This application claims priority on Japanese Patent Application 2006-064656 filed Mar. 9, 2006.
This invention relates to a key switch as an example of safety switch that may be used, for example, as a door lock switch.
A door lock switch is generally for the purpose of detecting the open or closed condition of a door to a work area containing an automated fabrication machine, serving to switch on and off the power to the machine and locking the door such that it will not open when the machine is in operation.
Such a door lock switch is usually structured such that an operating key provided to the door becomes inserted to a key switch at the entrance as the door is closed, a cam member becoming rotated by the inserted key to switch on a switching part contained within the key switch. When this door is to be opened while the machine is in operation, an operation for stopping the machine is first carried out at an external operating part such that the operating key is pulled out as the door is opened and the cam member is rotated such that the switching part is switched off to disconnect the power supply.
In the above, the cam member is usually structured so as to be at a normal initial position by locking means when the operating key is pulled out such that it cannot be rotated unless its dedicated operating key is employed or easily switched to a switched-on condition by means of an ordinary tool.
As an operating key (not shown) is inserted into the operating part, the tip of this operating key is contacted to the inner surface of the head lock members 82 so as to move both head lock members 82 against the force of the spring, disengaging the locking parts 83 from the head lock grooves 81 to thereby release the driver cam 80 from its locked condition and to leave the driver cam 80 in a rotatable condition. At the same time, an operating rod 86 is moved downward (with reference to
With an operating part thus structured, the number of components can be reduced but its transverse dimension in the direction of the width tends to be large because the head lock members 82 and the coil springs 85 are arranged in the direction of its width. Moreover, since the opening (not shown) for inserting the operating key remains open all the time, foreign objects such as dust particles are likely to enter therethrough between the driver cam 80 and the head lock members 82. This may have the undesirable effect of preventing the head lock members 82 from effectively locking the driver cam 80, enabling an ordinary tool other than the dedicated actuator, such as a screw driver, inserted into the opening to rotate the driver cam 80 and to activate the switch part.
It is therefore an object of this invention to provide a key switch, which is comprised of a smaller number of components, can be produced at a lower cost, is easy to assemble, is smaller in thickness, and is capable of preventing tools other than the dedicated actuating tool from causing its driver cam to rotate.
A key switch embodying this invention may be characterized as comprising a switch part and an operating part for having an operating key inserted thereinto so as to activate the switch part to switch contact points. The operating part includes a driver cam configured to rotate as it is pushed by the operating key and to thereby activate the switch part and a plurality of lock cams configured to directly lock the driver cam in a normal condition when the operating key is pulled out of the operating part and to rotate as it is pushed by the operating key so as to release the driver cam from its locked condition. The key switch may further include lock cam holding means for holding the lock cams in the normal condition when the operating key is pulled out.
With a key switch thus structured, the driver cam can be released from its locked condition (or its normal condition with the operating key removed) and made rotatable by rotating the lock cams by means of the operating key, and the driver cam is rotated under this condition to activate the switch part and to carry out the switching of the contact points.
Thus, the lock cams serve to directly lock the driver cam to keep it in its normal condition and since this locked condition is released as the lock cams are rotated, the number of constituent components can be reduced and hence the production cost can be decreased. The assembly work of these constituent components becomes easier, and the thickness of the key switch can be reduced since there is no head lock to be moved transversely in the direction of the width as in the case of prior art devices.
Since the locking of the driver cam is effected by the rotation of the lock cams, the locking can be effected even if a foreign object becomes inserted in the lock cams, and this means that the rotation of the driver cam by any device other than the dedicated actuator can be prevented.
According to this invention, the driver cam and the lock cams are made to rotate around different points such that the rotational trajectories of the driver cam and the lock cams can be individually varied.
The key switch of this invention may be further characterized wherein the driver cam has a rotary shaft (“first rotary shaft”) and engaging protrusions (“first engaging protrusions”) at the center of rotation, wherein the lock cams have rotary shafts (“second rotaty shafts”) and engaging protrusions (“second engaging protrusions”) at the center of rotation, wherein the second engaging protrusions on the lock cams become disengageably engaged with the first engaging protrusion on the driver cam to prevent the driver cam from rotating when the lock cams are not being pushed by the operating key and wherein the second engaging protrusions are caused to rotate to thereby disengage the first engaging protrusions and to make the driver cam rotatable if the operating key pushes and causes the lock cams to rotate.
