connection with the following illustrations, wherein:
The key cutting machine of the present invention, generally designated as 10, is shown in the accompanying drawings. The key cutting machine 10 as described herein has numerous features or improvements, each of which are believed to be independently novel. Therefore, while the preferred embodiment of the present invention is described as utilizing each of these novel features or improvements in the aggregate, the appended claims should only be limited by the structure described therein and interpreted independently of all other features or improvements described herein. The present description in conjunction with the accompanying drawings should clearly enable one skilled in the art to reproduce the components and function of the key cutting machine. The following description will describe in detail the present invention with reference to the several drawings.
With reference to
With reference to
As best shown in
A feature or improvement of the key cutting machine 10 of the present invention is that the key cutting machine 10 is operable in three modes: automatic, semi-automatic, and manual. Therefore, with the master key 110 and key blank 100 held within the jaws 12 which are mounted on the carriage 18, the carriage 18 is permitted to move relative to the key cutting machine 10 in three modes.
To operate the key cutting machine 10 in an automatic mode, the master key 110 and key blank 100 are placed in the appropriate jaws 12. The gauge fork 26 is used to verify the proper position and alignment of the master key 110 and key blank 100 and then rotated to an out of the way position as shown in
After the carriage 18 is set in a carriage up position and the roller bearing 28 engages the guide plate 30, the carriage 18 is moved along the carriage rod 20 to a position where the tracer 22 engages the master key 110 adjacent the head 102. With the carriage 18 being spring biased against the cutting wheel 24, when the carriage 18 is moved longitudinally to the left, the tracer 22 engages the pattern 112 in the master key 110 and the cutting wheel 24 cuts the identical pattern into the key blank 100. With the carriage 18 in the carriage-up master key and key blank aligned position, the machine 10 is turned on and the autocycle button is pushed thereby engaging the automatic cycle. Without input from the user, the motor draws the carriage 18 to the left and the key pattern 112 of the master key 110 is cut into the blade 106 of the key blank 100. When the carriage 18 gets to a position at the end of the cutting process, the roller bearing 28 will extend beyond and disengage from the guide plate 30 and allow the carriage 18 to fall to a carriage down position as shown in
The operation of the key cutting machine 10 in a manual mode is identical to that of the automatic mode except that the automatic switch is not engaged so as to run the carriage 18 automatically. The master key 110 and key blank 100 are placed in the appropriate jaws 12. The gauge fork 26 is used to verify the proper position and alignment of the master key 110 and key blank 100 and then rotated to an out of the way position. The carriage 18 is then rotated to a carriage up position and the carriage 18 is held against the machine 10 by the engagement between the roller bearing 28 and guide plate 30. Preferably, the carriage 18 is moved along the carriage rod 20 to a position where the tracer 22 engages the master key 110 adjacent the head 102, although the carriage 18 can be moved at any position therealong. With the carriage 18 being spring biased against the cutting wheel 24, when the carriage 18 is moved longitudinally to the left by the user through pivoting of the handle 34, the tracer 22 engages the pattern 112 in the master key 110 and the cutting wheel 24 cuts the identical pattern into the key blank 100. The user can move the carriage 18 at will longitudinally and the master key pattern 112 is cut into the key blank 100. When the cutting process is complete, the user simply moves the carriage 18 to a position at the end of the cutting process so that the roller bearing 28 will extend beyond the guide plate 30 so that the carriage 18 falls to a carriage down position as shown in
The operation of the key cutting machine 10 in a semi-automatic mode is identical to that of the automatic mode except that at the end of the automatic cycle when the roller bearing 28 disengages from the guide plate 30, the user can take control of the carriage 18 and move the carriage 18 to a carriage up position and continue the cutting process. Like all modes, once the roller bearing 28 disengages the guide plate 30, the user can move the carriage 18 to the carriage up position and not engage the roller bearing 28 and guide plate 30 so that the user can manually move the carriage 18 to continue the cutting process. As the carriage 18 approaches the carriage up position, the rotational switch engages and the cutting wheel 24 is actuated so that the user can manually perform the key cutting operation.
To ensure that the key blank 100 and master key 110 are positioned properly within the key cutting machine 10, the key cutting machine 10 includes an additional improvement or feature wherein the jaws 12 are selectable for properly clamping and holding numerous types of keys therein. In particular, the upper and lower jaws 14, 16 are rotatable to provide separate clamping areas therebetween to accommodate different types of master keys and key blanks for accommodating key width and particular groove structures. Therefore, depending upon the type of master key and key blank being used, the jaws 12 of the key cutting machine 10 must be rotated to accommodate particular key configurations. These such jaw positions can be color coded or identified to assist the operator in identifying the proper jaws to use with particular master key and key blank configurations.
Another improvement or feature of the present invention is a novel assembly to prevent key cutting shavings from interfering with the performance of the key cutting machine 10. The key cutting machine 10 of the present invention includes a housing 40 that mounts over a bottom cover 42. However, the components of the key cutting machine 10 are not mounted on the bottom cover 42 as in most other key cutting machines. With the present invention, all motors, electrical wiring, and switches are mounted to the underside of the cast housing 40 and above the base 42 so that any metal shavings and debris entering the housing 40 will fall past the internal components and collect on the bottom cover 42. Such a configuration will prevent such shavings and debris from interfering with the operation of the components.
