1. Field of the Invention
The present invention relates to a keyboard device for an electronic musical instrument such as an electronic organ, an electronic piano, and the like.
2. Description of the Related Art
There has conventionally been known a keyboard device for an electronic musical instrument described in Japanese Patent No. 3074794. In this keyboard device described above, a key touch feeling (reaction force against a key depression/release operation) on a front end of a key, to which a higher pitch is assigned, is set lighter in order to generate a key touch feeling similar to a key touch feeling of an acoustic piano. This keyboard device has plural hammers, each of which rocks through an engagement with the corresponding key so as to apply reaction force against the depression/release operation of the corresponding key. The plural hammers are common components. In this keyboard device, the length from the pivot point of the key, formed on a back end, to the front end of the key becomes gradually longer toward the keys on the high-pitched side from the keys on the low-pitched side. In addition, the position of the pivot point of each hammer is gradually shifted backward from the low-pitched side toward the high-pitched side, by which the distance from the pivot point of the key to the engagement position between the hammer and the key is set to be the same for all keys.
The conventional keyboard device described above has a stopper for restricting the rocking movement of the key, and the maximum depth during the key depression is the same for all keys. However, since the pivot point of each hammer is shifted in the longitudinal direction, the range of the rocking angle of each hammer is different among the assigned pitches. Therefore, it is necessary to set the position and performance of a rubber switch, which is pushed by the rocking movement of the hammer, to be different among the assigned pitches. In order that the height of the front end of each key and the tilt angle of each key during the key release and the key depression are set to be the same for all keys to make the appearance of the keyboard device similar to the appearance of an acoustic piano, the position and thickness of the stopper for restricting the rocking movement of each key have to be different among the assigned pitches. Accordingly, a large variety of components are needed, so that the productivity of the keyboard device is low.
The present invention is accomplished to solve the above-mentioned problem, and aims to reduce cost for the keyboard device, which creates a key touch feeling and appearance similar to those of an acoustic piano by shifting the position of the pivot point of each key in the longitudinal direction, and to enhance productivity of the keyboard device. For easy understanding of the present invention, a numeral of a corresponding portion in an embodiment is written in a parenthesis in the description below of each constituent of the present invention. However, each constituent of the present invention should not be construed as being limited to the corresponding portion indicated by the numeral in the embodiment.
In order to attain the foregoing object, the present invention provides a keyboard device for an electronic musical instrument, the keyboard device including: plural white keys and black keys (11w, 11b) that are supported by a key support portion (Kw, Kb) in order that front ends thereof rock in the vertical direction by a key depression/release operation by a performer, wherein a pitch is assigned to each of the plural white keys and black keys, and a length from the front end to the key support portion is different among the plural white keys and black keys; plural white-key hammers and black-key hammers (16w, 16b), each of which includes an engagement portion (Pw1, Pb1) engaged with each of the plural white keys and black keys, and each of which is supported by a hammer support portion (Hw, Hb) in order to rock with the rocking movement of each of the plural white keys and black keys, wherein positions of the hammer support portions of the plural white-key hammers in the vertical direction and in the longitudinal direction are the same for the plural white-key hammers, positions of the hammer support portions of the plural black-key hammers in the vertical direction and in the longitudinal direction are the same for the plural black-key hammers, the hammer support portions of the plural black-key hammers are located posterior to the hammer support portions of the plural white-key hammers for setting the distance from the hammer support portion to the engagement portion of each of the plural black-key hammers to be longer than the distance from the hammer support portion to the engagement portion of each of the plural white-key hammers, the positions of the engagement portions in the vertical direction and in the longitudinal direction during the key release state are the same for the plural white-key hammers, and the positions of the engagement portions in the vertical direction and in the longitudinal direction during the key release state are the same for the plural black-key hammers; and a first restricting member (20) and a second restricting member (21) that are arranged to extend in the direction of the arrangement of the plural white keys and black keys, and that restrict the rocking movement of the plural white-key hammers and black-key hammers in order that the ranges of the rocking angle become the same for the plural white-key hammers, and the ranges of the rocking angle become the same for the plural black-key hammers.
In this case, it is preferable that the distance (Lw1) from the front end of the white key to the engagement portion in the longitudinal direction is set within 30% of the distance (Lw2) from the front end of the white key to the key support portion of the white key in the longitudinal direction, and the distance (Lb1) from the front end of the black key to the engagement portion in the longitudinal direction is set within 30% of the distance (Lb2) from the front end of the black key to the key support portion of the black key in the longitudinal direction. The front end of the black key means a front end of a portion of the black key that can be visually recognized by a performer when the black key and the two white keys adjacent to the black key are released. The engagement portion of the black key may be provided anterior to the front end of the black key (see
Each of the plural white-key hammers includes a mass member that becomes light from a low-pitched side toward a high-pitched side, and a key touch feeling becomes gradually light from the low-pitched side toward the high-pitched side. Each of the plural black-key hammers includes a mass member that becomes light from a low-pitched side toward a high-pitched side, and a key touch feeling becomes gradually light from the low-pitched side toward the high-pitched side. The mass member for the white-key hammer is heavier than the mass member for the neighboring black-key hammer. The length from the front end to the back end of the plural white keys becomes shorter toward the high-pitched side from the low-pitched side, and the length from the front end to the back end of the plural black keys becomes shorter toward the high-pitched side from the low-pitched side.
In the keyboard device configured as described above, the first restricting member and the second restricting member restrict the rocking movement of the plural hammers, whereby the number of components can be reduced, compared to the case in which the restricting member is provided for each hammer, resulting in that the cost for the keyboard device can be reduced.