With the key switch thus structured, the driver cam can be prevented from rotating as the second engaging protrusion comes to disengageably engage with the first engaging protrusion when the lock cams are not being pushed by the operating key, and the driver cam can be made rotatable by pushing the operating key to cause the lock cams to rotate and the second engaging protrusions to rotate so as to release the engagement with the first engaging protrusion. Thus, components dedicated to the prevention of the rotation of the driver cam become unnecessary and the number of constituent components can be reduced.
Since the first engaging protrusion is provided together with the first rotary shaft at the center of its rotation and since the second engaging protrusions are provided together with the second rotary shafts at the center of rotation, the operating part can be miniaturized and hence the overall size of the key switch can be made more compact. If the lock cams are superposed onto the driver cam, furthermore, the first and second engaging protrusions can be joined together and hence the assembly work becomes simplified.
The key switch of this invention may still further be characterized wherein the first engaging protrusion is formed by connecting a first arcuate surface portion and a second arcuate surface portion which is at an edge portion opposite the second engaging protrusion and, having its center at the center of the second rotary shaft, is concave towards the center of the first engaging protrusion, wherein the second engaging protrusions are each formed by connecting a third arcuate surface portion and a fourth arcuate surface portion which is at an edge portion opposite the first engaging protrusion and, having its center at the center of the first rotary shaft, is concave towards the center of the second engaging protrusion, and wherein the driver cam is prevented from rotating and is kept in the normal locked condition as a connecting corner part between the third arcuate surface portion and the fourth arcuate surface portion is disengageably engaged to a connecting part between the first arcuate surface portion and the second arcuate surface portion of the first engaging protrusion.
With the key switch thus structured, since the rotary motion of the driver cam is controlled as the connecting part becomes disengageably engaged with the corner part of the first engaging protrusion while the lock cams are not being pushed by the operating key and since the driver cam is made rotatable by releasing this engagement as the operating key is pushed to rotate the lock cams and to cause the second engaging protrusions to rotate, components dedicated to the control of the rotation of the driver cam become unnecessary and the number of constituent components can be reduced.
The key switch of this invention may still further be characterized wherein the operating key has a driver cam operating part at a front edge and lock cam operating parts formed on both sides of the driver cam operating part and displaced from the driver cam operating part in the direction of the thickness of the operating key, the lock cam operating parts protruding farther forward than the driver cam operating part, and wherein the driver cam has a first pressure receiving part on which the driver cam operating part is configured to come to contact, the lock cams have a second pressure receiving part on which the lock cam operating part is configured to come to contact, and the second pressure receiving part is positioned closer than the first pressure receiving part to the center of rotation of the lock cams.
With the key switch thus structured, the radius of rotation of the lock cams can be reduced, with the second pressure receiving part of the lock cams being closer to the center of rotation of the lock cams than the first pressure receiving part of the driver cam. Thus, the lock cams can be made smaller and the operating part need not become larger although the centers of rotation of the driver cam and the lock cams are different.
In the above, the driver cam may have a first arcuate opening with the center at the first rotary shaft, the lock cams may have a second arcuate opening with the center at the second rotary shaft, the second rotary shafts may be connected to each other by inserting the first rotary shaft through the second arcuate opening and inserting the second rotary shaft through the first arcuate opening.
With such a structure, interference between the rotating driver cam and the second rotary shaft and between the rotating lock cams and the first rotary shaft can be prevented. This means that there is no need for means for holding rotary shafts such as a bearing between the different cams and the operating part can be prevented from becoming large.
In the above, the connection between the second rotary shafts may be effected by engaging an engaging protruding portion formed on an end part of one of them with an engaging indented portion or an opening formed on an end part of the other. With the second rotary shafts thus connected to each other, the plurality of lock cams can be treated as a single shaft and means such as a bearing may be dispensed with for holding the shafts together.
In the above, the lock cam holding means may include a plate spring that serves to hold the lock cams such that the second engaging protrusion is held at a position for engaging with the first engaging protrusion. The lock cam holding means may alternatively include a coil spring that serves to hold lock cams such that the second engaging protrusions are held at a position for engaging with the first engaging protrusion.
In summary, with a key switch according to this invention, the lock cams serve to directly lock the driver cam to keep it in its normal locked condition when the operating key is pulled out and this locked condition is released by their rotation. Thus, the number of constituent components and the production cost can be reduced, the assembly work becomes simpler and the operating part can be made thinner. Because the driver cam is locked by the rotary motion of the lock cams, the lock cams remain rotatable even if a foreign object is inserted. Thus, the rotation of the driver cam by means of a device other than the dedicated operating key as the actuator can be prevented.
The invention is described next with reference to the figures.
