This application claims the priority benefit of China application serial no. 201811424477.7, filed on Nov. 27, 2018. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The invention generally relates to a mechanical switch structure, in particular, to a key structure.
Keyboards are one of the most important input units of personal computers, notebook computers and mobile devices. According to key structures of the keyboards, the keyboards can be simply divided into a membrane keyboard and a mechanical keyboard. The membrane keyboard is mainly operated by pressing a rubber cap to turn on a circuit under the rubber cap and therefore generate a keying signal. The membrane keyboard is simple in structure and relatively low in cost, and a membrane circuit thereof is waterproofed due to the integrated design. However, the pressing tactility of the membrane keyboard is provided by the deformation of the rubber cap and a restoring force of the rubber cap, so that the rubber cap would be aged with time to make the durability worse, and further affects the tactility during typing.
On the other hand, in the key structure of the mechanical keyboard, a keycap would drive a shaft body when pressed, so as to turn on a circuit board thereunder to send out a keying signal. The mechanical keyboard is high in accuracy and has no key conflict problem since each key structure is independent. Furthermore, the key structure of the mechanical keyboard can be provided with different keystrokes (i.e., the maximum distance between a pressed key structure and an unpressed key structure) and different click feedbacks, so a user can select a keyboard according to the preference. The restoring force when the key structure is pressed is provided by a spring, and the click feedback can be provided by a relative displacement between a shaft body and the spring. In order to provide a good tactile feel for a user, the key structure is generally relatively thick and occupies a large space, which is not conducive to the development of ultra-thin designs.
The invention provides a key structure, which may provide different keystrokes, lower the entire height of the key structure and provide different click feedbacks. Therefore, the key structure may provide a relatively good pressing tactile feel. Furthermore, the key structure has the advantage of high durability, so that the manufacturing cost can be further reduced.
The embodiment of the invention provides a key structure. The key structure comprises a housing, a shaft body, a first magnetic component and a second magnetic component. The housing has a bottom portion and a top portion which are opposite to each other, and has a first opening located at the top portion. The shaft body is coupled with the housing by passing through the first opening, and the shaft body is suitable for being pressed to move in a pressing direction from the top portion to the bottom portion. The first magnetic component is arranged on the shaft body. The second magnetic component is arranged on the housing. The first magnetic component and the second magnetic component are respectively located on the inner side and the outer side of the housing.
The embodiment of the invention provides a key structure. The key structure comprises a housing, a shaft body, a first magnetic component and a second magnetic component. The housing has a bottom portion and a top portion which are opposite to each other, and has a first opening located at the top portion. The shaft body is coupled with the housing by passing through the first opening, and the shaft body is suitable for being pressed to move in a pressing direction from the top portion to the bottom portion. The first magnetic component is arranged on the shaft body. The second magnetic component is arranged on the housing. The first magnetic component and the second magnetic component are aligned in an arrangement direction when the shaft body is not pressed, and an included angle between the arrangement direction and the pressing direction is greater than 0 degree and less than 180 degrees.
The embodiment of the invention provides a key structure. The key structure comprises a housing, a shaft body, a first magnetic component and a second magnetic component. The housing has a bottom portion and a top portion which are opposite to each other, and has a first opening located at the top portion. The shaft body is coupled with the housing by passing through the first opening, and the shaft body is suitable for being pressed to move in a pressing direction from the top portion to the bottom portion. The first magnetic component is arranged on the shaft body. The second magnetic component is arranged on the housing. When the shaft body is not pressed, the upper edge of the first magnetic component is higher than the upper edge of the second magnetic component, and when the shaft body is pressed to the bottom, the upper edge of the first magnetic component is lower than the upper edge of the second magnetic component.
The embodiment of the invention provides a key structure. The key structure comprises a housing, a shaft body, a first magnetic component and a second magnetic component. The housing has a bottom portion and a top portion which are opposite to each other, and has a first opening located at the top portion. The shaft body is coupled with the housing by passing through the first opening, and the shaft body is suitable for being pressed to move in a pressing direction from the top portion to the bottom portion. The first magnetic component is arranged on the shaft body. The second magnetic component is arranged on the housing. The second magnetic component applies a magnetic repulsive force component in a release direction to the first magnetic component to provide a restoring force in the release direction to the shaft body, wherein the release direction is opposite to the pressing direction.
