The present invention relates to a technique for sharing a key between two parties.
Quantum computers are being developed worldwide. As a cryptography scheme capable of maintaining security against the advent of the quantum computers, a cryptography using an isogeny has been proposed.
Non-Patent Literature 1 describes a Biclique conversion scheme that converts a 1-round Diffie-Hellman (to be referred to as DH hereinafter) key sharing scheme into a scheme with an authentication function.
The DH key sharing scheme is not quantum-resistant. Conventionally, there was no quantum-resistant 1-round key sharing scheme with an authentication function.
As a candidate technique for constructing a quantum-resistant 1-round key sharing scheme with an authentication function, a supersingular isogeny DH (to be referred to as SIDH hereinafter) key sharing scheme (see Non-Patent Literature 2) is available. While studies have been made vigorously on the SIDH key sharing scheme lately, a method of converting the SIDH key sharing scheme into a key sharing scheme with an authentication function is not yet known due to asymmetricity of the SIDH key sharing scheme.
It is an objective of the present invention to enable conversion of a key sharing scheme having asymmetricity into a key sharing scheme with an authentication function.
A key sharing device according to the present invention includes:
a key selection unit to select one static key out of two static keys; and
a key generation unit to generate a shared key to be shared with a counterpart, using the static key selected by the key selection unit.
According to the present invention, a shared key is generated with using one static key selected out of two static keys. This enables conversion of a key sharing scheme having asymmetricity into a key sharing scheme with an authentication function.
Embodiment 1 describes an SIDH key sharing scheme as an example of a key sharing scheme having asymmetricity.
***Description on Notation***
Notation employed below will now be described. The SIDH key sharing scheme will be described first, and then the notation will be described.
Note that there are restrictions on use of subscripts and superscripts in the text. Hence, in the following text, “_” is used as a symbol to represent a subscript, and “{circumflex over ( )}” is used as a symbol to represent a superscript. Subscripts and Superscripts that cannot be expressed properly in the text are represented with using these symbols. For example, N_i represents Ni and N{circumflex over ( )}i represents Ni.
<SIDH Key Sharing Scheme>
The SIDH key sharing scheme will be described with referring to
With regard to two small primes LA and LB (for example, LA=2, LB=3) and a small value f, a large prime p is selected such that Formula 11 is satisfied.
[Formula 11]
p±1=f·LAe
where LAe
The values eA and eB are selected such that equation (2) in Formula 11 is established. In Formula 11, the symbol Θ is a Landau symbol, representing a value that is fixed from upper and lower sides asymptotically. The symbol λ is a security parameter.
A supersingular elliptic curve E defined over a finite field F_{p2} with an order p2 and having a rational point group indicated in Formula 12 is selected.
(/(p±1))2⊇(/LAe
An isogeny ϕA with a kernel of an order LA{circumflex over ( )}{eA} and an isogenyB with a kernel of an order LB{circumflex over ( )}{eB} are used. For the isogeny ϕA, its kernel is given as Ker (ϕA)=<RA>. For the isogeny ϕB, its kernel is given as Ker (ϕB)=<RB>. An isogeny having ϕB (RA) as its kernel is given as ϕBA. An isogeny having ϕA (RB) as its kernel is given as ϕAB.
Then, the relationship indicated in
Points PA, QA, PB, and QB on the supersingular elliptic curve E indicated in Formula 13 are selected as generators. The supersingular elliptic curve E, the generators PA, QA, PB, and QB, and the values LA, LB, eA, and eB are taken as public parameters.
E[LAe
E[LBe
Also, a secret key space for Alice and a secret key space for Bob are respectively given as SKA and SKB indicated in Formula 14.
SKA:={(mA,nA)∈(/LAe
SKB:={(mB,nB)∈(/LBe
As indicated in
Likewise, Bob calculates RB=mBPB+nBQB using a secret key (mB, nB) randomly selected from the secret key space SKB. Bob calculates the supersingular elliptic space EB and the isogeny ϕB using RB. Then, Bob transmits ϕB (PA) and ϕB (QA) calculated with using the supersingular elliptic space EB and the isogeny B to Alice.
Alice calculates RBA=mAϕB (PA)+nAϕB (QA) using the secret key (mA, nA), and ϕB (PA) and ϕB (QA) which are transmitted by Bob. Alice calculates a shared key KAlice=j (EB/<RBA>) from RBA and the supersingular elliptic space EB which is transmitted by Bob. Note that j is a j-invariant.
