The present disclosure relates to the field of electronic musical instruments, in particular to a keybed device.
With the development of digital technology, the computing and processing capabilities of processors are getting stronger. Electronic musical instruments can create many effects and timbres. These effects cannot be well interpreted and deduced by the performance tools of traditional musical instruments.
On the basis of simulating traditional musical instruments such as pianos and organs, electronic musical instrument products achieve performance effects that traditional musical instruments cannot accomplish by using pressure or inductance sensor detection, such as the Aftertouch function of the keybed. However, the Aftertouch function of existing electronic keybeds is all monophonic (MONO). As shown in
For Poly Aftertouch devices, where each key corresponds to an Aftertouch sensor, it is particularly important to maintain consistency. At present, in the existing keybed device with Aftertouch, the keys are limited by the limit lint on the keybed support. After the keys are pressed down to contact the limit lint, more pressure is applied to the keys, and the limit lint will be deformed until it can sense the sensor circuit board to produce an Aftertouch effect. Since the flatness of the keybed cannot be guaranteed to be absolutely flat, the sensor circuit board cannot be absolutely flat, and the sensor on the circuit board will also have high and low differences. Therefore, the two components that will be sensed have the defects of hidden quality problems, resulting in inconsistent Aftertouch pressure and Aftertouch performance effects for each key. For example, two keys of A and B have different heights, the A key is high, and the B key is low, when the A key and the B key are pressed at the same depth, the A key just hits the sensor surface and the output signal amplitude is AA, and the B key presses the sensor down so that the output signal amplitude is BB, and the value of AA is obviously smaller than the value of BB. That is, due to the uneven surface of the keybed, the users feel that the depths they press are the same, but the output signals (Aftertouch pressure value) are different, and the produced sound effects are also different. When multiple keys are played together, the user cannot control the performance well.
Electronic keybeds usually require a large pressing force to trigger the Aftertouch function of the keybed, and the white and black keys usually require different pressures to trigger Aftertouch, resulting in the player's inability to control the pressing force well, which brings inconvenience to the performance. The sensitivity of Aftertouch is poor, resulting in a poor feel when the keys hit the bottom, noise will be generated after the keys hit the bottom, and the performance is poor.
Therefore, it has become one of the problems to be solved by those skilled in the art to propose a pressure sensing technology with low cost and a consistent Aftertouch effect to achieve a Poly Aftertouch effect.
The present disclosure provides a keybed device to solve the problems of inconsistent Aftertouch effects and high cost in the prior art.
The present disclosure proposes a keybed device. The keybed device includes: a keybed support, a keybed, a key height limiting column, a pressure detection device, and a flexible support structure. The keybed is arranged on the keybed support. The key height limiting column is arranged in one-to-one correspondence with each key in the keybed, and an end of the key height limiting column is fixed on a bottom surface of the corresponding key. The pressure detecting device is arranged in one-to-one correspondence under each key height limiting column to detect a pressing strength of each key height limiting column. The flexible support structure is arranged below each key height limiting column and located on at least one side of each pressure detection device.
More optionally, the pressure detection device includes a pressure sensing unit and a piezoresistor sensor located below the pressure sensing unit.
More optionally, the pressure sensing unit includes a sensing component, a connecting component, and a sensor fixing component; the connecting component is arranged on a side surface of the sensing component, and the sensor fixing component is arranged on a bottom surface of the connecting component to fix the piezoresistive sensor.
More optionally, the sensing component includes: a top recess formed in a top surface of the sensing component; and a first exhaust slot formed in the top surface of the sensing component and extending from the top recess to a side surface of the sensing component.
More optionally, the first exhaust slot extends in a direction perpendicular to the side surface of the sensing component.
More optionally, a shape of the top recess includes a square, and the sensing component includes two first exhaust slots corresponding to each edge of the square.
More optionally, the connecting component includes a second exhaust slot formed on a bottom surface of the connecting component, which extends from the sensing component to a side surface of the connecting component or connects two adjacent sensing components.
More optionally, a bottom surface of the pressure sensing unit is a curved surface.
More optionally, a material of the pressure sensing unit includes conductive silica gel or a flexible material coated with a conductive film on a bottom surface.
More optionally, the piezoresistor sensor includes a first electrode and a second electrode insulated from each other, and the first electrode and the second electrode form an interdigital structure.
More optionally, the flexible support structure includes: white key support bars respectively arranged on both sides of the pressure detection device corresponding to white keys in the keybed for supporting the white keys; and black key support bars respectively arranged on both sides of the pressure detection device corresponding to black keys in the keybed for supporting the black keys.
