The present disclosure relates generally to computer user interfaces, and more specifically to techniques for managing keyboard input.
Users of smartphones and other personal electronic devices frequently provide displayed keyboards to receive user inputs. Such keyboards can be used, for example, to insert content into messages in a messaging application.
Some techniques for managing keyboard input using electronic devices, however, are generally cumbersome and inefficient. For example, some existing techniques use a complex and time-consuming user interface, which may include multiple key presses or keystrokes. Existing techniques require more time than necessary, wasting user time and device energy. This latter consideration is particularly important in battery-operated devices.
Accordingly, the present technique provides electronic devices with faster, more efficient methods and interfaces for managing keyboard input. Such methods and interfaces optionally complement or replace other methods for managing keyboard input. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated computing devices, such methods and interfaces conserve power and increase the time between battery charges.
In accordance with some embodiments, a method is described. In some embodiments, the method is performed at an electronic device with a touchscreen display. In some embodiments, the method comprises: concurrently displaying, on the touchscreen display: a text entry area, and a stroke input area at a first size; while displaying the stroke input area at the first size: detecting, using the touchscreen display, a first set of one or more strokes in the stroke input area; in response to detecting the first set of one or more strokes, displaying, in the text entry area on the touchscreen display, a first set of one or more characters determined based on the first set of one or more strokes; while displaying, on the touchscreen display, the first set of one or more characters, detecting a first drag gesture; in response to detecting the first drag gesture, resizing the stroke input area from the first size to a second size that is larger than the first size; while displaying the stroke input area at the second size: detecting, using the touchscreen display, a second set of one or more strokes in the stroke input area; and in response to detecting the second set of one or more strokes, displaying, in the text entry area on the touchscreen display, a second set of one or more characters determined based on the second set of one or more strokes.
In accordance with some embodiments, a non-transitory computer-readable storage medium is described. In some embodiments, the non-transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a touchscreen display, the one or more programs including instructions for: concurrently displaying, on the touchscreen display: a text entry area, and a stroke input area at a first size; while displaying the stroke input area at the first size: detecting, using the touchscreen display, a first set of one or more strokes in the stroke input area; in response to detecting the first set of one or more strokes, displaying, in the text entry area on the touchscreen display, a first set of one or more characters determined based on the first set of one or more strokes; while displaying, on the touchscreen display, the first set of one or more characters, detecting a first drag gesture; in response to detecting the first drag gesture, resizing the stroke input area from the first size to a second size that is larger than the first size; while displaying the stroke input area at the second size: detecting, using the touchscreen display, a second set of one or more strokes in the stroke input area; and in response to detecting the second set of one or more strokes, displaying, in the text entry area on the touchscreen display, a second set of one or more characters determined based on the second set of one or more strokes.
In accordance with some embodiments, a transitory computer-readable storage medium is described. In some embodiments, the transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a touchscreen display, the one or more programs including instructions for: concurrently displaying, on the touchscreen display: a text entry area, and a stroke input area at a first size; while displaying the stroke input area at the first size: detecting, using the touchscreen display, a first set of one or more strokes in the stroke input area; in response to detecting the first set of one or more strokes, displaying, in the text entry area on the touchscreen display, a first set of one or more characters determined based on the first set of one or more strokes; while displaying, on the touchscreen display, the first set of one or more characters, detecting a first drag gesture; in response to detecting the first drag gesture, resizing the stroke input area from the first size to a second size that is larger than the first size; while displaying the stroke input area at the second size: detecting, using the touchscreen display, a second set of one or more strokes in the stroke input area; and in response to detecting the second set of one or more strokes, displaying, in the text entry area on the touchscreen display, a second set of one or more characters determined based on the second set of one or more strokes.
In accordance with some embodiments, an electronic device is described. In some embodiments, the electronic device includes a touchscreen display; one or more processors; and memory storing one or more programs configured to be executed by the one or more processors, the one or more programs including instructions for: concurrently displaying, on the touchscreen display: a text entry area, and a stroke input area at a first size; while displaying the stroke input area at the first size: detecting, using the touchscreen display, a first set of one or more strokes in the stroke input area; in response to detecting the first set of one or more strokes, displaying, in the text entry area on the touchscreen display, a first set of one or more characters determined based on the first set of one or more strokes; while displaying, on the touchscreen display, the first set of one or more characters, detecting a first drag gesture; in response to detecting the first drag gesture, resizing the stroke input area from the first size to a second size that is larger than the first size; while displaying the stroke input area at the second size: detecting, using the touchscreen display, a second set of one or more strokes in the stroke input area; and in response to detecting the second set of one or more strokes, displaying, in the text entry area on the touchscreen display, a second set of one or more characters determined based on the second set of one or more strokes.
In accordance with some embodiments, an electronic device is described. In some embodiments, the electronic device includes: a display device; means for concurrently displaying, on the touchscreen display: a text entry area, and a stroke input area at a first size; means, while displaying the stroke input area at the first size, for: detecting, using the touchscreen display, a first set of one or more strokes in the stroke input area; means, responsive to detecting the first set of one or more strokes, displaying, in the text entry area on the touchscreen display, for a first set of one or more characters determined based on the first set of one or more strokes; means, while displaying, on the touchscreen display, the first set of one or more characters, for detecting a first drag gesture; means, responsive to detecting the first drag gesture, for resizing the stroke input area from the first size to a second size that is larger than the first size; means, while displaying the stroke input area at the second size, for: detecting, using the touchscreen display, a second set of one or more strokes in the stroke input area; and means, responsive to detecting the second set of one or more strokes, for displaying, in the text entry area on the touchscreen display, a second set of one or more characters determined based on the second set of one or more strokes.
In accordance with some embodiments, a method is described. In some embodiments, the method is performed at an electronic device with a display device and a touch-sensitive surface. In some embodiments, the method comprises: concurrently displaying, on the display device: a text entry area, a candidate bar that includes a first candidate and a second candidate, the first candidate and the second candidate displayed in a first row, and a keyboard that includes a plurality of keys; while displaying the candidate bar, detecting, on the touch-sensitive surface, a first user input; and in response to detecting the first user input: continuing to display, on the display device, the first candidate in the first row of the candidate bar; and replacing display, on the display device, of at least a portion of the keyboard with display of a third candidate in a second row of the candidate bar, where the third candidate is different from the first candidate and the second candidate.
In accordance with some embodiments, a non-transitory computer-readable storage medium is described. In some embodiments, the non-transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a display device and a touch-sensitive surface, the one or more programs including instructions for: concurrently displaying, on the display device: a text entry area, a candidate bar that includes a first candidate and a second candidate, the first candidate and the second candidate displayed in a first row, and a keyboard that includes a plurality of keys; while displaying the candidate bar, detecting, on the touch-sensitive surface, a first user input; and in response to detecting the first user input: continuing to display, on the display device, the first candidate in the first row of the candidate bar; and replacing display, on the display device, of at least a portion of the keyboard with display of a third candidate in a second row of the candidate bar, where the third candidate is different from the first candidate and the second candidate.