Likewise, Bob calculates RAB=mB ϕA (PB)+nB ϕA (QB) using the secret key (mB, nB), and ϕA (PB) and ϕA (QB) which are transmitted by Alice. Bob calculates a shared key KBob=j (EA/<RAB>) from RAB and the supersingular elliptic space EA which is transmitted by Alice.
That is, of the two key-sharing parties, one (Bob) performs calculation of route 1 of
Note that <mAϕB (PA)+nAϕB (QA)>=<ϕB (RA)>=kerϕBA and that <mBϕA (PB)+nBϕA (QB)>=<ϕA (RB)>=kerϕAB. Hence, an equation KAlice=j (EB/kerϕBA)=j (E/<RA, RB>)=j (EA/kerϕAB)=KBob for the j-invariant is established. Therefore, K=KAlice=KBob is the shared key.
The public parameters PA and QA and the secret key space SKA, which are employed by Alice, are elements based on exponentiation of LA. The public parameters PB and QB and the secret key space SKB, which are employed by Bob, are elements based on exponentiation of LB. Hence, the public parameters PA and QA and the secret key space SKA, and the public parameters PB and QB and the secret key space SKB, are elements of different classifications. Alice and Bob need to employ elements of different classifications. Alice and Bob cannot perform key sharing with each other using elements of the same classification.
When two parties that perform key sharing with each other use different information in this manner, this situation is called asymmetry. That is, the SIDH key sharing scheme has asymmetricity.
<Notation>
A notation for representing the SIDH key sharing method in a simple and clear manner will be described with referring to
The supersingular elliptic curve E and generators PA, QA, PB, and QB, which are included in the public parameters, are denoted as “g”. The secret key (mA, nA) of Alice is denoted as “a”. The secret key (mB, nB) of Bob is denoted as “b”.
A set of supersingular elliptic curves E described above is denoted as SSECP.
Sets of the above-described supersingular elliptic curves E with an auxiliary torsion basis are denoted as SSECP,A and SSECP,A. SSECP,A represents a set of information that Alice transmits to Bob. SSECP,B represents a set of information that Bob transmits to Alice.
Note that “ga” “gb”, “(gb)a”, and “(ga)b” are defined as follows.
g
a:=(EA: ϕA(PB),ϕA(QB))∈SSECP,A
where RA=mAPA+nAQA,ϕA: E→EA=F/<RA>
g
b:=(EB: ϕB(PA),ϕB(QA))∈SSECP,B
where RB=mBPB+nBQB,ϕB: E→EB=E/<RB>
(gb)a:=j(EBA)
where RBA=mAϕB(PA)+nAϕB(QA),ϕBA: EB→EBA=EB/<RBA>
(ga)b:=j(EAB)
where RAB=mBϕA(PB)+nBϕA(QB),ϕAB: EA→EAB=EA/<RAB>
With using the above notation, the SIDH key sharing scheme is described as indicated in
The public parameters are g=(E; PA, QA, PB, QB) and e=(LA, LB, eA, eB).
Alice calculates ga using the secret key a randomly selected from the secret key space SKA. Then, Alice transmits ga to Bob. Likewise, Bob calculates gb using a secret key b randomly selected from the secret key space SKB. Then, Bob transmits gb to Alice.
Alice calculates the shared key KAlice=(gb)a using the secret key a and gb which is transmitted by Bob. Likewise, Bob calculates the shared key KBob=(ga)b using the secret key b, and ga which is transmitted by Alice. The shared key is given as KAlice=(gb)a=(ga)b=KBob.
***Description of Configuration***
A configuration of a key sharing system 1 according to Embodiment 1 will be described with referring to
The key sharing system 1 is provided with a plurality of key sharing devices 10. In
A configuration of the key sharing device 10 according to Embodiment 1 will be described with referring to
The key sharing device 10 is provided with hardware devices, being a processor 11, a memory 12, a storage 13, and a communication interface 14. The processor 11 is connected to the other hardware devices via a signal line and controls these other hardware devices.
The processor 11 is an integrated circuit (IC) which performs processing. Specific examples of the processor 11 are a central processing unit (CPU), a digital signal processor (DSP), and a graphics processing unit (GPU).
The memory 12 is a storage device which stores data temporarily. Specific examples of the memory 12 are a static random access memory (SRAM) and a dynamic random access memory (DRAM).