Based on the above, the key structure in the embodiment of the invention includes the first magnetic component and the second magnetic component, and the second magnetic component applies the magnetic force component in the release direction to the first magnetic component, so that the magnetic force component provides the restoring force in the release direction to the shaft body. Therefore, the key structure of the embodiment of the invention may provide different keystrokes and lower the entire height of the key structure. In addition, the key structure may provide different click feedbacks. Therefore, the key structure may provide a good pressing tactile feel. Furthermore, the key structure has the advantage of high durability, so that the manufacturing cost can be further reduced.
To make the aforementioned more comprehensible, several embodiments accompanied with drawings are described in detail as follows.
The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.
Specifically, the first magnetic component 150 and the second magnetic component 160 of the embodiment of the invention are aligned in an arrangement direction AR when the shaft body 120 is not pressed, and an included angle between the arrangement direction AR and the pressing direction P is greater than 0 degree and less than 180 degrees. The arrangement direction AR is, for example, a direction from the upper edge 151 of the first magnetic component 150 to the upper edge 161 of the second magnetic component 160.
In the present embodiment, the shaft body 120 passing through the first opening 111 has an upper end 121 positioned higher than the top portion 113, a lower end 123 positioned lower than the top portion 113, and a sidewall 122 connecting the upper end 121 with the lower end 123. The first magnetic component 150 is arranged on the sidewall 122 of the shaft body 120, and the first magnetic component 150 is located between the second magnetic component 160 and the sidewall 122. For example, when the key structure 100 is not pressed, the upper end 121 of the shaft body 120 at least partially protrudes from the first opening 111 and is located outside the housing 110, and the lower end 123 is accommodated in the housing 110.
In the present embodiment, the magnetic force component in the release direction R, applied by the second magnetic component 160 to the first magnetic component 150, is a magnetic repulsive force component. That is, a magnetization direction 152 of the first magnetic component 150 is opposite to a magnetization direction 162 of the second magnetic component 160. As depicted in
In other embodiments, the first magnetic component 150 and the second magnetic component 160 may be orientated with their north poles N facing each other to generate the magnetic repulsive force component; or the first magnetic component 150 and the second magnetic component 160 may be orientated with ones north pole N facing the other's south pole S to generate a magnetic attractive force component (that is, the magnetization direction 152 of the first magnetic component 150 is the same as the magnetization direction 162 of the second magnetic component 160). In an embodiment, the magnetization direction 152 of the first magnetic component 150 and the magnetization direction 162 of the second magnetic component 160 are the same as the pressing direction P. Alternatively, the magnetization direction 152 of the first magnetic component 150 is the same as the pressing direction P, but the magnetization direction 162 of the second magnetic component 160 is opposite to the pressing direction P.
