In the accompanying drawings:
Hereinafter, a description will be made of embodiments of the present invention with reference to the drawings. In the drawings, the same reference symbols denote the same parts and components. Note that, redundant descriptions of structures and materials common among the embodiments will be omitted.
A key sheet 5 of a first embodiment of the present invention is shown in
Each of the key tops 6 receives a depressing operation by fingers or the like on a surface thereof, that is, an operation surface. Further, the operation surface or a back surface on a side opposite thereto is applied with decoration such as a number, a character, a symbol, or a pattern by printing, transferring a metal foil, or the like, thereby indicating a function or the like of each of the key tops 6. The fourteen key tops 6 shown in
The hard sheet 8 has the EL emitting layers 9 in positions aligned with the key tops 6 on the surface side of the hard sheet 8. The insulating layer 10 is formed on the surface side of the hard sheet 8 in a portion other than the EL emitting layers 9. On the back surface of the hard sheet 8, there are provided the pushers 12 formed so as to protrude therefrom, for depressing contact switches provided on a substrate (not shown), which opposes the hard sheet 8. While the hard sheet 8 is formed in a single plate, in order to enhance flexibility thereof, a slit passing through a thickness of the hard sheet 8 may be provided.
The key tops 6 receive the depressing operation by fingers or the like on the operation surfaces thereof, which are exposed to the outside of the apparatus. Therefore, as a material thereof, it is preferable to use a thermoplastic resin or a reactive resin for satisfying demands for higher mechanical strength and resistance, weight reduction, and the like. Examples of those resins include a polycarbonate resin, a polyethylene terephthalate resin, a polymethyl methacrylate resin, a polypropylene resin, a polystyrene resin, a polyacrylic copolymer resin, a polyolefin resin, an acrylonitrile butadiene styrene resin, a polyester resin, an epoxy resin, a polyurethane resin, a polyamide resin, and a silicone resin. When a consideration is made to workability of those hard resins, it is preferable to use a polycarbonate resin, a polymethyl methacrylate resin, a polyacrylic copolymer resin, or an acrylonitrile butadiene styrene resin. When a consideration is also made to transparency thereof, it is preferable to use a polycarbonate resin, a polymethyl methacrylate resin, or a polyacrylic copolymer resin.
The soft sheet 7 has a function of connecting the plurality of key tops 6 to each other, and has softness with which, when the certain key top 6 is depressed, the other key tops 6 are not affected thereby. For the soft sheet 7 as described above, a rubber-like elastic material such as a soft resin film or a thermoplastic elastomer is used, which is difficult to retain a shape thereof because rubber-like elastic material has a low tension or no tension. Specifically, it is preferable to use a soft material having a tensile elongation based on JIS K7311 of 400% or more and a 100% modulus (tensile stress when elongation is 100%) also based on JIS K7311 of 100 MPa or less. Examples of the material include a solid member of a polyurethane resin, a polyester resin, a polyethylene resin, a polyamide resin, a polyvinyl chloride resin, a polycarbonate resin, a polyethylene terephthalate resin, an acrylic resin, or the like, and a composite of those. Of those, it is suitable to use a resin, which is thinner and softer and is more difficult to be broken than other materials, such as a polyamide resin, a polyurethane resin, a polyester resin, and a polyvinyl chloride resin, silicone rubber, or the like. Note that, in view of an operational feeling of being capable of smoothly depressing the key top 6 at the time of depressing the key top 6 and durability, it is preferable to use a soft resin film. In this embodiment, in order to allow passage of a back light beam to be emitted by the EL emitting layers 9, a transparent resin is preferable. A thickness of the soft sheet 7 is preferably as thin as possible for satisfying a demand for the thinner key sheet 5. However, when the soft sheet 7 is too thin, durability thereof is low. Therefore, the thickness is preferably 5 μm to 300 μm, and more preferably, 5 μm to 100 μm. The soft sheet 7 using a urethane resin of the above-mentioned resins is preferable in a point that the thickness thereof can be reduced to be equal to or less than 50 μm.
The hard sheet 8 is formed by using, as a base, a resilient hard resin film 8b having flexibility allowing deformation at the time of depression, and a restoration force (repulsive force) allowing restoration when the depression is released. It is preferable that the hard resin film 8b to have rigidity with which a shape of the key sheet 5 as a whole can be retained in a point that the hard resin film 8b can be easily incorporated to the apparatus. Further, it is preferable that the hard resin film 8b be an electrical insulating resin film having good printability and superior in heat resistance in view of provision of the EL emitting layers 9 or the like. For example, it is possible to use a solid member of a polyethylene terephthalate resin, a polyethylene resin, a polypropylene resin, a polyamide resin, a polyvinyl chloride resin, a polycarbonate resin, an acrylonitrile butadiene styrene resin, a polybutylene terephthalate resin, a polyphenylene oxide resin, a polyphenylene sulfide resin, a polyurethane resin, a polyphenylene ether resin, a modified polyphenylene ether resin, a polyketone resin, or liquid crystal polymer, or a composite of those. A thickness of the hard resin film 8b is preferably as thin as possible for satisfying a demand for the thinner key sheet 5. However, when the hard resin film 8b is too thin, the EL emitting layers 9 described later are difficult to be provided. Therefore, the thickness is preferably 5 μm to 300 μm, and more preferably 5 μm to 100 μm. Note that, a thickness of the soft sheet 7 and the hard resin film 8b as a whole is preferably equal to or less than 200 μm for reducing the thickness, and is more preferably equal to or less than 100 μm.