The storage 13 is a storage device which stores data. A specific example of the storage 13 is a hard disk drive (HDD). The storage 13 may be a portable recording medium such as a secure digital (SD; registered trademark) memory card, a compact flash (CF; registered trademark), a NAND flash, a flexible disk, an optical disk, a compact disk, a blu-ray (registered trademark), and a digital versatile disk (DVD).
The communication interface 14 is an interface to communicate with an external device. Specific examples of the communication interface 14 are an Ethernet (registered trademark) port, a universal serial bus (USB) port, and a high-definition multimedia interface (HDMI; registered trademark) port.
The key sharing device 10 is provided with a reception unit 21, a key selection unit 22, a key generation unit 23, and a transmission unit 24, as function constituent elements. The key generation unit 23 is provided with a static key generation unit 25, a temporary key generation unit 26, and a shared key generation unit 27. Functions of the individual function constituent elements of the key sharing device 10 are implemented by software.
A program that implements the functions of the individual function constituent elements of the key sharing device 10 is stored in the storage 13. This program is read into the memory 12 by the processor 11 and executed by the processor 11. Hence, the functions of the individual function constituent elements of the key sharing device 10 are implemented.
***Description of Behavior***
A behavior of the key sharing system 1 according to Embodiment 1 will be described with referring to
The behavior of the key sharing system 1 according to Embodiment 1 corresponds to a key sharing method according to Embodiment 1. The behavior of the key sharing system 1 according to Embodiment 1 also corresponds to a process of a key sharing program according to Embodiment 1.
The key sharing system 1 uses g=(E; P1, Q1, P2, Q2) and e=(L1, L2, e1, e2), as public parameters. Note that indices “A” and “B” in the SIDH key sharing scheme described with referring to
The key sharing system 1 uses the secret key space SK1 and the secret key space SK2. The secret key space SK1 is indicated in Formula 15, is of the same classification as (P1, Q1), and is based on L1 to the e1-th power. The secret key space SK2 is indicated in Formula 15, is of the same classification as (P2, Q2), and is based on L2 to the e2-th power.
[Formula 15]
SK1:={(m1,n1)∈(*L1e
SK2:={(m2,n2)∈(*L2e
A pre-process according to Embodiment 1 will be described with referring to
The pre-process is executed by each key sharing device 10 provided to the key sharing system 1 before a key sharing process to be described later is performed. A description will be made by way of a case where the key sharing device 10A and the key sharing device 10B perform key sharing.
(Step S11: Public Parameter Acquisition Process)
The reception unit 21 acquires public parameters.
Specifically, the reception unit 21 receives, from a publication server, g=(E; P1, Q1, P2, Q2) and e=(L1, L2, e1, e2), which are the public parameters, and writes the received public parameters in the memory 12. The public parameters are generated by a management device of the key sharing system 1 and stored in the publication server.
(Step S12: Static Key Generation Process)
The static key generation unit 25 generates static keys based on the public parameters acquired in step S11.
Specifically, in the key sharing device 10A, the static key generation unit 25 reads out the public parameters from the memory 12. The static key generation unit 25 randomly selects elements from the secret key space SK1 to generate a static secret key a1=(mA,1, nA,1). The static key generation unit 25 randomly selects elements from the secret key space SK2 to generate a static secret key a2=(mA,2, nA,2). The static key generation unit 25 also generates a static public key A1=g{circumflex over ( )}a1 using the static secret key a1. The static key generation unit 25 generates a static public key A2=g{circumflex over ( )}a2 using the static secret key a2. The static key generation unit 25 writes, in the memory 12, a pair of the static secret key a1 and the static public key A1 and a pair of the static secret key a2 and the static public key A2.
Likewise, in the key sharing device 10B, the static key generation unit 25 reads out the public parameters from the memory 12. The static key generation unit 25 randomly selects elements from the secret key space SK1 to generate a static secret key b1, =(mB, 1, nB, 1). The static key generation unit 25 randomly selects elements from the secret key space SK2 to generate a static secret key b2=(mB,2, nB, 2). The static key generation unit 25 also generates a static public key B1=g{circumflex over ( )}b1 using the static secret key b1. The static key generation unit 25 generates a static public key B2=g{circumflex over ( )}b2 using the static secret key b2. The static key generation unit 25 writes, in the memory 12, a pair of the static secret key b1 and the static public key B1, and a pair of the static secret key b2 and the static public key B2.
