The present system relates to electronic keyboard systems and more particularly to electronic keys of electronic keyboard systems.
Electronic keyboard systems are known wherein keys are moveably positioned on a given surface such as a surface of a remote control device or computer input keyboard. In operation, depression of a key by a user closes a contact thereby making an electrical connection that uniquely identifies the key that was pressed. The unique identifier is transmitted by wire or wirelessly to a corresponding device that typically performs some action that corresponds to the particular key that was depressed.
In construction, an x-y coordinate grid or matrix of conductive paths is typically deposed on a bottom portion of the keyboard. Positioned above each of the conductive paths is a contact pad. When the key is not depressed, the contact pad is positioned so as not to be in electrical contact with an underlying conductive path. When the key is depressed, the contact pad comes into electrical contact with two ends of an underlying conductive path, thereby closing the circuit and providing the unique identifier determined by the X,Y coordinate of the depressed key as discussed above.
U.S. Pat. No. 4,005,293 (“the '293 Patent”) shows such a keyboard and is incorporated herein as if set out in its entirety. The '293 Patent utilizes a circular contact area on the contact pad.
The keys generally operate well when depressed from a center of the key but have problems in that keys may be depressed in numerous ways, such as an off-center depression, which may not result in a proper connection with the underlying grid. In this case, the unique identifier may not toe produced, and therefore, the intended operation of the keyboard may fail.
It is an object of the present system to overcome disadvantages and/or make improvements in the prior art.
The present system comprises a method and device including a key for an electronic keyboard including a contact pad and a conductive tracing underlying the contact pad. In another embodiment, the present system is directed to the conductive tracing. The conductive tracing includes a pair of electrically conductive paths that are electrically isolated from each other. The contact pad includes a conductive surface that makes electrical contact between the pair of electrically conductive paths when the contact pad is depressed.
The pair of electrically conductive paths may each include conductive surfaces that are electrically coupled together. Each of the plurality of conductive surfaces of the pair of electrically conductive paths extend radially between a center portion and a peripheral portion of the conductive tracing. In one embodiment, each of the plurality of conductive surfaces may have a length that substantially extends between corresponding inner and outer concentric circles centered around the center of the conductive tracing.
One or more of the conductive surfaces of the pair of electrically conductive paths may include a pair of outer edges that are substantially parallel to a respective radial direction that the outer edges extend in. In one embodiment, the conductive surfaces of each of the pair of electrically conductive paths are similarly formed as other conductive surfaces of the pair. The conductive surfaces of one of the pair of electrically conductive paths may be complementary formed to the conductive surfaces of another of the pair of electrically conductive paths. The conductive tracing may be substantially symmetric about an axis that passes through the center portion of the conductive tracing and extends in a direction substantially parallel to a surface of the conductive tracing. The conductive surfaces of each of the pair of electrically conductive paths may include three or more conductive surfaces. For example, in one embodiment, each of the conductive tracings may have six conductive surfaces.
In the accompanying drawings, like reference numbers in different drawings designate similar elements. It should be expressly understood that the drawings are included for illustrative purposes and do not represent the scope of the present system in which:
The following are descriptions of illustrative embodiments that when taken in conjunction with the following drawings will demonstrate the above noted features and advantages, as well as further ones. In the following description, for purposes of explanation rather than limitation, specific details are set forth such as architecture, interfaces, techniques, etc. However, it will be apparent to those of ordinary skill in the art that other embodiments that depart from these details would still be understood to be within the scope of the appended claims. Moreover, for the purpose of clarity, detailed descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the present system. In the accompanying drawings, like reference numbers in different drawings may designate similar elements.
In accordance with an embodiment of the present system, the conductive path 212 includes a plurality of conductive surfaces 215 that are electrically coupled together substantially around a center portion 220 of the tracing 212. The conductive path 210 includes a plurality of conductive surfaces 225 that are electrically coupled together substantially around an outer peripheral portion 230 of the tracing 210. The conductive surfaces 215 radiate outward from the center portion 220 of the conductive tracing 200. The conductive surfaces 225 radiate inward from the outer peripheral portion 230 of the conductive tracing 200. In this embodiment, the conductive surfaces 215 are interleaved with the conductive surfaces 225. In one embodiment, the plurality of conductive surfaces 215 and the plurality of conductive surfaces 225 are three or more conductive surfaces. In a particular embodiment, the plurality of conductive surfaces 215 may be an even number of conductive surfaces, such as two, four, six, eight, etc. conductive surfaces, or an odd number of conductive surfaces, selection of which number to utilize may be at least partly dependent on a selected thickness across the conductive surfaces. For example, in one embodiment there may be six conductive surfaces 215 and six conductive surfaces 225 that are substantially symmetrically positioned around the center portion 220.
The plurality of conductive surfaces 213 may extend in a direction substantially radial outward from the center portion 220. The plurality of conductive surfaces 225 may extend in a direction substantially radial inward from the outer peripheral portion 230 towards the center portion 220. For example, in one embodiment in accordance with the present system, the plurality of conductive surfaces 215 may be formed along a pair of corresponding concentric circles wherein an inner one of the concentric circles is surrounded by an outer one of the concentric circles. Similarly, the plurality of conductive surfaces 225 may be formed along another pair of corresponding concentric circles, wherein an inner one of the other pair of concentric circles is surrounded by an outer one of the other pair of concentric circles.