In addition, the range of the rocking angle is the same for all of the plural white-key hammers. Therefore, the maximum depth of each of the plural white keys during the key depression in the vicinity of the engagement portion with the corresponding white-key hammer is also the same for plural white keys. In addition, the range of the rocking angle is the same for all of the plural black-key hammers. Therefore, the maximum depth of each of the plural black keys during the key depression in the vicinity of the engagement portion with the corresponding black-key hammer is also the same for plural black keys. If the engagement portion is provided on the position near the front end of the key, in particular, a performer is easy to play the keyboard device, since the maximum depth on the front end of the key during the key depression is almost the same for all keys. The hammer support portion of the black-key hammer is located posterior to the hammer support portion of the white-key hammer for setting the distance from the hammer support portion to the engagement portion of each of the plural black-key hammers to be longer than the distance from the hammer support portion to the engagement portion of each of the plural white-key hammers. Therefore, the rocking range of the black-key hammer on the engagement portion is wider than the rocking angle of the white-key hammer on the engagement portion, so that the difference between the maximum depth of the front end of the black key during the key depression and the maximum depth of the front end of the white key during the key depression can be reduced. Specifically, the maximum depth of the front end of all keys during the key depression can be set to be almost the same for all keys, whereby the performer is easy to play the keyboard device.
Another feature of the present invention is that the positions of the engagement portions of the white-key hammers and the positions of the engagement portions of the black-key hammers in the longitudinal direction during the key release state are set to be the same. Therefore, plural white keys and black keys are easily engaged with the corresponding white-key hammers and black-key hammers simultaneously during the assembling of the keys. Specifically, plural keys can be assembled at a time, whereby the workability of assembling the keys can be enhanced.
According to another aspect, the keyboard device includes plural white-key operation detecting units and plural black-key operation detecting units (SW1) that are arranged in a line in a direction of the arrangement of the plural white keys and black keys, each white-key operation detecting unit and black-key operation detecting unit detecting a physical amount involved with the rocking movement of each of the plural white keys and black keys respectively. In this case, it is preferable that the distance (Lw3) from the front end of the white key to the white-key operation detecting unit corresponding to this white key in the longitudinal direction is set within 30% of the distance (Lw2) from the front end of the white key to the key support portion of the white key in the longitudinal direction, and the distance (Lb3) from the front end of the black key to the black-key operation detecting unit corresponding to this black key in the longitudinal direction is set within 30% of the distance (Lb2) from the front end of the black key to the key support portion of the black key in the longitudinal direction. The white-key operation detecting unit is a switch for detecting whether the white key is depressed or released, and the black-key operation detecting unit is a switch for detecting whether the black key is depressed or released.
As described above, the maximum depth in the vicinity of the front end of the key during the key depression is almost the same for all keys. Therefore, if the white-key operation detecting units and the black-key operation detecting units are configured to have the same characteristic, and are arranged in the direction of the arrangement of the keys (in the lateral direction), the relationship between the outputs from the white-key operation detecting unit and the black-key operation detecting unit and the depth of the key during the key depression can be almost the same for all of the white-key operation detecting units and the black-key operation detecting units. If the white-key operation detecting units and the black-key operation detecting units are arranged in the vicinity of the front end of the key, in particular, the relationship between the outputs from the white-key operation detecting unit and the black-key operation detecting unit and the depth of the key during the key depression can be almost the same for all of the white-key operation detecting units and black-key operation detecting units. Accordingly, the variety of the components can be reduced, whereby the cost for the keyboard device can be reduced. In addition, the depth of each key during the key depression can be detected by the same process in the electronic musical instrument provided with the keyboard device.
According to another aspect of the present invention, the keyboard device includes plural white-key hammer operation detecting units and black-key hammer operation detecting units (SW2w, SW2b) that are arranged in a line in a direction of the arrangement of the plural white keys and black keys, each white-key hammer operation detecting unit and black-key hammer operation detecting unit detecting a physical amount involved with the rocking movement of each of the plural white-key hammers and black-key hammers respectively. In this case, the white-key hammer operation detecting unit is a switch for detecting whether the white key is depressed or released, and the black-key hammer operation detecting unit is a switch for detecting whether the black key is depressed or released.
The range of the rocking angle is the same for all of the plural white-key hammers as described above. Therefore, if the white-key hammer operation detecting units are configured to have the same characteristic, and are arranged in the lateral direction, the relationship between the output from the white-key hammer operation detecting unit and the rocking angle of the white-key hammer can be almost the same for all of the white-key hammer operation detecting units. The range of the rocking angle is the same for all of the plural black-key hammers as described above. Therefore, if the black-key hammer operation detecting units are configured to have the same characteristic, and are arranged in the lateral direction, the relationship between the output from the black-key hammer operation detecting unit and the rocking angle of the black-key hammer can be almost the same for all of the black-key hammer operation detecting units. Accordingly, the variety of the components can be reduced, whereby the cost for the keyboard device can be reduced. In addition, the rocking angle of each of the white-key hammers can be detected by the same process in the electronic musical instrument provided with the keyboard device, and the rocking angle of each of the black-key hammers can be detected by the same process in the electronic musical instrument provided with the keyboard device.
According to another aspect of the present invention, the keyboard device includes plural white-key hammer driving units and black-key hammer driving units (SD1w to SD3w, SD1b to SD3b) that are arranged in a line in a direction of the arrangement of the plural white keys and black keys, each white-key hammer driving unit and black-key hammer driving unit driving each of the plural white-key hammers and each of the plural black-key hammers respectively. The range of the rocking angle is the same for all of the plural white-key hammers as described above. Therefore, if the white-key hammer driving units are configured to have the same characteristic, and are arranged in the lateral direction, the same drive signal can be supplied to the plural white-key hammer driving units. Specifically, it is unnecessary to adjust the drive signal for each of the white-key hammers. The variety of the components can be reduced, whereby the cost for the keyboard device can be reduced. In addition, the range of the rocking angle is the same for all of the plural black-key hammers as described above. Therefore, if the black-key hammer driving units are configured to have the same characteristic, and are arranged in the lateral direction, the same drive signal can be supplied to the plural black-key hammer driving units. Specifically, it is unnecessary to adjust the drive signal for each of the black-key hammers. The variety of the components can be reduced, whereby the cost for the keyboard device can be reduced.