The pair of the static secret key a1 and the static public key A1, the pair of the static secret key a2 and the static public key A2, the pair of the static secret key b1 and the static public key B1, and the pair of the static secret key b2 and the static public key B2 are each called a static key. The pair of the static secret key a1 and the static public key A1 and the pair of the static secret key b1 and the static public key B1 are elements based on the power of L1 and belong to the same classification as (P1, Q1). The pair of the static secret key a2 and the static public key A2, and the pair of the static secret key b2 and the static public key B2 are elements based on the power of L2 and belong to the same classification as (P2, Q2).
(Step S13: Key Publication Process)
The transmission unit 24 reads out the static public keys generated in step S12 from the memory 12. The transmission unit 24 then transmits the readout static public keys to the publication server to publicize the static public keys to the key sharing devices 10 provided to the key sharing system 1.
In the case of the key sharing device 10A, the transmission unit 24 reads out the static public key A1 and static public key A2 from the memory 12 and transmits the readout static public key A1 and static public key A2 to the publication server. In the case of the key sharing device 10B, the transmission unit 24 reads out the static public key B1 and static public key B2 from the memory 12 and transmits the readout static public key B1 and static public key B2 to the publication server.
The key sharing process according to Embodiment 1 will be described with referring to
As a premise, assume that the key sharing device 10 acquires the static public keys of the key-sharing counterpart and stores the acquired static public keys in the memory 12.
(Step S21: Key Selection Process)
The key selection unit 22 selects one static key out of two static keys of different classifications.
Specifically, the key selection unit 22 selects, out of two static keys of different classifications, a static key of a classification different from the counterpart. That is, in the key sharing device 10A, between the pair of the static secret key a1 and the static public key A1 and the pair of the static secret key a2 and the static public key A2, the key selection unit 22 selects a pair different from the key sharing device 10B being a key-sharing counterpart. Likewise, in the key sharing device 10B, between the pair of the static secret key b1 and the static public key B1, and the pair of the static secret key b2 and the static public key B2, the key selection unit 22 selects a pair different from the key sharing device 10A being a key-sharing counterpart.
As a specific example, the key selection unit 22 selects one out of two static keys according to whether or not the key sharing device 10 is on a start side that starts key sharing. However, key selection is not limited to this. It suffices as far as different pairs are selected by the different parties according to predetermined rules. The key selection unit 22 writes the selected static keys to the memory 12.
If the key selection unit 22 is in the key-sharing start-side key sharing device 10 (key sharing device 10A), the key selection unit 22 selects the pair of the static secret key a1 and the static public key A1 of the same classification as (P1, Q1). If the key selection unit 22 is in the response-side key sharing device 10 (key sharing device 10B) that performs key sharing in response to the start side, the key selection unit 22 selects the pair of the static secret key b2 and the static public key B2 of the same classification as (P2, Q2). Which key sharing device 10 is on the start side can be identified by, for example, pre-event communication prior to start of key sharing.
(Step S22: Temporary Key Generation Process)
The temporary key generation unit 26 generates temporary keys of the same classification as that of the static keys selected in step S21.
Specifically, the temporary key generation unit 26 randomly selects elements from the secret key space of the same classification as that of the static keys selected in step S21, to generate a temporary secret key. The temporary key generation unit 26 of the start-side key sharing device 10A randomly selects elements from the secret key space SK1 of the same classification as that of the pair of the static secret key a1 and the static public key A1 to generate a temporary secret key x=(mx, nx). The temporary key generation unit 26 of the response-side key sharing device OB randomly selects elements from the secret key space SK2 of the same classification as that of the pair of the static secret key b2 and the static public key b2, to generate a temporary secret key y=(my, ny).
The temporary key generation unit 26 also generates a temporary public key using the temporary secret key. The temporary key generation unit 26 of the start-side key sharing device 10A generates a temporary public key X=gx using the temporary secret key x. The temporary key generation unit 26 of the response-side key sharing device 10B generates a temporary public key Y=gy using the temporary secret key y.
The temporary secret key and the temporary public key will be collectively referred to as temporary keys. The temporary key generation unit 26 writes the generated temporary keys to the memory 12.
(Step S23: Temporary Public Key Transmission Process)
The transmission unit 24 transmits the temporary public key generated in step S22 to the key sharing device 10 of the key-sharing counterpart.