In addition, an included angle between the magnetization direction 152 of the first magnetic component 150 and the pressing direction P is greater than 0 degree and less than 180 degrees, and an included angle between the magnetization direction 162 of the second magnetic component 160 and the pressing direction P is greater than 0 degree and less than 180 degrees. In the present embodiment, as shown in
Referring to
Furthermore, the key structure 100 further includes a keycap 126, a circuit board 170, a rod piece 140 and an elastic component 130. The keycap 126 is arranged on the housing 110 and connected to the upper end 121 of the shaft body 120. One end of the housing 110 at the bottom portion 114 is arranged on the circuit board 170. In one embodiment, the circuit board 170 may be a membrane circuit board or a rigid circuit board. The rod piece 140 has a stop portion 141. The rod piece 140 is engaged with and assembled on the shaft body 120 by passing through the third opening 125 of the shaft body 120, and one end of the rod piece 140 protrudes from the third opening 125 of the receiving portion 124 of the shaft body 120. The elastic component 130 is arranged in the receiving portion 124 of the shaft body 120. One end of the elastic component 130 is connected with the receiving portion 124 of the shaft body 120, and the other end of the elastic component 130 is connected with the rod piece 140. When the shaft body 120 is not pressed, the rod piece 140 is, for example, spaced from the circuit board 170 at a certain distance without contact. Under the elastic force of the elastic component 130, when the rod piece 140 is not in contact with the circuit board 170, the stop portion 141 abuts on the lower end 123 of the shaft body 120. When the shaft body 120 is pressed, the end, protruding from the third opening 125 of the receiving portion 124 of the shaft body 120, of the rod piece 140 passes through the second opening 112 of the housing 110 to touch or be in contact with the circuit board 170, and thereby the circuit board 170 generates a keying signal. Meanwhile, the elastic component 130 generates an elastic deformation force, and the direction in which the elastic deformation force is applied to the shaft body 120 is the same as the release direction R. In an embodiment, the elastic deformation force of the elastic component 130 is applied to the shaft body 120 in a direction parallel to the release direction R. Once the shaft body 120 is no longer pressed, this elastic deformation force may serve as an initial restoring force for allowing the shaft body 120 to return to the unpressed position. The elastic component 130 is, for example, a spring, but the invention is not limited thereto.
It should be noted that when the shaft body 120 is not pressed or is pressed and then released, the shaft body 120 abuts on the housing 110. Specifically, a limiting portion may be arranged on at least one of the housing 110 and the shaft body 120. For example, the housing 110 and the shaft body 120 may each be provided with a limiting portion in a direction perpendicular to the cross section of
Based on the above, the key structure 100 in one embodiment of the invention is high in durability by the use of the first magnetic component 150, the second magnetic component 160 and the elastic component 130 to generate the restoring force. Furthermore, the housing 110, shaft body 120, elastic component 130 or rod piece 140 could be selected and assembled based on the needs, thereby allowing the key structure 100 to have different keystrokes and lower the entire height of the key structure 100. In addition, in the present embodiment, the key structure 100 could be waterproofed by the use of the membrane circuit board to generate the keying signal. Furthermore, the design of the key structure 100 of the present embodiment is relatively simple, so that the manufacturing cost of the key structure 100 can be further reduced.
It should be noted that a limiting portion may be arranged on at least one of the housing 110 and the shaft body 120 of the key structure 200 in the present embodiment. For example, the housing 110 and the shaft body 120 may each be provided with a limiting portion in a direction perpendicular to the cross section of
In addition, the key structure 200 of
Based on the above, the key structure 200 in one embodiment of the invention is high in durability by the use of the first magnetic component 150, the second magnetic component 160 and the elastic component 230A to generate the restoring force. In addition, the housing 110, shaft body 120, elastic component 230A or conductive structure 230B may be provided with different sizes to obtain various combination of the key structure 200, or the inter-contact positions of the elastic component 230A and the conductive structure 230B could be adjusted to allow the key structure 200 to have different keystrokes and lower the entire height of the key structure 200. Furthermore, the design of the key structure 200 of the present embodiment is relatively simple, so that the manufacturing cost of the key structure 200 can be further reduced.
In another embodiment of the invention, the circuit board 380 may be a membrane circuit board or a rigid circuit board. When the membrane circuit board is used, a bottom plate (not shown) may be arranged under the circuit board 380 to support the membrane circuit board.
It should be noted that a limiting portion may be arranged on at least one of the housing 310 and the shaft body 320 of the key structure 300 of the present embodiment. For example, the housing 310 and the shaft body 320 may each be provided with a limiting portion in a direction perpendicular to the cross section of
In addition, in the present embodiment, the housing 310 is a frame of a keyboard. The frame has a plurality of first openings 311, and a plurality of shaft bodies 320 are assembled on the frame by passing through the first openings 311, respectively. However, the invention is not limited thereto, and the frame may be an integrally-formed frame or cover.