In accordance with some embodiments, a transitory computer-readable storage medium is described. In some embodiments, the transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a display device and a touch-sensitive surface, the one or more programs including instructions for: concurrently displaying, on the display device: a text entry area, a candidate bar that includes a first candidate and a second candidate, the first candidate and the second candidate displayed in a first row, and a keyboard that includes a plurality of keys; while displaying the candidate bar, detecting, on the touch-sensitive surface, a first user input; and in response to detecting the first user input: continuing to display, on the display device, the first candidate in the first row of the candidate bar; and replacing display, on the display device, of at least a portion of the keyboard with display of a third candidate in a second row of the candidate bar, where the third candidate is different from the first candidate and the second candidate.
In accordance with some embodiments, an electronic device is described. In some embodiments, the electronic device includes a display device; a touch-sensitive surface; one or more processors; and memory storing one or more programs configured to be executed by the one or more processors, the one or more programs including instructions for: concurrently displaying, on the display device: a text entry area, a candidate bar that includes a first candidate and a second candidate, the first candidate and the second candidate displayed in a first row, and a keyboard that includes a plurality of keys; while displaying the candidate bar, detecting, on the touch-sensitive surface, a first user input; and in response to detecting the first user input: continuing to display, on the display device, the first candidate in the first row of the candidate bar; and replacing display, on the display device, of at least a portion of the keyboard with display of a third candidate in a second row of the candidate bar, where the third candidate is different from the first candidate and the second candidate.
In accordance with some embodiments, an electronic device is described. In some embodiments, the electronic device includes: a display device; a touch-sensitive surface; means for concurrently displaying, on the display device: a text entry area, a candidate bar that includes a first candidate and a second candidate, the first candidate and the second candidate displayed in a first row, and a keyboard that includes a plurality of keys; means, while displaying the candidate bar, for detecting, on the touch-sensitive surface, a first user input; and means, responsive to detecting the first user input, for: continuing to display, on the display device, the first candidate in the first row of the candidate bar; and replacing display, on the display device, of at least a portion of the keyboard with display of a third candidate in a second row of the candidate bar, where the third candidate is different from the first candidate and the second candidate.
In accordance with some embodiments, a method is described. In some embodiments, the method is performed at an electronic device with a touchscreen display. In some embodiments, the method comprises: receiving a request to display a first keyboard from among a plurality of selected keyboards; and in response to receiving the request to display the first keyboard: in accordance with a determination that a first set of keyboard configuration criteria are satisfied, the first set of keyboard configuration criteria including a first keyboard configuration criterion that is satisfied when the plurality of selected keyboards includes the first keyboard, a second keyboard of a first type, and a third keyboard: displaying, on the touchscreen display, the first keyboard using a first configuration, including: displaying, at a first location on the touchscreen display, a first affordance which, when activated, causes display of the third keyboard; and displaying, at a second location on the touchscreen display, a second affordance which, when activated, causes display of the second keyboard; and in accordance with a determination that a second set of keyboard configuration criteria are satisfied, the second set of keyboard configuration criteria including a second keyboard configuration criterion that is satisfied when the plurality of selected keyboards includes the first keyboard and the second keyboard of the first type without including other keyboards: displaying, on the touchscreen display, the first keyboard using a second configuration different from the first configuration, including: displaying, at the first location on the touchscreen display, a third affordance, where the third affordance, when activated, causes display of the second keyboard, without displaying, at the second location, an affordance that, when activated, causes display of the second keyboard.
In accordance with some embodiments, a non-transitory computer-readable storage medium is described. In some embodiments, the non-transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a touchscreen display, the one or more programs including instructions for: receiving a request to display a first keyboard from among a plurality of selected keyboards; and in response to receiving the request to display the first keyboard: in accordance with a determination that a first set of keyboard configuration criteria are satisfied, the first set of keyboard configuration criteria including a first keyboard configuration criterion that is satisfied when the plurality of selected keyboards includes the first keyboard, a second keyboard of a first type, and a third keyboard: displaying, on the touchscreen display, the first keyboard using a first configuration, including: displaying, at a first location on the touchscreen display, a first affordance which, when activated, causes display of the third keyboard; and displaying, at a second location on the touchscreen display, a second affordance which, when activated, causes display of the second keyboard; and in accordance with a determination that a second set of keyboard configuration criteria are satisfied, the second set of keyboard configuration criteria including a second keyboard configuration criterion that is satisfied when the plurality of selected keyboards includes the first keyboard and the second keyboard of the first type without including other keyboards: displaying, on the touchscreen display, the first keyboard using a second configuration different from the first configuration, including: displaying, at the first location on the touchscreen display, a third affordance, where the third affordance, when activated, causes display of the second keyboard, without displaying, at the second location, an affordance that, when activated, causes display of the second keyboard.
In accordance with some embodiments, a transitory computer-readable storage medium is described. In some embodiments, the transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a touchscreen display, the one or more programs including instructions for: receiving a request to display a first keyboard from among a plurality of selected keyboards; and in response to receiving the request to display the first keyboard: in accordance with a determination that a first set of keyboard configuration criteria are satisfied, the first set of keyboard configuration criteria including a first keyboard configuration criterion that is satisfied when the plurality of selected keyboards includes the first keyboard, a second keyboard of a first type, and a third keyboard: displaying, on the touchscreen display, the first keyboard using a first configuration, including: displaying, at a first location on the touchscreen display, a first affordance which, when activated, causes display of the third keyboard; and displaying, at a second location on the touchscreen display, a second affordance which, when activated, causes display of the second keyboard; and in accordance with a determination that a second set of keyboard configuration criteria are satisfied, the second set of keyboard configuration criteria including a second keyboard configuration criterion that is satisfied when the plurality of selected keyboards includes the first keyboard and the second keyboard of the first type without including other keyboards: displaying, on the touchscreen display, the first keyboard using a second configuration different from the first configuration, including: displaying, at the first location on the touchscreen display, a third affordance, where the third affordance, when activated, causes display of the second keyboard, without displaying, at the second location, an affordance that, when activated, causes display of the second keyboard.
In accordance with some embodiments, an electronic device is described. In some embodiments, the electronic device includes a touchscreen display; one or more processors; and memory storing one or more programs configured to be executed by the one or more processors, the one or more programs including instructions for: receiving a request to display a first keyboard from among a plurality of selected keyboards; and in response to receiving the request to display the first keyboard: in accordance with a determination that a first set of keyboard configuration criteria are satisfied, the first set of keyboard configuration criteria including a first keyboard configuration criterion that is satisfied when the plurality of selected keyboards includes the first keyboard, a second keyboard of a first type, and a third keyboard: displaying, on the touchscreen display, the first keyboard using a first configuration, including: displaying, at a first location on the touchscreen display, a first affordance which, when activated, causes display of the third keyboard; and displaying, at a second location on the touchscreen display, a second affordance which, when activated, causes display of the second keyboard; and in accordance with a determination that a second set of keyboard configuration criteria are satisfied, the second set of keyboard configuration criteria including a second keyboard configuration criterion that is satisfied when the plurality of selected keyboards includes the first keyboard and the second keyboard of the first type without including other keyboards: displaying, on the touchscreen display, the first keyboard using a second configuration different from the first configuration, including: displaying, at the first location on the touchscreen display, a third affordance, where the third affordance, when activated, causes display of the second keyboard, without displaying, at the second location, an affordance that, when activated, causes display of the second keyboard.