Various other objects, features and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description of the preferred embodiment when considered in connection with the accompanying drawings, in which:
One embodiment of the present invention will be described below with reference to the drawings. In the description below, a side close to a performer is defined as a “front side”, while a side far from the performer is defined as a “rear side”. A high-pitched side is defined as a “right side”, while a low-pitched side is defined as a “left side”.
A keyboard device includes plural white keys 11w and plural black keys 11b as illustrated in
The white keys 11w, each having a different assigned pitch, have different length in the longitudinal direction, but the other structures are the same. The black keys 11b, each having a different assigned pitch, have different length in the longitudinal direction, but the other structures are the same. Each of the white keys 11w has a width in the vertical direction smaller than that of the black key 11b, and has a width in the lateral direction larger than that of the black key 11b. The white key 11w and the black key 11b have a hollow shape including a thin top wall extending in the longitudinal direction, and thin sidewalls extending downward from left and right ends of the top wall respectively, with no bottom. Through-holes Kw and Kb that are opposite to each other are formed on the rear part of the sidewall of the white key 11w and the black key 11b. The distance from the through-holes Kw and Kb to the back end of each key is the same for all keys. The white key 11w and the black key 11b are supported by a key support portion 13w and a key support portion 13b of a later-described key frame 12 with the through-holes Kw and Kb.
The key frame 12 has a top plate 12a extending in the longitudinal direction and lateral direction. The position of the front end of the top plate 12a at the low-pitched side and the position of the front end at the high-pitched side are the same, but the back end at the low-pitched side is located posterior to the back end at the high-pitched side. The key frame 12 also has a front plate 12b vertically extending downward from the front end of the top plate 12a, a bottom plate 12c horizontally extending from the lower end of the front plate 12b, and a front plate 12d vertically extending upward from the front end of the bottom plate 12c. The key frame 12 also includes a rear plate 12e vertically extending downward from the back end of the top plate 12a, and a bottom plate 12f horizontally extending rearward from the lower end of the rear plate 12e. The height of the lower surface of the bottom plate 12c and the height of the lower surface of the bottom plate 12f are the same. The keyboard device is supported by a frame FR of an electronic musical instrument by the structure in which the lower surface of the bottom plate 12c and the lower surface of the bottom plate 12f are brought into contact with the frame FR of the electronic musical instrument and fixed thereto. The above-described key support portion 13w and the key support portion 13b are formed to project upward from the upper surface of the top plate 12a. The key support portion 13b is located posterior to the adjacent key support portion 13w. The key support portion 13w and the key support portion 13b respectively include two opposing plates, and a projection 13w1 and projection 13b1 that project inward. The projections 13w1 and 13b1 are fitted to the through-holes Kw and Kb respectively. Therefore, the white key 11w and the black key 11b are supported to be rotatable about the projections 13w1 and 13b1, and their front ends can rock in the vertical direction.
A drive unit 11w1 extends downward from the middle portion of the white key 11w. The drive unit 11w1 has a hollow shape including a thin front wall extending in the vertical direction, and thin sidewalls extending rearward from left and right ends of the front wall, with no bottom. The lower end of the drive unit 11w1 is closed by a lower end wall. On the other hand, the black key 11w also has a drive unit 11b1 same as the drive unit 11w1 of the white key 11w. The black key 11b has a connection portion that extends downward from the front end of a portion (hereinafter referred to as an apparent portion of the black key 11b) projecting upward from the top surface of the white key 11w in a key-released state, and that is slightly curved to the front. The upper end of the drive unit 11b1 is connected to the leading end of the connection portion.
A distance Lw1 from the front end of the white key 11w to the drive unit 11w1 in the longitudinal direction is within 30% of a distance Lw2 from the front end of the white key 11w with the highest pitch (i.e., the shortest key of the plural white keys 11w) to the through-hole Kw. The distance Lw1 is the same for all white keys 11w. A distance Lb1 from the front end of the apparent portion of the black key 11b to the drive unit 11b1 in the longitudinal direction is within 30% of a distance Lb2 from the front end of the apparent portion of the black key 11b with the highest pitch (e.g., the shortest key of the plural black keys 11b) to the through-hole Kb. The distance Lb1 is the same for all black keys 11b. The position of the drive unit 11w1 and the position of the drive unit 11b1 in the longitudinal direction in the key-released state of the white key 11w and the black key 11b are the same, and the position of the lower end wall of the drive unit 11w1 and the position of the lower end wall of the drive unit 11b1 in the vertical direction are also the same. Specifically, all drive units 11w1 and all drive units 11b1 are arranged in the lateral direction (in the direction parallel to the key arrangement direction), when all keys are released.
The lower ends of the drive unit 11w1 and the drive unit 11b1 are respectively engaged with front ends of hammers 16w and 16b in the opening formed between the front plate 12b and the front plate 12d. In the key-released state, a contact portion Pw1 between the lower end of the drive unit 11w1 and the front end of the hammer 16w, and a contact portion Pb1 between the lower end of the drive unit 11b1 and the lower end of the hammer 16b are located on the same straight line extending in the lateral direction.
The hammer 16w includes a base 16w1 made of synthetic resin, a connection rod 16w2 made of metal, and a mass member 16w3. Like the hammer 16w, the hammer 16b includes a base 16b1, a connection rod 16b2, and a mass member 16b3. The base 16w1 and the base 16b1 are plate-like members, and formed with through-holes Hw and Hb, respectively, from the right side face to the left side face. The through-hole Hb is located posterior to the through-hole Hw.