More optionally, a first groove is arranged on a top surface of the white key support bar, and a second groove is arranged on a top surface of the black key support bar.
More optionally, a length of the second groove is longer than a length of the first groove.
More optionally, the flexible support structure further includes a reinforcing rib arranged between adjacent white key support bar and black key support bar to connect the white key support bar with the black key support bar.
More optionally, a top surface of the flexible support structure is not lower than a top surface of the sensing component.
More optionally, a height difference between the top surface of the flexible support structure and the top surface of the sensing component is 0.3 mm.
As described above, the keybed device of the present disclosure has the following beneficial effects:
1. The keybed device of the present disclosure includes a flexible support structure, which can avoid false triggering of the Aftertouch effect. A same depth is pressed down from the flexible support structure to obtain a consistent Aftertouch effect, and the performance effect is controllable.
2. The keybed device of the present disclosure adopts a piezoresistor sensor to detect Aftertouch and Aftertouch strength, and the cost is low.
3. Each key has its own independent Aftertouch sensing structure, that is, the keybed device of the present disclosure can realize the technical effect that the keys are not affected by each other.
4. The flexible support structure in the keybed device of the present disclosure can support the keys very stably, which not only gives the keys a soft bottoming feeling, but also prevents the keys from shaking laterally, and ensures the stability of the Aftertouch function of the keys.
5. The keybed device of the present disclosure includes a top recess and a first exhaust slot, which can prevent that the air between the key and the pressure sensing unit is evacuated when the key is strongly pressed and released, resulting in the key is sucked by the pressure sensing unit and cannot be quickly returned. At the same time, it can effectively improve the sensitivity of Aftertouch and the bottoming feel, making the performance of Aftertouch richer, and avoiding the noise generated by hard bottoming.
6. The keybed device of the present disclosure includes grooves of different lengths on the white key support bar and the black key support bar, so that the supporting part corresponding to the white key is longer than the supporting part corresponding to the black key, that is, the arm of the white key is longer than that of the black key. It can be realized that the white keys and the black keys trigger Aftertouch under the same pressure, so as to adjust the trigger strength of Aftertouch, so that the Aftertouch can be triggered with light pressure during the playing process.
7. A reinforcing rib is placed between adjacent white key support bar and black key support bar, which prevents the white key support bar and the black key support bar on both sides of the pressure sensing unit from being overwhelmed when the key is strongly pressed against the pressure sensing unit.
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. These drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope. The disclosure will be described with additional specificity and detail through use of the accompanying drawings.
1 Keybed device
11 Keybed support
121 White key
122 Black key
13 Key height limit column
14 Pressure detection device
141 Pressure sensing unit
141
a Sensing component
141
b Connecting component
141
c Sensor fixing component
142 Piezoresistor sensor
142
a First electrode
142
b Second electrode
15 Flexible support structure
151 White key support bar
152 Black key support bar
161 First trigger member
162 Second trigger member
17 Key scanning circuit
18 Limit felt
19 Top recess
20 First exhaust slot
21 Second exhaust slot
21 Reinforcing rib
The embodiments of the present disclosure will be described below. Those skilled can easily understand other advantages and effects of the present disclosure according to contents disclosed by the specification. The present disclosure can also be implemented or applied through other different specific embodiments. Various modifications or changes can also be made to all details in the specification based on different points of view and applications without departing from the spirit of the present disclosure.
It needs to be stated that the drawings provided in the following embodiments are just used for schematically describing the basic concept of the present disclosure, thus only illustrating components only related to the present disclosure and are not drawn according to the numbers, shapes and sizes of components during actual implementation, the configuration, number and scale of each component during actual implementation thereof may be freely changed, and the component layout configuration thereof may be more complicated.
As shown in
As shown in
Specifically, the keybed includes a plurality of white keys 121 and a plurality of black keys 122, and the white keys 121 and the black keys 122 are arranged alternately. The keybed usually includes 49, 61, or 88 keys, and the distribution of the keys will not be described here. In this embodiment, one end of each key is connected with the keybed support 11 through a spring, and the other end extends out of the keybed support 11.
As shown in
Specifically, the key height limiting column 13 is arranged on the bottom surface of the key. In this embodiment, the key height limiting column 13 is located on the bottom surface of the part where the key extends out of the keybed support 11. In practical applications, the key height limiting column 13 can be arranged on the bottom surface of any position of the key, as long as the key height limiting column 13 can follow the movement of the corresponding key. In this embodiment, the key height limiting column 13 is arranged perpendicular to the key. In actual use, it is not limited to this embodiment.