Specifically, the transmission unit 24 reads out the temporary public key from the memory 12. The transmission unit 24 transmits the readout temporary public key to the counterpart-side key sharing device 10 via the communication interface 14. The temporary public key is transmitted to the counterpart-side key sharing device 10 via the transmission line 30 and received by the reception unit 21 of the counterpart-side key sharing device 10.
The transmission unit 24 of the start-side key sharing device 10A transmits the temporary public key X to the response-side key sharing device 10B. The reception unit 21 of the key sharing device 10B receives the temporary public key X and writes the received temporary public key X in the memory 12. The response-side key sharing device 10B transmits the temporary public key Y to the start-side key sharing device 10A. The reception unit 21 of the key sharing device 10A receives the temporary public key Y and writes the received temporary public key Y in the memory 12.
(Step S24: Shared Key Generation Process)
The shared key generation unit 27 generates a shared key using the static key selected in step S21, the temporary secret key generated in step S22, the temporary public key generated by the counterpart side in step S23, and the counterpart-side static public key.
Specifically, the shared key generation unit 27 reads out the static key selected in step S21, the temporary secret key generated in step S22, the counterpart-side temporary public key received in step S23, and the counterpart-side static public key from the memory 12. The shared key generation unit 27 then calculates a value Z1, a value Z2, a value Z3, and a value Z4 in the following manner and writes the calculated values Z1 to Z4 in the memory 12.
The shared key generation unit 27 of the start-side key sharing device 10A calculates the values Z1, Z2, Z3, and Z4 as value Z1=Y{circumflex over ( )}a1, value Z2=B2x, value Z3=B2{circumflex over ( )}a1, and value Z4=Yx. The shared key generation unit 27 of the response-side key sharing device 10B calculates the values Z1, Z2, Z3, and Z4 as value Z1=A1y, value Z2=X{circumflex over ( )}b2, value Z3=A1 {circumflex over ( )}b2, and value Z4=Xy.
Note value Z1=Y{circumflex over ( )}a1=(gy){circumflex over ( )}a1=(g{circumflex over ( )}a1)y=A1y, value Z2=B2x=(g{circumflex over ( )}b2)x=(gy){circumflex over ( )}b2=X{circumflex over ( )}b2, value Z3=B2{circumflex over ( )}a1=(g{circumflex over ( )}b2){circumflex over ( )}a1=(g{circumflex over ( )}a1){circumflex over ( )}b2=A1 {circumflex over ( )}b2, and value Z4=Yx=(gy)x=(gx)=Xy. Hence, the values Z1, Z2, Z3, and Z4 calculated by the start-side key sharing device 10A and the values Z1, Z2, Z3, and Z4 calculated by the response-side key sharing device 10B are all equal.
The shared key generation unit 27 generates a common key K using the calculated values Z1, Z2, Z3, and Z4.
In a specific example, the shared key generation unit 27 takes as input the values Z1, Z2, Z3, and Z4 and calculates a hash function H to generate the common key K. In this regard, in addition to the values Z1, Z2, Z3, Z4, the shared key generation unit 27 may also take as input a protocol identifier Π, an identifier A of the start-side key sharing device 10A, an identifier B of the response-side key sharing device 10B, the temporary public key X of the start-side key sharing device 10A, and the temporary public key Y of the response-side key sharing device 10B. That is, the shared key generation unit 27 may calculate the common key K by calculating K=H (Π, Z1, Z2, Z3, Z4, A, B, X, Y).
Modification may be added such as putting together some of the values Z1, Z2, Z3, and Z4 into one value.
As described above, in the key sharing system 1 according to Embodiment 1, static keys of two classifications are prepared, and static keys different from those of the key-sharing counterpart side are used. Thus, a key sharing scheme having asymmetricity can be converted into a key sharing scheme with an authentication function.
Key sharing with an authentication function will be described.
According to a protocol of key sharing with the authentication function, the key-sharing two parties have static public keys of their own and exchange temporary public keys with each other. Each of the key-sharing two parties calculates a shared key based on a counterpart-side static public key, a temporary public key received from the counterpart, a static secret key corresponding to the static public key of its own, and a temporary secret key corresponding to the temporary public key of its own.
The static public key and the static secret key will be collectively referred to as static keys. The static keys are keys that are not changed over a long period of time. The temporary public key and the public secret key will be collectively referred to as temporary keys. The temporary keys are keys that are used temporarily in generation of the shared key. The shared key is a key that is shared between the two parties.