A hammer support portion 18w and a hammer support portion 18b are formed to project downward from the lower surface of the top plate 12a. The hammer support portions 18w and 18b are formed to have two opposing plates, and respectively have projections 18w1 and 18b1 projecting inward. The projections 18w1 and 18b1 are respectively fitted to the through-holes Hw and Hb. With this structure, the bases 16w1 and 16b1 are supported to be rotatable about the projections 18w1 and 18b1. Specifically, the hammer 16w and the hammer 16b are supported such that the front ends and the back ends can be rocked in the vertical direction. The hammer support portion 18b is located posterior to the hammer support portion 18w. In other words, plural hammer support portions 18w are arranged side by side in the lateral direction, and plural hammer support portions 18b are arranged side by side in the lateral direction on the position posterior to the position where the plural hammer support portions 18w are arranged. The position of the pivot center of the hammer 16w in the longitudinal direction and in the vertical direction is the same for all hammers 16w, and the position of the pivot center of the hammer 16b in the longitudinal direction and in the vertical direction is the same for all hammers 16b. The pivot center of the hammer 16b is located posterior to the pivot center of the hammer 16w, and below the pivot center of the hammer 16w. Accordingly, the distance from the pivot center of the hammer 16b to the contact portion Pb1 is longer than the distance from the pivot center of the hammer 16w to the contact portion Pw1.
The base 16w1 includes a pair of leg portion Fw1 and leg portion Fw2 on its front end. The upper leg portion Fw1 is formed to be shorter than the lower leg portion Fw2. Like the base 16w1, the base 16b1 includes a pair of leg portion Fb1 and leg portion Fb2 on its front end. An elongated slit-like opening 12b1 extending in the vertical direction is formed on the front plate 12b for each of the hammers 16w and 16b. The front end of each hammer 16w and the front end of each hammer 16b project forward of the front plate 12b through the opening 12b1. The wall of the lower end of the drive unit 11w1 enters between the leg portions Fw1 and Fw2, while the wall of the lower end of the drive portion 11b1 enters between the leg portions Fb1 and Fb2. Specifically, the leg portions Fw1 and Fb1 enter between the walls of the lower ends of the drive units 11w1 and 11b1 and intermediate walls that form gaps with the walls of the lower ends in the drive units 11w1 and 11b1. A shock absorbing material such as rubber, urethane, or felt is fitted and fixed on the wall of the lower end of each of the drive units 11w1 and 11b1. The shock absorbing material absorbs shock caused by the collision between the lower end of the drive unit 11w1 and the upper surface of the leg portion Fw2, the collision between the lower end of the drive unit 11b1 and the upper surface of the leg portion Fb2, the collision between the lower end of the drive unit 11w1 and the lower surface of the leg portion Fw1, and the collision between the lower end of the drive unit 11b1 and the lower surface of the leg portion Fb1.
The front end of the connection rod 16w2 and the front end of the connection rod 16b2 are assembled to the back end of the base 16w1 and the back end of the base 16b1, respectively. The connection rods 16w2 and 16b2 extend rearward. The position of the back end of the connection rod 16w2 and the position of the back end of the connection rod 16b2 in the longitudinal direction are the same. The mass member 16w3 and the mass member 16b3, described later, are assembled to the back end of the connection rod 16w2 and the back end of the connection rod 16b2, respectively.
As described above, the position of the pivot point of the key is different depending upon the assigned pitch. Therefore, the distance from the pivot center of the white key 11w to the contact portion Pw1 of the leg portion Fw2 and the drive unit 11w1 is different depending upon the assigned pitch. The distance from the pivot center of the black key 11b to the contact portion Pb1 of the leg portion Fb2 and the drive unit 11b1 is also different depending upon the assigned pitch. Therefore, if the masses of the mass members for all hammers are equal, a key touch feeling is heavier on the middle-pitched part than on the low-pitched part, and the key touch feeling is heavier on the high-pitched part than on the middle-pitched part, on the key depression/release operation positions W0 and B0, because of the principle of leverage.
The key depression/release operation position W0 of the white key 11w that is the front end of the position of the white key 11w with the potentiality of being depressed or released is located anterior to the contact portion Pw1, while the key depression/release operation position B0 of the black key 11b that is the front end of the position of the black key 11b with the potentiality of being depressed or released is located posterior to the contact portion Pb1. In the present embodiment, the distance from the pivot center of the hammer 16b to the contact portion Pb1 is longer than the distance from the pivot center of the hammer 16w to the contact portion Pw1, but the difference between them is small. Therefore, supposing that the influence caused on the key touch feeling by the difference between the distances is neglected, the key touch feeling of the black key 11b is heavier than the key touch feeling of the adjacent white key 11w because of the difference between the positional relationship between the contact portion Pw1 and the key depression/release operation position W0 and the positional relationship between the contact portion Pb1 and the key depression/release operation position B0, if the mass members of all hammers have the same mass as described above. In view of this, the mass of the mass member 16w3 and the mass of the mass member 16b3 are adjusted for each key as illustrated in
When the white key 11w and the black key 11b are released, the front ends of the hammers 16w and 16b displace upward due to their own weight of the hammers 16w and 16b. In this case, the drive unit 11w1 and the drive unit 11b1 are biased upward by the leg portion Fw2 and the leg portion Fb2 respectively, whereby the front ends of the white key 11w and the black key 11b displace upward. On the other hand, when the white key 11w and the black key 11b are depressed, the lower surfaces of the drive unit 11w1 and the drive unit 11b1 press the upper surfaces of the leg portion Fw2 and the leg portion Fb2 respectively, whereby the front ends of the hammer 16w and the hammer 16b respectively displace downward.