In accordance with some embodiments, an electronic device is described. In some embodiments, the electronic device includes: a display device; means for receiving a request to display a first keyboard from among a plurality of selected keyboards; and means, responsive to receiving the request to display the first keyboard, for: in accordance with a determination that a first set of keyboard configuration criteria are satisfied, the first set of keyboard configuration criteria including a first keyboard configuration criterion that is satisfied when the plurality of selected keyboards includes the first keyboard, a second keyboard of a first type, and a third keyboard: displaying, on the touchscreen display, the first keyboard using a first configuration, including: displaying, at a first location on the touchscreen display, a first affordance which, when activated, causes display of the third keyboard; and displaying, at a second location on the touchscreen display, a second affordance which, when activated, causes display of the second keyboard; and in accordance with a determination that a second set of keyboard configuration criteria are satisfied, the second set of keyboard configuration criteria including a second keyboard configuration criterion that is satisfied when the plurality of selected keyboards includes the first keyboard and the second keyboard of the first type without including other keyboards: displaying, on the touchscreen display, the first keyboard using a second configuration different from the first configuration, including: displaying, at the first location on the touchscreen display, a third affordance, where the third affordance, when activated, causes display of the second keyboard, without displaying, at the second location, an affordance that, when activated, causes display of the second keyboard.
Executable instructions for performing these functions are, optionally, included in a non-transitory computer-readable storage medium or other computer program product configured for execution by one or more processors. Executable instructions for performing these functions are, optionally, included in a transitory computer-readable storage medium or other computer program product configured for execution by one or more processors.
Thus, devices are provided with faster, more efficient methods and interfaces for managing keyboards and keyboard input, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace other methods for managing keyboard input.
For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
The following description sets forth exemplary methods, parameters, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.
There is a need for electronic devices that provide efficient methods and interfaces for managing keyboard input. For examples, users of electronic devices would benefit from handwriting input areas with variable size. For another examples, users of electronic devices would benefit from efficiently accessing predictive text when writing content. For yet another example, users of electronic devices would benefit from quickly accessing different types of keyboards (e.g., different language keyboards) when writing content. Such techniques can reduce the cognitive burden on a user who provides inputs at an electronic device, thereby enhancing productivity. Further, such techniques can reduce processor and battery power otherwise wasted on redundant user inputs.
Below,
Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first touch could be termed a second touch, and, similarly, a second touch could be termed a first touch, without departing from the scope of the various described embodiments. The first touch and the second touch are both touches, but they are not the same touch.
The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
Embodiments of electronic devices, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions. Exemplary embodiments of portable multifunction devices include, without limitation, the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, Calif. Other portable electronic devices, such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch screen displays and/or touchpads), are, optionally, used.
It should also be understood that, in some embodiments, the device is not a portable communications device, but is a desktop computer with a touch-sensitive surface (e.g., a touch screen display and/or a touchpad).
In the discussion that follows, an electronic device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the electronic device optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick.
The device typically supports a variety of applications, such as one or more of the following: a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.
The various applications that are executed on the device optionally use at least one common physical user-interface device, such as the touch-sensitive surface. One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device are, optionally, adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch-sensitive surface) of the device optionally supports the variety of applications with user interfaces that are intuitive and transparent to the user.
Attention is now directed toward embodiments of portable devices with touch-sensitive displays.
As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).
As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
It should be appreciated that device 100 is only one example of a portable multifunction device, and that device 100 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in
Memory 102 optionally includes high-speed random access memory and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 122 optionally controls access to memory 102 by other components of device 100.
Peripherals interface 118 can be used to couple input and output peripherals of the device to CPU 120 and memory 102. The one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for device 100 and to process data. In some embodiments, peripherals interface 118, CPU 120, and memory controller 122 are, optionally, implemented on a single chip, such as chip 104. In some other embodiments, they are, optionally, implemented on separate chips.
RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals. RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 108 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 108 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 108 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
Audio circuitry 110, speaker 111, and microphone 113 provide an audio interface between a user and device 100. Audio circuitry 110 receives audio data from peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 111. Speaker 111 converts the electrical signal to human-audible sound waves. Audio circuitry 110 also receives electrical signals converted by microphone 113 from sound waves. Audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to peripherals interface 118 for processing. Audio data is, optionally, retrieved from and/or transmitted to memory 102 and/or RF circuitry 108 by peripherals interface 118. In some embodiments, audio circuitry 110 also includes a headset jack (e.g., 212,
I/O subsystem 106 couples input/output peripherals on device 100, such as touch screen 112 and other input control devices 116, to peripherals interface 118. I/O subsystem 106 optionally includes display controller 156, optical sensor controller 158, depth camera controller 169, intensity sensor controller 159, haptic feedback controller 161, and one or more input controllers 160 for other input or control devices. The one or more input controllers 160 receive/send electrical signals from/to other input control devices 116. The other input control devices 116 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 160 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 208,
A quick press of the push button optionally disengages a lock of touch screen 112 or optionally begins a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 206) optionally turns power to device 100 on or off. The functionality of one or more of the buttons are, optionally, user-customizable. Touch screen 112 is used to implement virtual or soft buttons and one or more soft keyboards.
Touch-sensitive display 112 provides an input interface and an output interface between the device and a user. Display controller 156 receives and/or sends electrical signals from/to touch screen 112. Touch screen 112 displays visual output to the user. The visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output optionally corresponds to user-interface objects.
Touch screen 112 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 112 and display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on touch screen 112 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 112. In an exemplary embodiment, a point of contact between touch screen 112 and the user corresponds to a finger of the user.
Touch screen 112 optionally uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments. Touch screen 112 and display controller 156 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 112. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, Calif.
A touch-sensitive display in some embodiments of touch screen 112 is, optionally, analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 112 displays visual output from device 100, whereas touch-sensitive touchpads do not provide visual output.
A touch-sensitive display in some embodiments of touch screen 112 is described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.
Touch screen 112 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user optionally makes contact with touch screen 112 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
In some embodiments, in addition to the touch screen, device 100 optionally includes a touchpad for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is, optionally, a touch-sensitive surface that is separate from touch screen 112 or an extension of the touch-sensitive surface formed by the touch screen.
Device 100 also includes power system 162 for powering the various components. Power system 162 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
Device 100 optionally also includes one or more optical sensors 164.
Device 100 optionally also includes one or more depth camera sensors 175.