Each of the plurality of conductive surfaces 215 may have a length radiating outward from the center potion 220 that extends substantially between the corresponding inner and outer ones of the concentric circles. Similarly, the plurality of conductive surfaces 225 may have a length radiating inward from the outer peripheral potion 230 that extends substantially between the other inner and outer ones of the concentric circles. One or more of the plurality of conductive surfaces 215 may be arranged to resemble the form of spokes radiating outward on a wheel wherein exterior edges 240 of the plurality of conductive surfaces 215 may form arcs that are longer in length than arcs formed by interior edges 245 that connect the plurality of conductive surfaces 215. Each spoke so formed may have outside edges 250 that join the exterior edges 240 to corresponding interior edges 245.
The isolating area 214 may have a similar shape as the electrically conductive path 212 and surrounds the electrically conductive path 212. As stated previously, the electrically conductive path 210 has a substantially complementary shape to the electrically conductive path 212.
In another embodiment, the exterior edges 240 may form substantially straight lines that extend perpendicular to the respective radial direction of the corresponding one of the plurality conductive surfaces 215. Adjacent conductive surfaces, each having one adjacent substantially parallel line, may be joined together by one of the interior edges 230. In this embodiment, each of the plurality of conductive surfaces 215 may be similarly formed. The exterior edges 240 of the plurality of conductive surfaces 215 may be located substantially on the outer concentric circle that is centered around the center portion 220. The interior edges 230 of the plurality of conductive surfaces 215 may be located substantially on the inner concentric circle. Each edge of the substantially parallel outside edges 250 may have a substantially equal length. The conductive tracing 212 may be substantially symmetric about an axis that passes through the center portion 220 and extends in a direction substantially parallel to a surface of the contact pad 212.
The key 370A may also be a key of a remote control device that is operationally coupled to a controlled device, such as a television and corresponding television remote control. Other uses of the key 370A in accordance with the present system would readily occur to a person of ordinary skill in the art. To simplify the following discussion, the term keyboard will be utilized herein but is intended to encompass the above and other applications where an input device, namely the key 370A of a keyboard, may be suitably utilized.
The conductive paths 310, 312 are electrically isolated from each other by an isolating area 314 when no downward force is applied to the contact pad 380A. In typical operation, a downward force 390 is applied to the contact pad 380A when a user wishes, for example, to make an indication through the keyboard by the key 370A. The downward force 390 is illustratively shown as acting on a periphery of the contact pad 380A as may occur if the user applies a downward force on an outside edge of the key 370A. The downward force 390 operates to deform the contact pad 380A such that the conductive surface 385A is brought into electrical contact with the conductive paths 310, 312. In this way, the conductive surface 385A electrically couples the conductive paths 310, 312 and thereby, the user desired indication may be reliably provided in spite of the peripheral key press.
The PCB 305 may have a cutout portion 302 positioned under the key 380B. Further, a light source 326, such as a light emitting diode (LED), incandescent bulb, etc., may be positioned at an underside of the PCB 305B. The cutout 302 is positioned with relation to the light source 326, such that a light path is formed. In this way, the light generated by the light source 326, may be visible beyond the contact pad 380B, such as around and/or through the contact pad 380B.
The conductive tracing 300 is positioned with reference to the key 370B to illustrate operation in accordance with an embodiment of the present system as is the selected sectional view B-B of the conductive tracing 300. In this view, the downward force 390B is illustratively shown as acting on a center portion of the contact pod 380B as may occur if the user applies a downward force within a center portion of the key 370B. The downward force 390 operates to deform the contact pad 380B such that the conductive surface 385B is brought into electrical contact with the conductive paths 310, 312. In this way, the conductive surface 385B electrically couples the conductive paths 310, 312 and thereby, the user desired indication may be reliably provided in case of a centered key press. Naturally as may be readily appreciated, while
Of course, it is to be appreciated that any one of the above embodiments or processes may be combined with one or more other embodiments or processes in accordance with the present system.
Finally, the above-discussion is intended to be merely illustrative of the present system and should not be construed as limiting the appended claims to any particular embodiment or group of embodiments. Thus, while the present system has been described with reference to exemplary embodiments, it should also be appreciated that numerous modifications and alternative embodiments may be devised by those having ordinary skill in the art without departing from the broader and intended spirit and scope of the present system as set forth in the claims that follow. In addition, the section headings included herein are intended to facilitate a review but are not intended to limit the scope of the present system. Accordingly, the specification and drawings are to be regarded in an illustrative manner and are not intended to limit the scope of the appended claims.
In interpreting the appended claims, it should be understood that:
Number | Name | Date | Kind |
---|---|---|---|
5810604 | Kopp et al. | Sep 1998 | A |
5952629 | Yoshinaga et al. | Sep 1999 | A |
6448518 | Martin et al. | Sep 2002 | B1 |
6573467 | Nakanishi et al. | Jun 2003 | B1 |
6603086 | Kawaguchi et al. | Aug 2003 | B2 |
7030329 | Sneek et al. | Apr 2006 | B1 |
7090374 | Arthur | Aug 2006 | B2 |
7304256 | Kawahira et al. | Dec 2007 | B2 |
7439465 | Parkinson | Oct 2008 | B2 |
7528338 | Ataka | May 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20080105528 A1 | May 2008 | US |