A lower-limit stopper 20 is provided to the key frame 12. During the key depression, the lower-limit stopper 20 is brought into contact with the upper surfaces of the mass member 16w3 and the mass member 16b3 of the hammer 16w and the hammer 16b so as to restrict the upward displacement of the back ends of the hammer 16w and the hammer 16b, thereby restricting the downward displacement of the front ends of the white key 11w and the black key 11b. The lower-limit stopper 20 includes a stopper rail 20a and a buffer material 20b. The stopper rail 20a protrudes downward from the lower surface at the middle of the top plate 12a, and extends in the lateral direction. The stopper rail 20a is located above the mass member 16w3 and the mass member 16b3. The projection amount of the stopper rail 20a from the lower surface of the top plate 12a on the contact portion between the stopper rail 20a and each hammer is constant in the lateral direction. The buffer material 20b is fixed to the lower end surface of the stopper rail 20a. The buffer material 20b is a long member made of a shock-absorbing material such as rubber or felt. The sectional shape of the buffer material 20b is uniform from one end to the other end.
An upper-limit stopper 21 is provided to the middle portion of the frame FR. During the key release, the upper-limit stopper 21 is brought into contact with the lower surfaces of the mass member 16w1 and the mass member 16b1 of the hammer 16w and the hammer 16b so as to restrict the downward displacement of the back ends of the hammer 16w and the hammer 16b, thereby restricting the upward displacement of the front ends of the white key 11w and the black key 11b. Like the lower-limit stopper 20, the upper-limit stopper 21 includes a stopper rail 21a and a buffer material 21b. Specifically, the stopper rail 21a also extends in the lateral direction, and the projection amount thereof from the frame FR is constant in the lateral direction. The buffer material 21b is fixed on the upper surface of the stopper rail 21a. Like the buffer material 20b, the sectional shape of the buffer material 21b is uniform from one end to the other end. The stopper rail 20a and the stopper rail 21a may continuously extend in the lateral direction, or may discontinuously extend. The stopper rail 20a and the stopper rail 21a may be formed integral with the top plate 12a and the frame FR respectively, or may be formed as separate components and assembled to the top plate 12a and the frame FR respectively.
A switch drive unit AC1 is provided on the lower surface of each of the white key 11w and the black key 11b on the middle part. The switch drive unit AC1 is a plate-like member extending in the vertical direction in each of the white key 11w and the black key 11b, and the lower end surface of the switch drive unit AC1 is brought into contact with the upper surface of a switch SW1. The switch SW1 is provided for each key. The switch SW1 is pressed by the corresponding key to detect whether the corresponding key is depressed or released. Specifically, when the switch SW1 is depressed by the key, a rubber main body is deformed to make two contacts, which are formed on a circuit board 23, short-circuit, thereby being turned ON. The circuit board 23 extends in the lateral direction. A through-hole penetrating from the upper surface to the lower surface is formed on the circuit board 23. The through-hole corresponds to a boss 24 formed integral with the upper surface of the top plate 12a. When a screw is threaded to the boss 24 through the through-hole, the circuit board 23 is fixed to the key frame 12. The main bodies of the plural switches SW1, each corresponding to each key, are arranged on the upper surface of the circuit board 23 in the lateral direction. The position of the switch SW1 for the white key 11w and the position of the switch SW1 for the black key 11b in the longitudinal direction are the same. A distance Lw3 from the front end of the white key 11w to the switch SW1 in the longitudinal direction is within 30% of the distance Lw2 from the front end of the white key 11w with the highest pitch to the through-hole Kw, and a distance Lb3 from the front end of the apparent portion of the black key 11b to the switch SW1 is within 30% of the distance Lb2 from the front end of the apparent portion of the black key 11b with the highest pitch to the through-hole Kb. The switch SW1 for the white key 11w and the switch SW1 for the black key 11b may be arranged side by side in the lateral direction, and the positions of both switches in the longitudinal direction may be shifted.
A key guide 25w for guiding the rocking movement of the white key 11w is formed to project upward from the top end surface of the front plate 12d. The key guide 25w is inserted into the white key 11w from below, and during the key depression and key release, the side face of the key guide 25w and the inside face of the sidewall of the white key 11w are in sliding contact with each other. This structure can prevent a slight displacement of the white key 11w in the lateral direction during the key depression and key release.
A key guide 25b for guiding the rocking movement of the black key 11b is formed to project upward from the upper surface of the top plate 12a at the front end. The key guide 25b is inserted into the black key 11b from below, and during the key depression and key release, the side face of the key guide 25b and the inside face of the sidewall of the black key 11b are in sliding contact with each other. This structure can prevent a slight displacement of the black key 11b in the lateral direction during the key depression and key release.
In the keyboard device having the configuration described above, all components of the hammers 16w, except for the mass members 16w3, are the same for all hammers 16w. In addition, all components of the hammers 16b, except for the mass members 16b3, are the same for all hammers 16b. Accordingly, the variety of the components can be reduced, so that the cost for the keyboard device can be reduced. The positions of the upper-limit stopper 21 and the lower-limit stopper 20 in the longitudinal direction and in the vertical direction are the same for all hammers. Therefore, the upper-limit stopper 21 and the lower-limit stopper 20 can easily be assembled. The number of components can be reduced, compared to the case in which the stopper is provided for each hammer, resulting in that the cost for the keyboard device can be reduced. As described above, the positions of the pivot centers of the hammers 16w and the positions of the upper-limit stopper 21 and the lower-limit stopper 20 in the longitudinal direction and in the vertical direction for the hammers 16w are the same for all hammers 16w. Therefore, the ranges of the rocking angle of the hammers 16w can be the same for all hammers 16w. In addition, the positions of the pivot centers of the hammers 16b and the positions of the upper-limit stopper 21 and the lower-limit stopper 20 in the longitudinal direction and in the vertical direction for the hammers 16b are the same for all hammers 16b. Therefore, the ranges of the rocking angle of the hammers 16b can be the same for all hammers 16b.