In some embodiments, a depth map (e.g., depth map image) contains information (e.g., values) that relates to the distance of objects in a scene from a viewpoint (e.g., a camera, an optical sensor, a depth camera sensor). In one embodiment of a depth map, each depth pixel defines the position in the viewpoint's Z-axis where its corresponding two-dimensional pixel is located. In some embodiments, a depth map is composed of pixels wherein each pixel is defined by a value (e.g., 0-255). For example, the “0” value represents pixels that are located at the most distant place in a “three dimensional” scene and the “255” value represents pixels that are located closest to a viewpoint (e.g., a camera, an optical sensor, a depth camera sensor) in the “three dimensional” scene. In other embodiments, a depth map represents the distance between an object in a scene and the plane of the viewpoint. In some embodiments, the depth map includes information about the relative depth of various features of an object of interest in view of the depth camera (e.g., the relative depth of eyes, nose, mouth, ears of a user's face). In some embodiments, the depth map includes information that enables the device to determine contours of the object of interest in a z direction.
Device 100 optionally also includes one or more contact intensity sensors 165.
Device 100 optionally also includes one or more proximity sensors 166.
Device 100 optionally also includes one or more tactile output generators 167.
Device 100 optionally also includes one or more accelerometers 168.
In some embodiments, the software components stored in memory 102 include operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136. Furthermore, in some embodiments, memory 102 (
Operating system 126 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
Communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by RF circuitry 108 and/or external port 124. External port 124 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.
Contact/motion module 130 optionally detects contact with touch screen 112 (in conjunction with display controller 156) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 130 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 130 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 130 and display controller 156 detect contact on a touchpad.
In some embodiments, contact/motion module 130 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 100). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).
Contact/motion module 130 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.
Graphics module 132 includes various known software components for rendering and displaying graphics on touch screen 112 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.
In some embodiments, graphics module 132 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 132 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 156.
Haptic feedback module 133 includes various software components for generating instructions used by tactile output generator(s) 167 to produce tactile outputs at one or more locations on device 100 in response to user interactions with device 100.
Text input module 134, which is, optionally, a component of graphics module 132, provides soft keyboards for entering text in various applications (e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).
GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone 138 for use in location-based dialing; to camera 143 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
Applications 136 optionally include the following modules (or sets of instructions), or a subset or superset thereof:
Examples of other applications 136 that are, optionally, stored in memory 102 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, contacts module 137 are, optionally, used to manage an address book or contact list (e.g., stored in application internal state 192 of contacts module 137 in memory 102 or memory 370), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 138, video conference module 139, e-mail 140, or IM 141; and so forth.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, telephone module 138 are optionally, used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, optical sensor 164, optical sensor controller 158, contact/motion module 130, graphics module 132, text input module 134, contacts module 137, and telephone module 138, video conference module 139 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, e-mail client module 140 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 144, e-mail client module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, the instant messaging module 141 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages optionally include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, map module 154, and music player module, workout support module 142 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.
In conjunction with touch screen 112, display controller 156, optical sensor(s) 164, optical sensor controller 158, contact/motion module 130, graphics module 132, and image management module 144, camera module 143 includes executable instructions to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, or delete a still image or video from memory 102.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and camera module 143, image management module 144 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, browser module 147 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, e-mail client module 140, and browser module 147, calendar module 148 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, widget modules 149 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user-created widget 149-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, the widget creator module 150 are, optionally, used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, search module 151 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, and browser module 147, video and music player module 152 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 112 or on an external, connected display via external port 124). In some embodiments, device 100 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, notes module 153 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, and browser module 147, map module 154 are, optionally, used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, text input module 134, e-mail client module 140, and browser module 147, online video module 155 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 124), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 141, rather than e-mail client module 140, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.
Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are, optionally, combined or otherwise rearranged in various embodiments. For example, video player module is, optionally, combined with music player module into a single module (e.g., video and music player module 152,
In some embodiments, device 100 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 100, the number of physical input control devices (such as push buttons, dials, and the like) on device 100 is, optionally, reduced.
The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 100 to a main, home, or root menu from any user interface that is displayed on device 100. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.
Event sorter 170 receives event information and determines the application 136-1 and application view 191 of application 136-1 to which to deliver the event information. Event sorter 170 includes event monitor 171 and event dispatcher module 174. In some embodiments, application 136-1 includes application internal state 192, which indicates the current application view(s) displayed on touch-sensitive display 112 when the application is active or executing. In some embodiments, device/global internal state 157 is used by event sorter 170 to determine which application(s) is (are) currently active, and application internal state 192 is used by event sorter 170 to determine application views 191 to which to deliver event information.
In some embodiments, application internal state 192 includes additional information, such as one or more of: resume information to be used when application 136-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 136-1, a state queue for enabling the user to go back to a prior state or view of application 136-1, and a redo/undo queue of previous actions taken by the user.
Event monitor 171 receives event information from peripherals interface 118. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 112, as part of a multi-touch gesture). Peripherals interface 118 transmits information it receives from I/O subsystem 106 or a sensor, such as proximity sensor 166, accelerometer(s) 168, and/or microphone 113 (through audio circuitry 110). Information that peripherals interface 118 receives from I/O subsystem 106 includes information from touch-sensitive display 112 or a touch-sensitive surface.
In some embodiments, event monitor 171 sends requests to the peripherals interface 118 at predetermined intervals. In response, peripherals interface 118 transmits event information. In other embodiments, peripherals interface 118 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
In some embodiments, event sorter 170 also includes a hit view determination module 172 and/or an active event recognizer determination module 173.
Hit view determination module 172 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 112 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected optionally correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is, optionally, called the hit view, and the set of events that are recognized as proper inputs are, optionally, determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
Hit view determination module 172 receives information related to sub-events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 172 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 172, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
Active event recognizer determination module 173 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 173 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 173 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
Event dispatcher module 174 dispatches the event information to an event recognizer (e.g., event recognizer 180). In embodiments including active event recognizer determination module 173, event dispatcher module 174 delivers the event information to an event recognizer determined by active event recognizer determination module 173. In some embodiments, event dispatcher module 174 stores in an event queue the event information, which is retrieved by a respective event receiver 182.
In some embodiments, operating system 126 includes event sorter 170. Alternatively, application 136-1 includes event sorter 170. In yet other embodiments, event sorter 170 is a stand-alone module, or a part of another module stored in memory 102, such as contact/motion module 130.
In some embodiments, application 136-1 includes a plurality of event handlers 190 and one or more application views 191, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 191 of the application 136-1 includes one or more event recognizers 180. Typically, a respective application view 191 includes a plurality of event recognizers 180. In other embodiments, one or more of event recognizers 180 are part of a separate module, such as a user interface kit or a higher level object from which application 136-1 inherits methods and other properties. In some embodiments, a respective event handler 190 includes one or more of: data updater 176, object updater 177, GUI updater 178, and/or event data 179 received from event sorter 170. Event handler 190 optionally utilizes or calls data updater 176, object updater 177, or GUI updater 178 to update the application internal state 192. Alternatively, one or more of the application views 191 include one or more respective event handlers 190. Also, in some embodiments, one or more of data updater 176, object updater 177, and GUI updater 178 are included in a respective application view 191.