The EL emitting layers 9 are provided on a surface of the hard resin film 8b constituting the base of the hard sheet 8, and a function of emitting light by electrification. The EL emitting layer 9 is formed by successively stacking an insulating layer, a transparent electrode, a light emitting layer, an dielectric layer, and a back plate from the surface side. The transparent electrode and the back plate are connected to a compensation electrode. With regard to materials of those, the insulating layer is made of an insulating resin, examples of the materials which can be used include a polyester-based, vinyl chloride-vinyl acetate-based, acrylic, polycarbonate-based, urethane-based, polyolefin-based, epoxy-based, or silicone-based resin. A transparent electrode is made of a material having transparency and conductivity, and, for example, indium tin oxide (hereinafter, referred to as “ITO”) can be used therefor by being formed into a thin film through dry plating or coating. Alternatively, polyacetylene-based conductive polymer, polythiophene-based conductive polymer, polypyrrole-based conductive polymer, polyparaphenylene-based conductive polymer, or the like can be used by being formed into a thin film through coating. The light emitting layer is formed of a coating film including an illuminant particle. The illuminant particle which is obtained by doping zinc sulfide with copper and activating manganese and aluminum can be used. A material obtained by further coating the surface of the resultant with oxide or nitride to enhance moisture resistance is also preferable. The dielectric layer is made of a material having electrical insulating properties and high conductivity. For example, a coating film of a material, which is obtained by dispersing a fine particle of barium titanate into a resin such as a fluorine-based, cyano-based, or polyester-based resin can be used for the dielectric layer. The back plate is made of a material having conductivity. For example, aluminum, silver, ITO, or carbon is subjected to dry plating or coating, and the resultant can be used for the back plate. On the surface of the hard sheet 8, a circuit wiring portion (not shown) connected to the EL emitting layers 9 is also formed by printing. The circuit wiring portion can be formed on the hard sheet 8 by etching a copper foil.
The insulating layer 10 is provided on the surface of the hard resin film 8b and in a portion where the EL emitting layers 9 and the circuit wiring portion are not provided. The insulating layer 10 has a function of ensuring insulation of the adjacent EL emitting layers 9. The insulating layer 10 can be formed by using, for example, a polyester-based, vinyl chloride-vinyl acetate-based, acrylic, polycarbonate-based, urethane-based, polyolefin-based, epoxy-based, or silicone-based ink or coating.
The pusher 12 formed on the back surface of the hard sheet 8 has a function of pushing a belleville spring provided on the substrate, and a material of the pusher 12 is preferably a hard resin, that is, a thermoplastic resin, a thermosetting resin, or a photo-setting resin in view of performance of requirement such as higher mechanical strength and durability, and of weight reduction. For example, an acrylate resin, a polycarbonate resin, a polyethylene terephthalate resin, a polymethyl methacrylate resin, a polypropylene resin, a polystyrene resin, a polyacrylic copolymer resin, a polyolefin resin, an acrylonitrile butadiene styrene resin, a polyester resin, an epoxy resin, a polyurethane resin, a polyamide resin, or the silicone resin can be used for the material.
Next, a description will be made of an example of a manufacturing method for the key sheet 5 according to the first embodiment of the present invention. First, the key tops 6 made of a polycarbonate resin are formed by injection molding. The back surface of each of the key tops 6 is applied with decoration such as a number or a character by printing. After that, the back surface of each of the key tops 6 is applied and laminated with the adhesive layer 4 made of an UV adhesive. The resultant key tops 6 are fixed to the surface of the soft sheet 7 formed of a urethane film Esmer URS (trade name) manufactured by Nihon Matai Co., Ltd) having a thickness of 50 μm through intermediation of the adhesive layers 4, thereby obtaining the upper member P1 for the key sheet 5. On the other hand, the EL emitting layers 9 and the insulating layer 10 are formed by printing on the surface of the hard resin film 8b formed of a polyethylene terephthalate film (Lumirror S10 (trade name) manufactured by Toray Industries Inc.) having a thickness of 50 μm, for example. After that, the back surface of the hard resin film 8b is applied with an ultraviolet curing acrylate resin to form the pushers 12, thereby obtaining the lower member P2 including the hard sheet 8. As described above, the key sheet 5 composed of two members, that is, upper and lower members, can be obtained.
The key sheet 5 thus obtained according to the first embodiment of the present invention is, as shown in
Lastly, a description will be made of an operational effect of the key sheet 5 according to this embodiment and the pushbutton switch used the key sheet 5.