Based on the above, the key structure 300 in one embodiment of the invention is high in durability by the use of the first magnetic component 150, the second magnetic component 160 and the elastic component 330 to generate the restoring force. In addition, housing 310, shaft body 320 or elastic component 330 may be provided with various combinations to allow the key structure 300 to have different keystrokes and lower the entire height of the key structure 300. Furthermore, the design of the key structure 300 of the present embodiment is relatively simple, so that the manufacturing cost of the key structure 300 can be further reduced. In another embodiment, the key structure 300 may use a membrane circuit board to generate a keying signal, and thus is waterproofed.
The pressed key structures in the above embodiments of the invention may further provide a click feedback from the magnetic force component in the release direction by the second magnetic component to the first magnetic component. Specifically, referring to
Furthermore, a click ratio provided by the key structure 100 in a state that the center line 463c of the first magnetic subunit 463 is overlapped on the first magnetic component 150 is greater than that provided by the key structure 100 in a state that the center line 464c of the second magnetic subunit 464 is overlapped on the first magnetic component 150. The click ratio provided by the key structure 100 is the percentage of (FA−FB)/FA, where FB is the contact force, and FA is the actuation force. Specifically, FB is a local minimum value of a pressing force under different keystrokes when the key structure 100 is pressed and FA is a peak value of the pressing force under different keystrokes before the local minimum value is reached when the key structure is pressed. The pressing force is a force required for maintaining a key position of the key structure when the key structure is pressed. The keystroke is a distance between a key position of the key structure that is pressed and maintained thereat and a key position of the key structure that is not pressed, e.g., the travel distance of the key structure. That is, FB is the local minimum value of the pressing force in the force-displacement curve when the key structure 100 is pressed, and FA is the peak value of the pressing force in the force-displacement curve when the key structure is pressed before the keystroke corresponding to the local minimum value is reached.
For example, the key structure 100 provides a click feedback (which may be described by the click ratio) when the shaft body 120 is pressed, which may be simply illustrated by the force-displacement curve of the key structure. Referring to
In
Generally, the fall in the amount between the point A and the point B in the force-displacement curve may affect the operation tactility of the key structure. Therefore, the click ratio can be defined as
(FA−FB)/FA×100%
where FA and FB are respectively the pressing forces at the point A and the point B. In an embodiment of the invention, the click ratio is about 40 to 80 percent.
For example, referring to
Referring to
It should be noted that when the shaft body 120 is not pressed, the upper edge 151 of the first magnetic component 150 is higher than the upper edge 161 of the second magnetic component 160, and when the shaft body 120 is pressed to the bottom, the upper edge 151 of the first magnetic component 150 is lower than the upper edge 161 of the second magnetic component 160. The invention is not limited thereto. In other embodiments, when the shaft body 120 is not pressed, the upper edge 151 of the first magnetic component 150 may also be lower than the upper edge 161 of the second magnetic component 160. The difference is that the click ratios respectively provided by the pressed key structures are different. Therefore, by adjusting a positioning relation between the upper edge 151 of the first magnetic component 150 and the upper edge 161 of the second magnetic component 160 when the shaft body 120 is not pressed, the key structures of the embodiments of the invention may have different click feedbacks during pressing.
Based on the above, the key structures in the embodiments of the invention are high in durability by the use of the first magnetic component, the second magnetic component and the elastic component to generate the restoring force. Furthermore, housings, shaft bodies, elastic components, rod pieces, first magnetic components or second magnetic components may be provided in different configurations or combinations, or the positioning relation between the upper edge of the first magnetic component and the upper edge of the second magnetic component may be adjusted, or the orientation of magnetic poles for the first magnetic component and the second magnetic component may be adjusted, or a magnetic force ratio of the first magnetic component to the second magnetic component may be adjusted, so as to enable the key structure to have different keystrokes and different click feedbacks (which may be described by the click ratio). In an embodiment of the invention, the inter-contact positions of the elastic component and the conductive structure may be adjusted to enable the key structure to have different keystrokes and lower the entire height of the key structure. Therefore, the key structure may provide a good tactile feel. In addition, in another embodiment of the invention, the key structure could be waterproofed by the use of the membrane circuit board. Furthermore, the design of the key structure of the embodiment is relatively simple, so that the manufacturing cost can be further reduced.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure covers modifications and variations provided that they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
201811424477.7 | Nov 2018 | CN | national |