A respective event recognizer 180 receives event information (e.g., event data 179) from event sorter 170 and identifies an event from the event information. Event recognizer 180 includes event receiver 182 and event comparator 184. In some embodiments, event recognizer 180 also includes at least a subset of: metadata 183, and event delivery instructions 188 (which optionally include sub-event delivery instructions).
Event receiver 182 receives event information from event sorter 170. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information optionally also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.
Event comparator 184 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub-event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 184 includes event definitions 186. Event definitions 186 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (187-1), event 2 (187-2), and others. In some embodiments, sub-events in an event (187) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (187-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (187-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 112, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 190.
In some embodiments, event definition 187 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 184 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 112, when a touch is detected on touch-sensitive display 112, event comparator 184 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 190, the event comparator uses the result of the hit test to determine which event handler 190 should be activated. For example, event comparator 184 selects an event handler associated with the sub-event and the object triggering the hit test.
In some embodiments, the definition for a respective event (187) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
When a respective event recognizer 180 determines that the series of sub-events do not match any of the events in event definitions 186, the respective event recognizer 180 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.
In some embodiments, a respective event recognizer 180 includes metadata 183 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
In some embodiments, a respective event recognizer 180 activates event handler 190 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 180 delivers event information associated with the event to event handler 190. Activating an event handler 190 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 180 throws a flag associated with the recognized event, and event handler 190 associated with the flag catches the flag and performs a predefined process.
In some embodiments, event delivery instructions 188 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
In some embodiments, data updater 176 creates and updates data used in application 136-1. For example, data updater 176 updates the telephone number used in contacts module 137, or stores a video file used in video player module. In some embodiments, object updater 177 creates and updates objects used in application 136-1. For example, object updater 177 creates a new user-interface object or updates the position of a user-interface object. GUI updater 178 updates the GUI. For example, GUI updater 178 prepares display information and sends it to graphics module 132 for display on a touch-sensitive display.
In some embodiments, event handler(s) 190 includes or has access to data updater 176, object updater 177, and GUI updater 178. In some embodiments, data updater 176, object updater 177, and GUI updater 178 are included in a single module of a respective application 136-1 or application view 191. In other embodiments, they are included in two or more software modules.
It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 100 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.
Device 100 optionally also include one or more physical buttons, such as “home” or menu button 204. As described previously, menu button 204 is, optionally, used to navigate to any application 136 in a set of applications that are, optionally, executed on device 100. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 112.
In some embodiments, device 100 includes touch screen 112, menu button 204, push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, subscriber identity module (SIM) card slot 210, headset jack 212, and docking/charging external port 124. Push button 206 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 100 also accepts verbal input for activation or deactivation of some functions through microphone 113. Device 100 also, optionally, includes one or more contact intensity sensors 165 for detecting intensity of contacts on touch screen 112 and/or one or more tactile output generators 167 for generating tactile outputs for a user of device 100.
Each of the above-identified elements in
Attention is now directed towards embodiments of user interfaces that are, optionally, implemented on, for example, portable multifunction device 100.
It should be noted that the icon labels illustrated in
Although some of the examples that follow will be given with reference to inputs on touch screen display 112 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in
Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.
Exemplary techniques for detecting and processing touch intensity are found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, published as WIPO Publication No. WO/2013/169849, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, published as WIPO Publication No. WO/2014/105276, each of which is hereby incorporated by reference in their entirety.
In some embodiments, device 500 has one or more input mechanisms 506 and 508. Input mechanisms 506 and 508, if included, can be physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 500 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 500 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 500 to be worn by a user.
Input mechanism 508 is, optionally, a microphone, in some examples. Personal electronic device 500 optionally includes various sensors, such as GPS sensor 532, accelerometer 534, directional sensor 540 (e.g., compass), gyroscope 536, motion sensor 538, and/or a combination thereof, all of which can be operatively connected to I/O section 514.
Memory 518 of personal electronic device 500 can include one or more non-transitory computer-readable storage mediums, for storing computer-executable instructions, which, when executed by one or more computer processors 516, for example, can cause the computer processors to perform the techniques described below, including processes 700, 900, and 1100. A computer-readable storage medium can be any medium that can tangibly contain or store computer-executable instructions for use by or in connection with the instruction execution system, apparatus, or device. In some examples, the storage medium is a transitory computer-readable storage medium. In some examples, the storage medium is a non-transitory computer-readable storage medium. The non-transitory computer-readable storage medium can include, but is not limited to, magnetic, optical, and/or semiconductor storages. Examples of such storage include magnetic disks, optical discs based on CD, DVD, or Blu-ray technologies, as well as persistent solid-state memory such as flash, solid-state drives, and the like. Personal electronic device 500 is not limited to the components and configuration of
As used here, the term “affordance” refers to a user-interactive graphical user interface object that is, optionally, displayed on the display screen of devices 100, 300, and/or 500 (
As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 355 in
As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally, based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds optionally includes a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation), rather than being used to determine whether to perform a first operation or a second operation.
In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface optionally receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location is, optionally, based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm is, optionally, applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.
The intensity of a contact on the touch-sensitive surface is, optionally, characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.
An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.
In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).
In some embodiments, the display of representations 578A-578C includes an animation. For example, representation 578A is initially displayed in proximity of application icon 572B, as shown in
In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
As used herein, an “installed application” refers to a software application that has been downloaded onto an electronic device (e.g., devices 100, 300, and/or 500) and is ready to be launched (e.g., become opened) on the device. In some embodiments, a downloaded application becomes an installed application by way of an installation program that extracts program portions from a downloaded package and integrates the extracted portions with the operating system of the computer system.
As used herein, the terms “open application” or “executing application” refer to a software application with retained state information (e.g., as part of device/global internal state 157 and/or application internal state 192). An open or executing application is, optionally, any one of the following types of applications:
As used herein, the term “closed application” refers to software applications without retained state information (e.g., state information for closed applications is not stored in a memory of the device). Accordingly, closing an application includes stopping and/or removing application processes for the application and removing state information for the application from the memory of the device. Generally, opening a second application while in a first application does not close the first application. When the second application is displayed and the first application ceases to be displayed, the first application becomes a background application.
Attention is now directed towards embodiments of user interfaces (“UI”) and associated processes that are implemented on an electronic device, such as portable multifunction device 100, device 300, or device 500.
At
At
At
At
As illustrated in
In some embodiments, the threshold amount of time (e.g., for auto-committing) is determined using measured periods of time between previous sets of strokes. For example, the device determines a first duration between lift-off (from the touchscreen display) of a first contact for a first stroke and touch-down (on the touchscreen display) of a second contact for a second stroke. The device subsequently determines a second duration between lift-off (from the touchscreen display) of the second contact for the second stroke and touch-down (on the touchscreen display) of a third contact for a third stroke. In some embodiments, the threshold amount of time is based on the first duration and the second duration. In some embodiments, the threshold amount of time is based on the average of the first duration and the second duration. In some embodiments, the threshold amount of time is variable and changes as the user writes more quickly (e.g., threshold amount of time reduces because the average duration between lift-off and touch-down is decreased) or as the user writes more slowly (e.g., threshold amount of time increases because the average duration between lift-off and touch-down is increased).