According to the key sheet 5 of the first embodiment, as shown in
The EL emitting layer 9 is a planar illuminator, so the EL emitting layer does not require an installation space like that of an LED, thereby making it possible to realize reduction in thickness of the key sheet 5.
The pushbutton switch 13 including the key sheet 5, has a structure in which the hard sheet 8 is positioned on and fixed to the substrate 15. Therefore, the pushers 12 provided to the hard sheet 8 do not become misaligned with the contact switches 11. Thus, when the key top 6 is depressed, the contact switch 11 can be correctly depressed. Note that, in this embodiment, a two-sided tape is used for positioning and fixing, but the positioning and fixing may be performed by forming through holes in the hard sheet 8 and inserting fitting pins protruding from the substrate 15 into the through holes.
A key sheet 25 of a second embodiment of the present invention is shown in
The key sheet 25 is, as shown in
Next, a description will be made of an example of a manufacturing method for the key sheet 25 according to the second embodiment of the present invention. As in the same manner with the first embodiment, the key tops 6 made of a polycarbonate resin are formed by the injection molding. The back surface of each of the key tops 6 is applied with decoration such as a number or a character by printing, and after that, is applied and laminated with the adhesive layer 4 made of the UV adhesive. Each of the key tops 6 is fixed to the surface of the soft sheet 7 made of a polyurethane resin through the intermediation of the adhesive layer 4, thereby obtaining the upper member P1 of the key sheet 5. On the other hand, the EL emitting layers 9 and the insulating layer 10 are formed on the surface of the hard resin film 8b made of a polyethylene terephthalate resin by printing. After that, an ultraviolet curing acrylate resin is applied on the back surface of the hard resin film 8b to form the pushers 12. As a result, the lower member P2 formed of the hard sheet 8 is obtained. Further, the adhesive layers 27 made of instant adhesive are applied to the lower member P2, and the upper member P1 is adhered thereto. As a result, the key sheet 25 as a single body can be obtained.
The key sheet 25 thus obtained according to the second embodiment of the present invention is, as shown in
The key sheet 25 of the second embodiment of has the same operational effect as that of the key sheet 5 of the first embodiment, and further has the following operational effect.
In the key sheet 25, the upper member P1 is fixed to the lower member P2 at one end of the lower member P2. Therefore, at the time of assembly to the apparatus, positioning of the upper member P1 and positioning of the lower member P2 are not performed separately, and the key sheet 25 can be positioned and assembled. The lower member P2 has fixed form properties. Therefore, even when the upper member P1 does not have the fixed form properties, the assembly is easy.
A part of the first embodiment or the second embodiment can be modified as described below.
Instead of forming a display portion on each of the key tops 6, including decoration such as a character, a symbol, a figure, or a pattern, the display portion may be formed on the soft sheet 7 or the hard sheet 8. The soft sheet 7 may be provided with a light blocking layer for blocking light applied from a portion other than a desired portion. The display portion and the light blocking layer provided on the soft sheet 7 are preferably soft so as not to prevent flexing of the soft sheet 7.
For fixing the key tops 6 and the soft sheet 7 to each other, in addition to the UV adhesive, thermosetting or other photo-setting adhesives, a hot melt adhesive, an adhesive tape or the like can be used. Alternatively, the fixation by in-mold molding may also be performed. Fixation between the hard resin film 8b and the pushers 12 can be performed by an adhesive or the in-mold molding.
The key sheet 5, 25 is fixed to the substrate 15 by the two-sided tape at an end of the key sheet 5, 25. Alternatively, like a key sheet 35 used for a pushbutton switch 33 shown in
While an example is shown in which the EL emitting layers 9 and the insulating layer 10 are provided on the surface of the hard sheet 8, like the key sheet 39 shown in
The key sheet 39 is, as shown in
The hard sheet 8 is provided with the EL emitting layers 9, or alternatively, may be provided as a different circuit sheet. In this case, the circuit sheet refers to a sheet on which a circuit pattern is formed by printing or etching. For example, instead of the EL emitting layers 9, digital or analog capacitance switches (touch panels) can be provided by printing or copper-foil etching. With this structure, by depressing the key top 6 to a degree that the belleville spring 11 is pushed in, the capacitance switches can function as pushbutton keys. On the other hand, by depressing the key top 6 to a degree that while the belleville spring 11 is not pushed in, the capacitance switch is depressed, the capacitance switches can function as pointing devices which allow position recognition. That is, when a finger is moved from the key top 6 indicating the number “1” of
In the above embodiments, there is provided the circuit sheet having the structure in which the hard sheet 8 is provided with the EL emitting layers 9 and the like. However, the circuit sheet may have a structure in which no EL emitting layer 9 is provided and the hard sheet 8, 38 is formed only of the hard resin film 8b.
Number | Date | Country | Kind |
---|---|---|---|
2006-182765 | Jun 2006 | JP | national |