As shown in
Specifically, the pressure detecting device 14 is located below the key height limiting column 13, when the key is pressed down, the key height limiting column 13 follows the key to be pressed down. After the key height limiting column 13 contacts the pressure detection device 14, the pressure detection device 14 obtains the pressure information of the key height limitation column 13 based on the pressed depth of the key height limitation column 13, and converts it into an electrical signal.
As an implementation of this embodiment, as shown in
It should be noted that any device that can realize pressure detection is applicable to the present disclosure and is not limited to this embodiment.
As shown in
Specifically, in this embodiment, the flexible support structures 15 are located on both sides of each pressure detection device 14, and a material of the flexible support structure 15 includes but is not limited to silica gel. The flexible support structure 15 and the pressure sensing unit 141 may be integrally formed. As an implementation of this embodiment, the top surface of the flexible support structure 15 is not lower than the top surface of the sensing component 141a. The height difference between the top surface of the flexible support structure 15 and the top surface of the sensing component 141a is h.
In this embodiment, the height difference h between the top surface of the flexible support structure 15 and the top surface of the sensing component 141a is set to be 0.1-0.5 mm, preferably 0.3 mm. With the press of the key height limiting column 13, when the key height limiting column 13 contacts the flexible support structure 15, it indicates that Aftertouch is activated. When the bottom surface of the sensing component 141a contacts the top surface of the piezoresistor sensor 142, it starts to output an Aftertouch pressure detection signal.
It should be noted that in practical applications, the top surface of the flexible support structure 15 may also be lower than the top surface of the sensing component 141a. As the key height limiting column 13 is pressed down, when the top surface of the sensing component 141a contacts the top surface of the piezoresistor sensor 142, the piezoresistor sensor 142 starts to output a signal. When the key height limiting column 13 contacts the flexible support structure 15, it indicates that Aftertouch is activated, and the output signal corresponding to the piezoresistor sensor 142 is used as a starting point of the Aftertouch pressure detection signal. The pressure value obtained between the pressing depth from the top surface of the sensing component 141a to the top surface of the flexible support structure 15 is taken as the pre-pressure value, and is not counted as the Aftertouch pressure value.
As shown in
As shown in
Specifically, the key scanning circuit 17 is responsible for detecting the triggering time and the triggering strength of the keys. The key scanning circuit 17 is arranged with many switches for detecting the pressing and releasing of the keys, and each key corresponds to two switches. The pressing of the key and the pressing force can be measured by detecting the different trigger times of the two switches. As shown in
As shown in
The working principle of the keybed device 1 of this embodiment is as follows:
When a key is pressed, the first trigger member 161 and the second trigger member 162 are first triggered, and the key scanning circuit 17 determines the effective triggering and triggering strength of the key according to the triggering and triggering time of the two corresponding switches. As the key continues to be pressed down, when the key height limiting column 13 touches the flexible support structure 15, the player perceives that the key is pressed down and pauses. If the key continues to be pressed down, it means to start Aftertouch. The pressure sensing unit 141 is deformed as the height limiting column 13 is pressed down. When the bottom surface of the sensing component 141a in the pressure sensing unit 141 contacts the piezoresistor sensor 142, the two electrodes in the piezoresistor sensor 142 are conducted through the bottom surface of the sensing component 141a to generate a corresponding electrical signal, thereby triggering the Aftertouch effect. Since the relative height of the flexible support structure 15 and the pressure sensing unit 141 is constant, the depths (the relative height of the flexible support structure 15 and the pressure sensing unit 141) of Aftertouch pressing corresponding to the keys are the same, the Aftertouch effects of the keys corresponding to the same playing strength are also consistent.
As shown in
Specifically, the top surface of the sensing component 141a is a flat surface (
The working principle of the keybed device 1 of this embodiment is as follows:
When a key is pressed, the first trigger member 161 and the second trigger member 162 are first triggered, and the key scanning circuit 17 determines the effective triggering and triggering strength of the key according to the triggering and triggering time of the two corresponding switches. As the key continues to be pressed down, when the key height limiting column 13 touches the flexible support structure 15, the player perceives that the key is pressed down and pauses. If the key continues to be pressed down, it means to start Aftertouch. The pressure sensing unit 141 is deformed as the height limiting column 13 is pressed down. When the bottom surface of the sensing component 141a in the pressure sensing unit 141 contacts the piezoresistor sensor 142, the two electrodes in the piezoresistor sensor 142 are conducted through the bottom surface of the sensing component 141a to generate an electrical signal, thereby triggering the Aftertouch effect. As the key height limiting column 13 continues to be pressed down, the contact area between the bottom surface of the sensing component 141a and the piezoresistor sensor 142 gradually increases. The resistance of the two electrodes in the piezoresistor sensor 142 is gradually reduced, and the resistance change between the two electrodes is converted into a voltage change through a processing circuit (the voltage change curve can be sampled by a high-speed ADC). After further processing, the Aftertouch information after each key is pressed can be obtained. Similarly, since the relative height of the flexible support structure 15 and the pressure sensing unit 141 is constant, the Aftertouch effects of the keys are also consistent.