At
In accordance with a determination that the start of the input (e.g., 650b) is received at a location that corresponds to grabber 604e and that the input includes upward movement (e.g., toward text entry area 602, away from keys area 604b), the device begins to expand stroke input area 604a. For example, input 650b (illustrated in
At
Device 600 detects lift-off of input 650b from the touchscreen display and, in response to detecting lift-off of input 650b and in accordance with a determination that input 650b has expanded stroke input area 604a to a size bigger than a threshold size, device 600 displays stroke input area 604a (e.g., animates further expansion of stroke input area 604a, snaps to) at the large size, as illustrated at
At
As illustrated in
At
At
As illustrated in
Returning to
At
As illustrated in
At
At
Device 600 detects lift-off of gesture 650k from the touchscreen display and, in response to detecting lift-off of gesture 650k and in accordance with a determination that gesture 650k has reduced stroke input area 604a to a size smaller than a second threshold size, device 600 displays stroke input area 604a (e.g., animates further reduction of stroke input area 604a, snaps to) at the small size, as illustrated at
At
As illustrated in
As described below, method 700 provides an intuitive method for receiving handwriting input. The method reduces the cognitive burden on a user for receiving handwriting input, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to access media controls faster and more efficiently conserves power and increases the time between battery charges.
The electronic device (e.g., 600) concurrently displays (702), on the touchscreen display a text entry area (704) (e.g., 602 of
While displaying the stroke input area at the first size, the electronic device detects (708), using the touchscreen display, a first set of one or more strokes (e.g., 650a, handwritten strokes which include movement over time on the touch-sensitive surface) in the stroke input area.
In response to detecting the first set of one or more strokes, the electronic device displays (710), in the text entry area on the touchscreen display, a first set of one or more characters (e.g., 602a, alphanumeric characters, emoji characters, Chinese characters, Japanese characters) determined based on the first set of one or more strokes (e.g., using handwriting recognition).
In some embodiments, as a part of displaying, in the text entry area on the touchscreen display, the first set of one or more characters (e.g., 602a) in response to detecting the first set of one or more strokes, the electronic device displays, in the text entry area on the touchscreen display, the first set of one or more characters a variable period of time after detecting (e.g., detecting an end of, detecting a beginning of) the first set of one or more strokes in the stroke input area. In some embodiments, the variable period of time is based on (e.g., an average of, a delay time plus an average of) a plurality of periods of time determined based on (calculated, measured) previously detected ends of strokes and beginnings of subsequent strokes. In some embodiments, as the device detects the user is providing strokes at a faster rate, the device reduces the duration of the variable period of time to accommodate the user's faster writing. Thus, a first period of time between the end of an initial stroke and the beginning of the next stroke is added to the plurality of periods of time for determining the variable period of time before future detected handwriting is committed to the text entry area.
While displaying, on the touchscreen display, the first set of one or more characters, the electronic device detects (712) a first drag gesture (e.g., 650b, a drag up gesture, a drag up gesture starting on a handle object corresponding to the stroke input area).
In some embodiments, in response to detecting the first drag gesture (e.g., 650b) while displaying the first set of one or more characters, the electronic device changes a display location (e.g., scrolling, in the same direction as the direction of the first gesture, scrolling up the same amount as the increase in height of the stroke input area), on the touchscreen display, of the first set of one or more characters (e.g., 602a moving up in
In some embodiments, in response to detecting the first set of one or more strokes (and optionally prior to displaying, in the text entry area on the touchscreen display, the first set of one or more characters), the electronic device displays, on the touchscreen display, a first set of one or more visual strokes (e.g., 610a) in the stroke input area (e.g., 604a) that correspond to the first set of one or more strokes (e.g., at the same location that the strokes were detected) and ceases to display, after a predetermined period of time, the first set of one or more visual strokes. In some embodiments, the first set of one or more characters are displayed in the text entry area in conjunction with ceasing to display the first set of one or more visual strokes. In some embodiments, ceasing to display the first set of one or more visual strokes includes fading out (e.g., over a fade out duration, such as 1 second) the first set of one or more visual strokes.
Displaying visual strokes in the stroke input area provides the user with feedback about the handwritten characters that the device is receiving. Providing improved visual feedback to the user enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In response to detecting the first drag gesture, the electronic device resizes (714) the stroke input area from the first size (e.g., 604a of
Resizing the stroke input area to be larger provides the user with more display space for providing handwriting strokes, thereby reducing input errors. Reducing input errors enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, the electronic device (e.g., 600) displays, concurrently with the stroke input area at a first size (e.g., a reduced stroke input area size) on the touchscreen display, a handle object (e.g., 604e, that is positioned at an edge of the stroke input area, that is positioned at the top edge of the stroke input area). In some embodiments, in response to detecting the first drag gesture, the electronic device resizes the stroke input area from the first size (e.g., a reduced stroke input area size) to the second size (e.g., an enlarged stroke input area size) is in accordance with a determination that the first drag gesture starts at a location corresponding to the handle object (and optionally, in accordance with a determination that a magnitude of the first drag gesture exceeds a threshold magnitude). In some embodiments, in accordance with a determination that the first drag gesture does not start at a location corresponding to the handle object (e.g., stroke input 650c of
Resizing the stroke input area provides the user with the flexibility to transition between more display space for the text entry area and more display space for the stroke input area, thereby providing more space as needed to reduce input errors. Reducing input errors enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
While displaying the stroke input area at the second size, the electronic device detects (716), using the touchscreen display, a second set of one or more strokes (e.g., 650c, handwritten strokes which include movement over time on the touch-sensitive surface) in the stroke input area.
In some embodiments, while displaying the stroke input area at the second size (e.g., and while the device is in the second mode), the electronic device detects a second drag gesture (e.g., 650k, that is in the opposite direction of the first drag gesture, that starts at a location corresponding to a displayed handle object). In some embodiments, in response to detecting the second drag gesture (e.g., 650k), the electronic device resizes the stroke input area from the second size (e.g., an enlarged stroke input area size) to the first size (e.g., a reduced stroke input area size) that is smaller than the second size (and, optionally, increasing the size of the text entry area from the reduced text entry size to the enlarged text entry size that is larger than the reduced text entry size). In some embodiments, while displaying the stroke input area at the second size, the device begins to detect at least a portion of the second drag gesture (including a contact on the touchscreen in a second direction that starts at the handle object) and, while detecting the second drag gesture, the device reduces the stroke input area in the second direction to a second intermediate size (bigger than the first size, smaller than the second size, size being based on a magnitude of the second drag gesture) and maintains the intermediate size while the device continues to detect the contact on the touchscreen. In response to detecting liftoff of the contact of the second drag gesture, in accordance with a determination that a magnitude (e.g., distance of travel) of the second drag gesture (e.g., distance of travel downward of the second drag gesture) in the second direction exceeds a second threshold magnitude, resizing the stroke input area from the second intermediate size to the first size, and in accordance with a determination that the magnitude (e.g., distance of travel) of the second gesture (e.g., distance of travel downward of the second drag gesture) in the second direction does not exceed the second threshold magnitude, resizing the stroke input area from the second intermediate size to the second size. Thus, the device determines if the second drag gesture is sufficient to resize the stroke input area to the first size. If it is not sufficient, the device resizes the stroke input area back to the second size.