Since the ranges of the rocking angles of the hammers 16w are the same for all hammers 16w as described above, the rocking range of the contact portion Pw1 is the same for all white keys 11w. In addition, since the ranges of the rocking angles of the hammers 16b are the same for all hammers 16b as described above, the rocking range just above the contact portion Pb1 is the same for all black keys 11b. In the present embodiment, the distance Lw1 is set to be sufficiently smaller than the distance Lw2. The distance Lb1 is set to be sufficiently smaller than the distance Lb2. Therefore, the maximum depth of the front end of the white key 11w during the key depression is the same for all white keys 11w, and the maximum depth of the front end of the apparent portion of the black key 11b during the key depression is the same for all black keys 11b. Since the pivot center of the hammer 16b is located posterior to the pivot center of the hammer 16w, the rocking range of the contact portion Pb1 is wider than the rocking range of the contact portion Pw1, so that the difference between the maximum depth of the front end of the apparent portion of the black key 11b during the key depression and the maximum depth of the front end of the white key 11w during the key depression can be reduced. Specifically, the maximum depth of the front end of the key during the key depression can be set to be almost the same for all keys, so that a performer is easy to play the keyboard device.
In the present embodiment, when the white key 11w is assembled to the key frame 12, the wall of the lower end of the drive unit 11w1 has to be inserted between the leg portion Fw1 and the leg portion Fw2. When the black key 11b is assembled to the key frame 12, the wall of the lower end of the drive unit 11b1 has to be inserted between the leg portion Fb1 and the leg portion Fb2. Since the positions of the contact portion Pw1 and the contact portion Pb1 in the longitudinal direction and in the vertical direction during the key release are the same for all keys and all hammers, the walls of the lower ends of the drive units 11w1 and the drive units 11b1 for the plural white keys 11w and the plural black keys 11b are easy to be simultaneously inserted between the leg portions. Specifically, plural keys can be assembled at a time, whereby an assembling property for assembling the keys to the key frame 12 can be enhanced.
Plural switches SW1, each corresponding to each key, are arranged side by side in the lateral direction. The maximum depth of the front end of each key during the key depression is almost the same for all keys as described above. Therefore, if the switches SW1 are arranged side by side in the lateral direction near the front end of the key, the depth of the key during the key depression when the ON/OFF state of each switch SW1 is changed is almost the same. Therefore, this can realize that all switches SW1 have the same characteristics. Specifically, not only the variety of the components can be reduced to reduce the cost for the keyboard device, but also the key depression/release state of each key can be detected by the same process in the electronic musical instrument to which this keyboard device is applied. The circuit board 23 including the contacts of the plural switches SW1 is provided to extend in the lateral direction. Therefore, the assembling property for the assembling operation can be enhanced, compared to the case in which the switch SW1 is assembled for each key.
Upon embodying the present invention, the present invention is not limited to the above-described embodiment, and various modifications are possible without departing from the scope of the present invention.
For example, in the embodiment described above, the switches SW1 are provided posterior to the drive units 11w1 and 11b1 respectively. However, they may be provided anterior to the drive units 11w1 and 11b1. In this case, a horizontal portion extending forward or backward from the upper end of the front plate 12d may be provided, and the circuit board 23 may be mounted to the horizontal portion. The switch drive unit AC1 may be provided anterior to the drive units 11w1 and 11b1 and above the switch SW1. Even with this configuration, the effect same as that provided by the above-mentioned embodiment can be obtained. Instead of the switch SW1, or in addition to the switch SW1, an optical sensor, a magnetic sensor, a capacitance sensor, or a pressure-sensitive sensor may be used to detect whether the key is depressed or released.
In the present embodiment, the pivot centers of the hammers 16w and the hammers 16b are formed on the middle part of the respective hammers 16w and 16b. The engagement portions between the white key 11w and the hammer 16w as well as between the black key 11b and the hammer 16b are formed on the front end of the hammer 16w and the front end of the hammer 16b, respectively. However, the pivot center of each hammer and the position of the engagement portion are not limited to those described in the above embodiment. For example, the pivot centers may be formed on the back end of the hammer 16w and the back end of the hammer 16b. The engagement portions may be formed on the middle part of the hammer 16w and on the middle part of the hammer 16b, and the mass member 16w3 and the mass member 16b3 may be mounted on the front end of the hammer 16w and the front end of the hammer 16b respectively. In this case, the front ends of the hammer 16w and the hammer 16b are biased upward by an elastic member such as a spring or rubber during the key release. The pivot center of the hammer 16b may be provided posterior to the pivot center of the hammer 16w, the engagement portions may be arranged in the lateral direction, and the stopper for restricting the rocking movement of the hammers 16w and the hammer 16b may be arranged in the lateral direction. Even with the configuration in which the front ends of the hammers 16w and 16b rock in the vertical direction about the back ends of the hammers 16w and 16b as described above, the effect same as that of the above-mentioned embodiment can be obtained.
For example, in the embodiment described above, the drive units 11w1 for the white keys 11w and the drive units 11b1 for the black keys 11b are arranged side by side in the lateral direction in the key-released state. However, the drive units 11w1 and the drive units 11b1 may be shifted in the longitudinal direction. In this case, when the drive unit 11b1 is located anterior to the drive unit 11w1, the range of the rocking angle of the hammer 16b can be increased more than that in the above-mentioned embodiment, whereby the difference between the maximum depth of the front end of the white key 11w during the key depression and the maximum depth of the front end of the apparent portion of the black key 11b during the key depression can be reduced more.