The key switch is comprised of a main body 1 and its operating part 2. Inside this main body 1 is a switch part (not shown) structured such that its contact points will be switched as an operating rod 40 shown in
As shown in
The operating unit F is comprised of a driver cam 10, a pair of (left and right) lock cams 17 and 18, a base member 26 and a spring member 32 serving as a lock cam holder.
As shown in
On the left-hand and right-hand side surface portions of the cam main body 10A, engaging protrusions 12 are provided around the cam shaft 11. These engaging protrusions 12 are each formed as a continuation of an arcuate surface portion 12A and a recessed surface portion 12B which is arcuate and,concave towards the center of the engaging protrusion 12. The cam main body 10A is also provided with an arcuate-shaped opening 13 having a center at the cam shaft 11 and opposite from the protruding key engaging part 15. A cam surface part 14 is further formed at a position opposite from the key engaging part 15,
As shown in
On the circumference of the main body 17A are protruding key engaging parts 19 and 20 with a phase difference of about 90 degrees therebetween. Key engaging part 19 has its front side serving as a pressure receiving part 19a. Key engaging part 20 has its upper side as its pressure receiving part 20a.
On the inner (right-hand side) surface portion of the cam main body 17A, an engaging protrusion (“second engaging protrusion”) 21 is provided around the cam shaft 23. This engaging protrusion 21 is formed as a continuation of an arcuate surface portion 21A and two recessed surface portions 21B and 21C which are arcuate and concave towards the center of the engaging protrusion 21. The cam main body 17A is also provided with an arcuate-shaped opening 22 having a center at the cam shaft 23 and opposite. A spring contact part 24 is further formed at a position opposite from the key engaging part 19.
As shown in
Next, the shape of the engaging protrusion 12 on the side of the driver cam 10 and that of the engaging protrusion 21 on the sides of the lock cams 17 and 18 will be explained with reference to
Consider three circles E1, E2 and E3 of the same size arranged such that their centers p1, p2 and p3 form an equilateral triangle, or that the distance between points p1 and p2 is equal to that between points p2 and p3, as shown in
Similarly, the arcuate protrusion that remains of the second circle E2 after overlapping portion G1 between the first and the second circles E1 and E2 is removed and overlapping portion G2 between the second and the third circles E2 and E3 is removed corresponds to the aforementioned engaging protrusion 21. The removed overlapping portion G1 corresponds to the recessed portion 21B and the removed overlapping portion G2 corresponds to the recessed portion 21C. The corner portion between the circular arc-shaped surface portion 21A of the engaging protrusion 21 on the side of the lock cam and the recessed portion 21B are referred to as engaging part 21D. The portion H sandwiched between the two recessed portions 21B and 21C is removed and the remaining surface portion therebetween is referred to as connection surface J.
Recessed portion 12B on the side of the driver cam and recessed portion 21B on the side of the lock cam are shaped so as to allow the driver cam 10 and the lock cams 17 and 18 to rotate. Recessed portion 21C on the side of the lock cam makes it possible for the lock cams 17 and 18 to rotate in the direction of arrow C as the driver cam 10 rotates in the direction of arrow A.
As shown in
The aforementioned spring member 32 is a plate spring, as shown in
As shown in
As shown in
As described above, the operating unit F is formed by mounting the driver cam 10 and the pair of lock cams 17 and 18 to the base member 26 such that, as shown in
As shown in
In this locked condition, the pressure receiving parts 15a and 19a on the sides of the driver and lock cams are opposite to the insertion opening 8, and the pressure receiving parts 19a are closer to the cam shafts 23 and 23-1 of the lock cams 17 and 18 than the pressure receiving part 15a on the side of the driver cam. The pressure receiving parts 16a and 20a are opposite to the insertion opening 9, and the pressure receiving parts 20a are closer to the cam shafts 23 and 23-1 of the lock cams 17 and 18 than the pressure receiving part 16a on the side of the driver cam. Thus, the lock cams 17 and 18 may be of a small radius and can be contained within the circle indicated by letter K in
The operating part 2 is set to the switch main body 1 such that its operating rod 40 is pressed upward by means of a returning spring (not shown) and a tip portion of the operating rod 40 is in contact with the cam surface part 14 of the driver cam 10.
As shown in
Next will be explained a situation wherein the key switch as described above is being used as a safety switch for a door to a protective fence surrounding a fabrication machine (not shown). The operating key 60 is attached to the door with the key switch attached to the supporting column (not shown) of the protective fence with its axis in the vertical direction.