According to the protocol of key sharing with the authentication function, the shared key is calculated with using the counterpart-side static public key. The static public key is a key that is not changed over a long period of time. Therefore, a key-sharing counterpart can be identified.
The key sharing system 1 according to Embodiment 1 can implement a 1-round key sharing scheme with an authentication function by converting the SIDH key sharing scheme.
An explanation will be made on “1 round”.
The term “1 round” is used to signify that key-sharing two parties can transmit a message independently and simultaneously. That is, “1 round” signifies that it is unnecessary to perform reciprocal communication in which, of two parties, one party sends a message to the other party, and upon reception of this message, the other party returns a message to one party. When the reciprocal communication is necessary, this situation is called “2 pass”. By implementing a 1-round key sharing scheme with an authentication function, the key sharing device 10 can calculate temporary keys before start of key sharing. Moreover, the key sharing devices 10 that perform key sharing can exchange temporary keys with each other simultaneously. Hence, key sharing can be performed efficiently.
A key sharing scheme with an authentication function which is implemented by a method described in a literature “Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key exchange from factoring, codes, and lattices. Des. Codes Cryptography 76(3), 469-504 (2015), a preliminary version appeared in PKC 2012 (2012)” requires reciprocal communication, and accordingly is not a 1-round key sharing scheme with an authentication function.
The key sharing scheme with the authentication function, which is implemented by the key sharing system 1 according to Embodiment 1, is a scheme implemented with a single elliptic curve. Hence, the data to be communicated can be downsized as compared to the key sharing scheme described in the above literature. That is, an efficient key sharing scheme can be implemented.
In the key sharing system 1 according to Embodiment 1, static keys of two classifications are prepared and are selectively used according to whether the party is the start side or the reply side. Therefore, the key sharing scheme with the authentication function implemented by the key sharing system 1 according to Embodiment 1 is resistant to a replay attack, which is a method of attacking an authentication system. A literature “Tanenbaum, A. S.: Computer Networks. Pearson (2002)” includes description on the reply attack.
The key sharing scheme with the authentication system, which is implemented by the key sharing system 1 according to Embodiment 1, can not only ensure security for a quantum computer but also prove security in a quantum random oracle model.
Embodiment 1 describes an SIDH key sharing scheme as an example of a key sharing scheme having asymmetricity. However, the asymmetric key sharing system is not limited to the SIDH key sharing scheme. Another asymmetric key sharing scheme can be converted into a key sharing scheme with an authentication function by applying a technique of preparing two static keys and using one static key being different from that of a key-sharing counterpart. If the key sharing scheme as the technique application target is a quantum-resistant scheme, the key sharing scheme with the authentication function, which is obtained by conversion, is also possibly a quantum-resistant scheme.
In Embodiment 1, the function constituent elements are implemented by software. Alternatively, in Modification 2, function constituent elements may be implemented by hardware. Modification 2 will be described regarding its differences from Embodiment 1.
A configuration of a key sharing device 10 according to Modification 2 will be described with referring to
When the function constituent elements are implemented by hardware, the key sharing device 10 is provided with an electronic circuit 15 in place of a processor 11, a memory 12, and a storage 13. The electronic circuit 15 is a dedicated circuit that implements functions of the functional constituent elements, a function of the memory 12, and a function of the storage 13.
It is assumed that the electronic circuit 15 is a single circuit, a composite circuit, a programmed processor, a parallel-programmed processor, a logic IC, a gate array (GA), an application specific integrated circuit (ASIC), or a field-programmable gate array (FPGA).
The function constituent elements may be implemented by one electronic circuit 15, or by a plurality of electronic circuits 15 by dispersion.
In Modification 3, some of the function constituent elements may be implemented by hardware and the remaining function constituent elements may be implemented by software.
The processor 11, the memory 12, the storage 13, and the electronic circuit 15 are referred to as processing circuitry. That is, functions of the function constituent elements are implemented by the processing circuitry.
10: key sharing device; 11: processor, 12: memory; 13: storage; 14: communication interface; 15: electronic circuit; 21: reception unit; 22: key selection unit; 23: key generation unit; 24: transmission unit; 25: static key generation unit; 26: temporary key generation unit; 27: shared key generation unit; 30: transmission line.
Number | Date | Country | Kind |
---|---|---|---|
2017-202581 | Oct 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/021370 | 6/4/2018 | WO | 00 |