The keybed device 1 of this embodiment realizes that the contact area between the sensing component 141a and the piezoresistor sensor 142 changes from small to large through the curvature of the lower surface of the sensing component 141a, so that the resistance between two electrodes changes from large to small, thereby increasing the dynamic range of resistance change.
As shown in
Specifically, as shown in
As an implementation of this embodiment, the first exhaust slot 20 extends in a direction perpendicular to the side surface of the sensing component 141a. The first exhaust slot 20 may also extend to the side surface of the sensing component 141a along other directions. Preferably, the top recess 19 has a square shape, and the side surfaces of the top recess 19 are respectively parallel or perpendicular to the side surface of the sensing component 141a. The sensing component 141a includes two first exhaust slots 20 corresponding to each edge of the square. This structure makes the exhaust slots evenly distributed. The exhaust slots combined with the top recess 19 in the middle of the sensing component 141a can maintain air circulation to the greatest extent, and prevent the key from being sucked by the sensing component 141a, thereby making the playing process smooth and preventing noise.
As shown in
As shown in
As an implementation of this embodiment, the flexible support structure further includes a reinforcing rib 22 arranged between adjacent white key support bar 151 and black key support bar 152 to connect the white key support bar 151 with the black key support bar 152. The reinforcing rib 22 prevents the white key support bar 151 and the black key support bar 152 on both sides of the pressure sensing unit 141 from being overwhelmed when the key is strongly pressed against the pressure sensing unit 141.
As an implementation of this embodiment, the white key support bar 151 includes a first groove 1510, and the black key support bar 152 includes a second groove 1520. The length of the second groove 1520 is longer than the length of the first groove 1510, so that the supporting part corresponding to the white key is longer than the supporting part corresponding to the black key. That is, the arm of the white key is longer than that of the black key. In this case, the white keys and the black keys trigger Aftertouch under the same pressure, so as to adjust the trigger strength of Aftertouch, so that the Aftertouch can be triggered with light pressure during the playing process.
The keybed device of the present disclosure improves the Aftertouch pressure and Aftertouch effect of the keys, so that the Aftertouch pressure and Aftertouch effect obtained after different keys are pressed at the same depth are consistent, and the Aftertouch performance of the entire keybed is consistent.
In summary, the present disclosure proposes a keybed device, including: a keybed support; a keybed arranged on the keybed support; a key height limiting column arranged in one-to-one correspondence with each key in the keybed, and an end of the key height limiting column is fixed on a bottom surface of the corresponding key; a pressure detecting device arranged in one-to-one correspondence under each key height limiting column to detect a pressing strength of each key height limiting column; and a flexible support structure arranged below each key height limiting column and located on at least one side of each pressure detection device, and the flexible support structure includes a flexible material. The keybed device of the present disclosure includes a flexible support structure, which can avoid false triggering of the Aftertouch effect. A same depth is pressed down from the flexible support structure to obtain a consistent Aftertouch effect, and the performance effect is controllable. In addition, the keybed device of the present disclosure adopts a piezoresistor sensor to detect Aftertouch and Aftertouch strength, and the cost is low. Therefore, the present disclosure effectively overcomes various shortcomings in the existing technology and has high industrial utilization value.
The above-mentioned embodiments are just used for exemplarily describing the principle and effects of the present disclosure instead of limiting the present disclosure. Those skilled can make modifications or changes to the above-mentioned embodiments without going against the spirit and the range of the present disclosure. Therefore, all equivalent modifications or changes made by those who have common knowledge in the art without departing from the spirit and technical concept disclosed by the present disclosure shall be still covered by the claims of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2019206421553 | May 2019 | CN | national |
This is a continuation-in-part application claiming priority to a pending PCT application PCT/CN2019/114715, filed on Oct. 31, 2019, which claims the priority to a Chinese application No. 2019206421553, filed on May 7, 2019, both of which are hereby incorporated by reference in their entireties, including any appendices or attachments thereof, for all purpose.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2019/114715 | Oct 2019 | US |
Child | 17027729 | US |