Resizing the stroke input area provides the user with the flexibility to transition between more display space for the text entry area and more display space for the stroke input area, thereby providing more space as needed to reduce input errors. Reducing input errors enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In response to detecting the second set of one or more strokes, the electronic device displays (718), in the text entry area on the touchscreen display, a second set of one or more characters (e.g., 602b, alphanumeric characters, emoji characters, Japanese characters) determined based on the second set of one or more strokes (e.g., using handwriting recognition).
In some embodiments, while displaying the stroke input area at the second size (and optionally displaying the text entry area at the reduced text entry size), the electronic device detects (720) a user input for keyboard display (e.g., 604c of
In some embodiments, while the electronic device is in a first mode (e.g., a mode corresponding to a portrait orientation of the electronic device, as in
Note that details of the processes described above with respect to method 700 (e.g.,
At
At
At
At
At
At
At
At
Returning to
At
At
As illustrated in
Returning to
At
At
As described below, method 900 provides an intuitive way for accessing predictive text candidates. The method reduces the cognitive burden on a user for accessing predictive text candidates, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to access media controls faster and more efficiently conserves power and increases the time between battery charges.
The electronic device (e.g., 600) concurrently displays (902), on the display device: a text entry area (904) (e.g., 802), a candidate bar (e.g., 810) that includes a first candidate (e.g., 810a, a first word, a first character, a first Chinese character, a first kanji character) and a second candidate (e.g., 810f, a second word, a second character, a second Chinese character, a second kanji character, different from the first candidate), the first candidate and the second candidate displayed in a first row (906) (e.g., 810, a first row of the candidate bar; a top-most row of the plurality of rows, a bottom-most row of a plurality of rows), and a keyboard that includes a plurality of keys (908). In some embodiments, the candidates (e.g., 810a-810f) are determined based on text previously input into the text entry area (e.g., predictive text, are suggestions for inserting new text into the text entry area, are suggestions for completing words already partially entered in the text entry area). In some embodiments, the first candidate (e.g., 810a) and the second candidate (e.g., 810f) are displayed without displaying (e.g., anywhere on the display device) a third candidate (e.g., a candidate from one of rows 814-818, a third word, a third character, a third Chinese character, a third kanji character). In some embodiments, when the device detects activation of a key of the keyboard, the device inserts the corresponding character into the text entry area and updates (e.g., replaces) the plurality of candidates based on the inserted character.
While displaying the candidate bar (e.g., 810 at
In some embodiments, the electronic device displays, on the display device concurrently with the candidate bar, a switching affordance (e.g., 806). In some embodiments, as a part of detecting the first user input, the electronic device detects activation of the switching affordance (e.g., 806, detecting a tap input at a location that corresponds to the switching affordance). In some embodiments, activating the switching affordance expands the candidate bar (e.g., to display 2, 3, or more additional rows) to replace (e.g., fully replace) the keyboard. In some embodiments, activating the switching affordance (e.g., 806) changes the visual appearance (e.g., from a downward facing chevron to an upward facing chevron) of the switching affordance to indicate the state of the candidate bar (expanded or not expanded).
In some embodiments, as a part of detecting the first user input, the electronic device detects a swipe gesture (e.g., 850a, 850c, a swipe down gesture) starting at a location that corresponds to the candidate bar. In some embodiments, swiping down on the candidate bar expands the candidate bar to replace the keyboard. In some embodiments, the additional rows (e.g., 812-818) of the candidate bar are revealed sequentially in conjunction with the movement of the swipe down gesture (e.g., faster swipe reveals rows faster, slower swipe reveals rows slower, shorter swipe reveals less rows, tracking the location of the contact of the swipe gesture). In some embodiments, the candidates of each row (e.g., the second row, any additional rows) are revealed progressively as the gesture is detected, starting from the top of the row and progressing to the bottom of that same row. In some embodiments, the rows (e.g., 812-818) are revealed progressively as the gesture is detected, such as started from the second row, proceeding to the third row, and continuing to additional rows.
In response to (912) detecting the first user input (e.g., 850a), the electronic device continues (914) to display, on the display device, the first candidate (e.g., 810a) in the first row of the candidate bar (and optionally maintaining the location of the first row on the display device).
In response to (912) detecting the first user input (e.g., 850a), the electronic device replaces (916) display, on the display device, of at least a portion of the keyboard (e.g., a top row, several rows, all rows of keyboard keys 804) with display of a third candidate in a second row (e.g., 812) of the candidate bar (and optionally additional rows of candidates, without displaying a first sorting option), whereby the third candidate is different from the first candidate and the second candidate. In some embodiments, in response to detecting the first user input (e.g., 850a), the candidate bar expands to show additional rows with additional candidates (e.g., as shown in
Expanding the candidate bar provides the user with more candidate options to select from, thereby reducing the need for the user to enter numerous characters to arrive at the desired text. Reducing the number of inputs needed to perform an operation enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, the electronic device, as part of replacing display, on the display device, of at least the portion of the keyboard (e.g., a top row, several rows, all rows of keyboard keys) with display of a third candidate in the second row of the candidate bar, displays a top portion of one or more characters (e.g., all characters) of the third candidate prior to displaying a bottom portion of the one or more characters of the third candidate (e.g., row 812 as shown in
In some embodiments, in response to (912) detecting the first user input, the electronic device ceases (918) to display (e.g., by sliding to the right and out of view), in the first row of the candidate bar on the display device, the second candidate (e.g., 810f shifting off in
By removing the second candidate from the first row, the device spreads out the remaining candidates such that the user is less likely to make an error selecting a desired candidate, thereby reducing the number of inputs need to correctly pick the desired candidate. Reducing the number of inputs needed to perform an operation enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, in response to (912) detecting the first user input, the electronic device replaces (922) display, on the display device, of a remaining portion of the keyboard (e.g., the rest of keyboard 804, as shown in
In some embodiments, while displaying a plurality (e.g., 2, 3, 4, or more) of rows of the candidate bar (e.g., while the candidate bar is expanded, after detecting liftoff of the first user input from the touch-sensitive surface, while candidate bar has fully replaced the keyboard), the electronic device detects a second swipe gesture (e.g., 850d, a swipe up gesture, starting from a third row and moving towards the first row of the candidate bar) starting at a location on the plurality of rows of the candidate bar. In some embodiments, in response to detecting the second swipe gesture, the electronic device redisplays the at least a portion of the keyboard (and optionally, scroll additional rows of candidates onto the display while scrolling rows of candidates off of the display). In some embodiments, when the first user input is a swipe down gesture to reveal the expanded candidate bar (including the second row) and the device further detects a swipe up gesture (without detecting liftoff of the first user input that is the swipe down), the device contracts the candidate bar back to a single row (ceases to display the second row).