For example, in the present embodiment, the mass member 16w3 and the mass member 16b3 are mounted to the back ends of the connection rod 16w2 and the connection rod 16b2. However, the mass member 16w3 and the mass member 16b3 are not mounted, but the leading ends of the connection rod 16w2 and the connection rod 16b2 may be folded back to the front so as to concentrate the mass on the back ends of the hammer 16w and the hammer 16b. By adjusting the length of the folded portion, the mass at the back ends of the hammer 16w and the hammer 16b may be adjusted.
For example, in the present embodiment, the switch SW1 that is pressed by the corresponding key, and detects whether the corresponding key is depressed or released, is provided. However, instead of the switch SW1, a switch SW2w and a switch SW2b, which are pressed by the hammer 16w or the hammer 16b to detect whether the corresponding key is depressed or released, may be provided as illustrated in
The ranges of the rocking angle of the hammers 16w are the same for all hammers 16w as described above. Therefore, if the switches SW2w are arranged side by side in the lateral direction, the rocking angle of the hammer 16w when the ON/OFF state of each switch SW2w is changed is almost the same for all hammers 16w. Therefore, this can realize that all switches SW2w have the same characteristics. Specifically, not only the variety of the components can be reduced to reduce the cost for the keyboard device, but also the rocking angle of each hammer 16w can be detected by the similar process in the electronic musical instrument to which this keyboard device is applied. In addition, the ranges of the rocking angle of the hammers 16b are the same for all hammers 16b as described above. Therefore, if the switches SW2b are arranged side by side in the lateral direction, the rocking angle of the hammer 16b when the ON/OFF state of each switch SW2b is changed is almost the same for all hammers 16b. Therefore, this can realize that all switches SW2b have the same characteristics. Specifically, not only the variety of the components can be reduced to reduce the cost for the keyboard device, but also the rocking angle of each hammer 16b can be detected by the similar process in the electronic musical instrument to which this keyboard device is applied. Since the range of the rocking angle of the hammer 16b is greater than the range of the rocking angle of the hammer 16w, the rocking angle of the hammer 16w upon the changeover of the switch SW2w between ON state and OFF state is different from the rocking angle of the hammer 16b upon the changeover of the switch SW2b between ON state and OFF state. The circuit board 26 including the contacts of the plural switches SW2w and the switches SW2b is provided to extend in the lateral direction. Therefore, the assembling property for the assembling operation can be enhanced, compared to the case in which the switch SW2w and the switch SW2b are assembled for each hammer.
For example, as illustrated in
The solenoids SD2w and the solenoids SD2b are arranged side by side in the lateral direction on front surface of a vertical plate 12g, which extends downward from the lower surface of the top plate 12a at the middle part in the longitudinal direction and in the lateral direction. They are controlled by the controller in order that plungers move in the longitudinal direction. During the key depression, the controller allows the plungers to project forward, and to lightly collide with the back end surface of the mass member 16w3 and the back end surface of the mass member 16b3. On the other hand, during the key release, the controller allows the plungers to retreat backward to prevent the collision with the mass member 16w3 and the mass member 16b3. This structure generates a click feeling that a performer senses upon depressing a key of an acoustic piano.
The solenoids SD3w and the solenoids SD3b are arranged side by side in the lateral direction on the lower surface of the top plate 12a, and they are controlled by the controller in order that plungers move in the vertical direction. During the key depression, the controller allows the plungers to retreat upward, and upon the start of the key release, the controller allows the plungers to project downward to push downward the upper surface of the mass member 16w3 and the upper surface of the mass member 16b3, in order to quickly finish the key release operation. One or two of the sets of the solenoid SD1w and the solenoid SD1b, the sets of the solenoids SD2w and the solenoids SD2b, and the sets of the solenoid SD3w and the solenoid SD3b may only be provided.
The ranges of the rocking angle of the hammers 16w are the same for all hammers 16w as described above. Therefore, if the solenoids SD1w are arranged side by side in the lateral direction, and the projection amount of the plungers of the plural solenoids SD1w is controlled to be the same, the rocking angle of the plural hammers 16w can be the same, and the depth of the key, which is engaged with the corresponding hammer 16w, during the key depression can be the same. Accordingly, this can realize that all solenoids SD1w have the same characteristics. Consequently, the variety of the components can be reduced, whereby the cost for the keyboard device can be reduced. The ranges of the rocking angle of the hammers 16b are the same for all hammers 16b as described above. Therefore, if the solenoids SD1b are arranged side by side in the lateral direction, and the projection amount of the plungers of the plural solenoids SD1b is controlled to be the same, the rocking angle of the plural hammers 16b can be the same, and the depth of the key, which is engaged with the corresponding hammer 16b, during the key depression can be the same. Accordingly, this can realize that all solenoids SD1b have the same characteristics. Consequently, the variety of the components can be reduced, whereby the cost for the keyboard device can be reduced. Notably, the plunger of the solenoid SD1b has to project more than the plunger of the solenoid SD1w in order to set the rocking angle of the white key 11w and the rocking angle of the black key 11b to be the same, since the range of the rocking angle of the hammer 16b is greater than the range of the rocking angle of the hammer 16w.