When the door is open, the operating key 60 is pulled off from the operating part 2, and its lock cams 17 and 18 are in the rotation limiting (locked) condition by means of the spring member 32. As shown in
In this rotation limiting condition, the pressure receiving parts 15a and 19a face the insertion opening 8 and the operating rod 40 is pushed up by the biasing force of the returning spring such that its tip portion is slidingly in contact with the cam surface part 14 of the driver cam 10 and power is shut off from the fabrication machine. Thus, the fabrication machine is not activated while the door is in the open condition As the operating key 60 is inserted into the insertion opening 8 while the door is closed, the lock cam operating parts 62 of the operating key 60 contact the pressure receiving parts 19a such that the lock cams 17 and 18 are rotated in the counter-clockwise direction shown by arrow C in
As the driver cam operating part 61 of the operating key 60 presses the pressure receiving part 15a, the driver cam 10 rotates in the counter-clockwise direction in
If the door is opened during the operating time, a machine stopping operation is carried out first outside. As the door is pulled and opened, the operating key 60 is also pulled and moves backward. This causes the lock cam operating parts 62 of the operating key 60 to be separated from the pressure receiving part 19a such that the lock cams 17 and 18 rotate in the clockwise direction as shown in arrow B of
If the key switch is attached with its axis horizontally to the supporting column of the protective fence, the operating key 60 is inserted through the insertion opening 9 provided on the top surface 3b of the head cover 3. In this case, as the operating key 60 is inserted into the insertion opening 9, the lock cam operating parts 62 of the operating key 60 contact the pressure receiving part 20a and the lock cams 17 and 18 are rotated in the counter-clockwise direction as shown by arrow C in
As described above, according to this invention, the rotation of the driver cam 10 is controlled while the lock cams 17 and 18 are not being pushed by the operating key 60 as the engaging parts 21D which is the angular part between the arcuate surface portion 21A and recessed portion 21B of the engaging protrusion 21 comes to disengageably engage with the angular corner portion 12R of the driver cam 10. As the operating key 60 is pushed to rotate the lock cams 17 and 18, the engaging protrusion 21 is rotated and the engagement is released such that the driver cam 10 is made rotatable. Thus, no dedicated device for limiting the rotation of the driver cam 10 is necessary and this means that the number of component is reduced. Moreover, the width of the operating part 2 can be made smaller because there are no head lock members to be moved in the transverse direction, unlike with the prior art devices.
The operating part 2 can be made smaller, furthermore, since the engaging protrusions 12 are provided together with the cam shaft 11 at the rotary center of the driver cam 10 and since the engaging protrusions 21 are provided together with the cam shafts 23 and 23-1 at the rotary center of the lock cams 17 and 18, and this means that the key switch as a whole can be made more compact. Since the lock cams 17 and 18 can be superposed onto the driver cam 10, the product as a whole becomes easier to assemble.
Moreover, since engaging protrusions 21 on the lock cam engage with the engaging protrusions 12 on the driver cams by undergoing a rotary motion to lock the driver cam 10, the lock cams 17 and 18 can rotate even if a foreign object becomes inserted to the engaging protrusion 21 and hence the driver cam 10 can still be locked. Thus, the rotary motion of the driver cam 10 by way of a tool such as a driver other than the dedicated operating key (actuator) can be prevented and the operation of the switch part can be prevented.
Although the spring member 32 was described above as being a plate spring comprising an attachment part 33 and a pair of spring pieces 34 which are bent to form an acute angle with the attachment part 33,
Number | Date | Country | Kind |
---|---|---|---|
P2006-064656 | Mar 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5420385 | Cooper | May 1995 | A |
5464954 | Kimura et al. | Nov 1995 | A |
5622253 | Wecke et al. | Apr 1997 | A |
5760353 | Rapp | Jun 1998 | A |
6118087 | Fukui | Sep 2000 | A |
6194674 | Fukui | Feb 2001 | B1 |
6307167 | Kajio et al. | Oct 2001 | B1 |
6720508 | Moriyama et al. | Apr 2004 | B2 |
6861597 | Baechle | Mar 2005 | B2 |
6872898 | Mohtasham | Mar 2005 | B2 |
7223927 | Poyner | May 2007 | B2 |
7339125 | Day et al. | Mar 2008 | B2 |
7345252 | Takenaka et al. | Mar 2008 | B2 |
7351924 | Scherl et al. | Apr 2008 | B2 |
Number | Date | Country |
---|---|---|
2002-140962 | May 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20070209404 A1 | Sep 2007 | US |