Yet another improvement or feature of the present invention is that the construction of major components is modular in form. As shown in the accompanying drawings, the key cutting machine includes three distinct modules that are assembled and mounted to the exterior housing. Should any of these modules fail, or components of the modules, the entire machine does not have to be removed or disassembled. Preferably, a module can be easily replaced by a technician so as to minimize down time of the machine. Such modularity of components mounted directly on the housing permits cost effective maintenance and repair of the key cutting machine and ease of access and repair to specific components at the field level. Modules 1, 2 and 3 are shown in
Still another improvement or feature of the key cutting machine 10 is the utilization of a vacuum assembly 60. And while the vacuum assembly 60 could be integrally formed with the key cutting machine 10, the preferred embodiment utilizes a removable vacuum system 60 capable of being connected to the key cutting machine 10. Specifically, the removable vacuum system 60 has a quick disconnect element permitting selectable connection and disconnection of the vacuum tube. In an embodiment, the quick disconnect element consists of a protrusion 11 capable of being received within an aperture 13 of the vacuum port. The protrusion 11 and aperture 13 shown in the figures are schematically shown only and do not represent any particular precise location or exact shape of the protrusion and aperture.
As shown best in
It is also anticipated that the key cutting machine 10 of the present invention is also capable of connection to a computer or other mechanism (not shown) so as to interface with a key identification system as disclosed in the incorporated patent application to make the key cutting process a totally automatic identification, transfer, and cutting system. Such a fully automated system can utilize a robotic arm or other transfer device that would retrieve a key blank identified by the identification system and place that key blank into the locking jaws 12 so that a user would not have to operate the key cutting machine 10 or transfer the key blank to the key cutting machine 10.
A further improvement or feature of the key cutting machine 10 is a carriage and rotating arm having an improved lever latch and carriage locking mechanism as shown in
This application is a continuation of U.S. patent application Ser. No. 13/647,006, now U.S. Pat. No. 8,784,020 to Ryai et al. filed on Oct. 8, 2012, and titled KEY CUTTING MACHINE, which is a continuation of U.S. patent application Ser. No. 12/383,825, now U.S. Pat. No. 8,292,556, to Ryai et al. filed on Mar. 27, 2009, and titled KEY CUTTING MACHINE, which is a continuation of U.S. patent application Ser. No. 11/728,174, now U.S. Pat. No. 7,527,458, to Ryai et al. filed on Mar. 23, 2007, and titled KEY CUTTING MACHINE, which is a continuation of U.S. patent application Ser. No. 10/970,844, now U.S. Pat. No. 7,214,011, to Ryai et al. filed on Oct. 20, 2004 and titled KEY CUTTING MACHINE, which claims priority from U.S. Provisional Patent Application No. 60/512,636 to Ryai et al. filed on Oct. 20, 2003, and titled KEY CUTTING MACHINE, all of which are hereby incorporated in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
2645978 | Sejarto et al. | Jul 1953 | A |
2929177 | Sheps | Mar 1960 | A |
3625111 | Carlo et al. | Dec 1971 | A |
3682041 | Essig | Aug 1972 | A |
3773360 | Timbers | Nov 1973 | A |
3880047 | Dosier | Apr 1975 | A |
4023464 | Zion | May 1977 | A |
4541760 | Zoueki | Sep 1985 | A |
4697300 | Warlop | Oct 1987 | A |
5171112 | Roland | Dec 1992 | A |
5172464 | Kitamura | Dec 1992 | A |
5259708 | Brice | Nov 1993 | A |
5271698 | Heredia et al. | Dec 1993 | A |
5538374 | Cole et al. | Jul 1996 | A |
5660509 | Cole et al. | Aug 1997 | A |
5984597 | Chen | Nov 1999 | A |
6064747 | Wills et al. | May 2000 | A |
6179531 | Jaw | Jan 2001 | B1 |
6220799 | Okutani et al. | Apr 2001 | B1 |
6602030 | Markbreit | Aug 2003 | B1 |
7172498 | Bernard et al. | Feb 2007 | B2 |
7214011 | Ryai, Sr. et al. | May 2007 | B2 |
7527458 | Ryai, Sr. et al. | May 2009 | B2 |
8292556 | Ryai, Sr. et al. | Oct 2012 | B2 |
20020168241 | David et al. | Nov 2002 | A1 |
20040095380 | Bass et al. | May 2004 | A1 |
20050000052 | Byles | Jan 2005 | A1 |
20060003676 | Bernard et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
935702 | Nov 1955 | DE |
19651662 | Jun 1998 | DE |
19734628 | Feb 1999 | DE |
0200390 | Jan 2002 | WO |
2005042196 | May 2005 | WO |
Entry |
---|
International Search Report and Written Opinion for International Patent Application No. PCT/US2004/034947, mailed Feb. 22, 2005. |
Supplemental European Search Report for European Patent Application No. 04796014.1, dated Feb. 29, 2012. |
European Office Action for European Patent Application No. 04796014.1, dated Oct. 4, 2013. |
International Preliminary Report for International Patent Application No. PCT/US04/34947, mailed May 4, 2006. |
Dictionary definition of “motor”; Merriam-Webster's Collegiate Dictionary, 10th ed., p. 760, copyright 1998. |
Number | Date | Country | |
---|---|---|---|
20140321935 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
60512636 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13647006 | Oct 2012 | US |
Child | 14310729 | US | |
Parent | 12383825 | Mar 2009 | US |
Child | 13647006 | US | |
Parent | 11728174 | Mar 2007 | US |
Child | 12383825 | US | |
Parent | 10970844 | Oct 2004 | US |
Child | 11728174 | US |