If the solenoids SD2w are arranged side by side in the lateral direction, and the projection amount of the plungers of the plural solenoids SD2w is controlled to be the same as described above, the click feeling of the white keys 11w corresponding to the plural solenoids SD2w can be set uniform. Accordingly, this can realize that all solenoids SD2w have the same characteristics. Consequently, the variety of the components can be reduced, whereby the cost for the keyboard device can be reduced. If the solenoids SD2b are arranged side by side in the lateral direction, and the projection amount of the plungers of the plural solenoids SD2b is controlled to be the same as described above, the click feeling of the black keys 11b corresponding to the plural solenoids SD2b can be set uniform. Accordingly, this can realize that all solenoids SD2b have the same characteristics. Consequently, the variety of the components can be reduced, whereby the cost for the keyboard device can be reduced. The range of the rocking angle of the hammer 16b is larger than the range of the rocking angle of the hammer 16w. Therefore, even if the white key 11w and the black key 11b are depressed with the same strength, the rocking speed of the hammer 16b is higher than the rocking speed of the hammer 16w. Accordingly, the projection amount of the solenoid SD2b is set to be slightly smaller than the projection amount of the solenoid SD2w so as to make the impact caused upon the collision of the mass member 16b3 of the plunger against the plunger of the solenoid SD2b and the impact caused upon the collision of the mass member 16w3 against the plunger of the solenoid SD2w equal to each other.
If the solenoids SD3w are arranged side by side in the lateral direction, and the plural solenoids SD3w are controlled to have the same driving force during the key release, the speed of the key release operation of the plural white keys 11w corresponding to the plural solenoids SD3w can be set to be equal. Accordingly, this can realize that all solenoids SD3w have the same characteristics. Consequently, the variety of the components can be reduced, whereby the cost for the keyboard device can be reduced. If the solenoids SD3b are arranged side by side in the lateral direction, and the plural solenoids SD3b are controlled to have the same driving force during the key release, the speed of the key release operation of the plural black keys 11b corresponding to the plural solenoids SD3b can be set to be equal. Accordingly, this can realize that all solenoids SD3b have the same characteristics. Consequently, the variety of the components can be reduced, whereby the cost for the keyboard device can be reduced. Since the range of the rocking angle of the hammer 16b is larger than the range of the rocking angle of the hammer 16w, it is preferably controlled such that the driving force of the solenoid SD3b becomes slightly larger than the driving force of the solenoid SD2w. The drive device is not limited to the solenoid. The drive device may be a motor, or a device utilizing reaction force caused by a buckling spring or silicon rubber. The drive device may be a device that stops the hammer, or a device that imparts viscous resistance force against the driving force of the hammer (i.e., the key touch feeling).
For example, as illustrated in
In the embodiment described above and its modifications, the masses of the mass member 16w3 and the mass member 16b3 are adjusted to make the key touch feeling on the front end of the key gradually light toward the keys on the high-pitched side from the keys on the low-pitched side. However, the present invention is not necessarily configured as described above. The key touch feeling on the front end of the key in each range may be set to be the same, and the key touch feeling may be made light in a stepwise manner for each range toward the high-pitched range. It may also be configured such that the key touch feeling may become light in the order of pitches in only a certain range. Alternatively, it may be configured such that the key touch feeling may be set to be the same for all keys.
In the embodiment described above and its modifications, the length of the white key 11w becomes gradually shorter toward the white keys 11w on the high-pitched side from the white keys 11w on the low-pitched side, while the length of the black key 11b becomes gradually shorter toward the black keys 11b on the high-pitched side from the black keys 11b on the low-pitched side. However, the present invention is not necessarily configured as described above. The positions of the pivot centers of plural keys may be shifted in the longitudinal direction, and the positions of the respective portions for these keys may be set to be the same. For example, the whole range is divided into plural ranges, and the length of each of the keys belonging to each of the divided ranges may be set to be the same (i.e., the positions of the pivot centers of the keys in the longitudinal direction and in the vertical direction are set to be the same), while the length of the keys may be set to be different among the divided ranges. The positions of the respective portions in each of the divided plural ranges may be set to be the same. According to this configuration, the effect same as the above-mentioned embodiment can be obtained.
In the embodiment described above and its modifications, the length of each of the hammers in the longitudinal direction is set to be the same. However, the length of each of the hammers may be set to be gradually shorter toward the high-pitched side from the low-pitched side. In this case, the rate of change of the length of each hammer from the low-pitched side toward the high-pitched side may be set constant, and the lower-limit stopper 20 and the upper-limit stopper 21 on the high-pitched side may be arranged anterior to the lower-limit stopper 20 and the upper-limit stopper 21 on the low-pitched side. Specifically, the lower-limit stopper 20 and the upper-limit stopper 21 may be arranged diagonally, as viewed on a plane, in order that the ranges of the rocking angle of the hammers are the same for all hammers. With this structure, the number of components can be reduced, and the cost for the keyboard device can be reduced, compared to the case in which the stopper is provided for each hammer.
In the embodiment described above and its modifications, the white key 11w and the black key 11b are supported by the key support portions 13w and 13b of the key frame 12 by fitting the projections 13w1 and 13b1 to the through-holes Kw and Kb respectively so that the front ends of the white key 11w and the black key 11b can rock in the vertical direction. However, the white key 11w and the black key 11b can be mounted on the key frame 12 by using various supporting mechanisms, if the white key 11w and the black key 11b are supported by the key frame 12 so that the front ends of the white key 11w and the black key 11b can rock in vertical direction. For example, the rear ends of plural keys (the white key 11w and/or the black key 11b) may be are supported by the key frame 12 through elastic deformation members so that the front ends of the plural keys can rock in vertical direction. Concretely, the rear ends of the plural keys are connected to a fixing member fixed to the key frame 12 through thin and elastic connection members, wherein the fixing member is extended in the lateral direction, the connection members are extended horizontally or vertically, and the plural keys, the connection members and the fixing member are formed integrally. In this case, for example, the connection members for the white keys 11w are extended horizontally, and the connection members for the black keys 11b are extended vertically.
Number | Date | Country | Kind |
---|---|---|---|
2012-30404 | Feb 2012 | JP | national |