In some embodiments, while displaying a plurality (e.g., 2, 3, 4, or more) of rows of the candidate bar (e.g., while the candidate bar is expanded, after detecting liftoff of the first user input from the touch-sensitive surface, while candidate bar has full replaced the keyboard, without displaying a first sorting option), the electronic device detects a third swipe gesture (e.g., a swipe down gesture (e.g., 850e), starting from the second row and moving towards the third row of the candidate bar) starting at a location on the plurality of rows of the candidate bar. In some embodiments, in response to detecting the third swipe gesture, the electronic device scrolls down, on the display device, the first row (and optionally all other rows) of the candidate bar and displays (e.g., in a row above the first row, adjacent to the first row) a first sorting option (e.g., 830a) for the candidates of the candidate bar (and optionally a second sorting option for the candidates of the candidate bar). In some embodiments, activation of the first sorting option changes the display order of the candidates of the candidate bar using a first sorting technique.
In some embodiments, while displaying the keyboard that includes the plurality of keys, the electronic device detects a user input request for stroke input display (e.g., 850g, a request to display a stroke input area or a handwriting input area). In some embodiments, the electronic device, in response to detecting the user input request for stroke input display, replaces display of the keyboard with display of a stroke input area (e.g., 832). In some embodiments, the electronic device displays, on the display device concurrently with the stroke input area, a second candidate bar that includes a fourth candidate (e.g., a fourth word, a fourth character, a fourth Chinese character, a fourth kanji character) and a fifth candidate (e.g., a fifth word, a fifth character, a fifth Chinese character, a fifth kanji character, different from the fourth candidate), the fourth candidate and the fifth candidate displayed in a first row of the second candidate bar. In some embodiments, while displaying the second candidate bar that includes the fourth candidate and the fifth candidate, the electronic device detects a swipe down gesture (e.g., 850h) on the second candidate bar. In some embodiment, in response to detecting the swipe down gesture, the electronic device forgoes displaying additional rows for the second candidate bar (and forgoing displaying additional candidates in the second candidate bar).
In some embodiments, while the candidate bar is expanded, device 600 detects activation of a displayed candidate and, in response, inserts the activated candidate and ceases to display the expanded candidate bar (e.g., revealing the previously replaced keyboard with a single row of new candidates).
Note that details of the processes described above with respect to method 900 (e.g.,
Throughout
At
At
At
Microphone key 1001, when activated, initiates a dictation mode whereby device 600 receives audio and transcribes the received audio into text, which is displayed in a field (e.g., input field 1002b). Switcher key 1004, when activate, replaces the current keyboard (e.g., English keyboard 1010 in
At
At
At
Chinese simplified handwriting keyboard 1012 includes multiple planes, including a handwriting plane (as shown in
At
At
At
At
In
At
At
In the example where emoji key 1006 is activated at
In another example where emoji key 1006 is activated at
In another example where emoji key 1006 is activated at
In some embodiments, when device 600 detects that multiple keyboards are active (e.g., first scenario, second scenario), the functionality of switcher key 1004 (e.g., while displayed for keyboards 1010, 1012, 1014, 1016) changes (e.g., while a respective keyboard is displayed) based on whether a criterion of a set of switching criteria is satisfied, thereby giving switcher key 1004 adaptive behavior. The set of switching criteria includes a first switching criterion that is satisfied when a currently displayed keyboard has been displayed for more than a predetermined (non-zero) amount of time (e.g., 2.5 seconds). The set of switching criteria includes a second switching criterion that is satisfied when the electronic device has detected activation of a key of the currently keyboard that causes entry of a character into a text entry area. In some embodiments, when either the first switching criterion or the second switching criterion (or both) is satisfied, activation of the switcher key 1004 causes device 600 to display the keyboard displayed prior to displaying the current keyboard (e.g., takes the user back to the last keyboard they were viewing). In some embodiments, when neither the first switching criterion nor the second switching criterion is satisfied, activation of the switcher key 1004 causes device 600 to display the next keyboard in the ordered set (e.g., takes the user to the next keyboard). Thus, when a user quickly taps the switcher key 1004 multiple times, the device cycles through different keyboards. When a user taps the switcher key 1004, inserts a character using the newly displayed keyboard and then taps switcher key 1004 again, device 600 returns the user to the keyboard they were previously using. When a user taps the switcher key 1004 and waits at least the predetermined amount of time before tapping switcher key 1004 again, device 600 returns the user to the keyboard they were previously using. In some embodiments, when device 600 switches to displaying a keyboard, the name of the currently displayed keyboard is displayed with (e.g., in) the keyboard (e.g., in spacebar key 1010b) for the predetermined amount of time, thereby indicating to the user whether the predetermined amount of time has lapsed and whether activation of switcher key 1004 will cause the next keyboard or the previously-displayed keyboard to be displayed.
In some embodiments, switcher key 1004 of keyboards 1010, 1012, 1014, and 1016 include this adaptive behavior.
At
At
At
At
At
At
At
At
At
At
At
As described below, method 1100 provides an intuitive way for accessing keyboards. The method reduces the cognitive burden on a user for accessing keyboards, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to access media controls faster and more efficiently conserves power and increases the time between battery charges.
The electronic device (e.g., 600) receives (1102) a request to display a first keyboard (e.g., an English QWERTY keyboard, including English alphabetical keys, a keyboard not of the first type) from among a plurality of selected keyboards. In some embodiments, the plurality of selected keyboards are keyboards that are enabled for alternative display (e.g., via the selection of one or more keyboard switching affordances). In some embodiments, the device receives user input to add and/or remove keyboards from the plurality of selected keyboards, such as through a keyboard configuration user interface.
In response to (1104) receiving the request to display the first keyboard, the electronic device, in accordance with a determination (1106) that a first set of keyboard configuration criteria are satisfied, the first set of keyboard configuration criteria including a first keyboard configuration criterion that is satisfied (e.g., scenario 1 of
In some embodiments, in response to receiving the request to display the first keyboard, the electronic device, in accordance with a determination that a third set of keyboard configuration criteria are satisfied (e.g., scenario 3 of
As a part of displaying, on the touchscreen display, the first keyboard using a first configuration, the electronic device displays (1112), at a first location (e.g., 1004a) on the touchscreen display, a first affordance (e.g., 1004, same as the third affordance, different from the third affordance) which, when activated (e.g., via a light press), causes display of the third keyboard (e.g., when activated, cycles to a next keyboard of the plurality of selected keyboards other than the second keyboard).
In some embodiments, while displaying, on the touchscreen display, the first keyboard using the first configuration, the electronic device detects, using the touchscreen display, a first input (e.g., a single-contact input), the first input having a first characteristic intensity. In some embodiments, in response to detecting the first input at the first location (e.g., 1004a), the electronic device, in accordance a determination that the first input was detected at the first location and that the characteristic intensity of the first input exceeds a first intensity threshold, displays a keyboard menu that includes the plurality of selected keyboards; In some embodiments, activation (e.g., light press) of a respective option of the keyboard menu cause the current keyboard to be replaced with the respective selected keyboard. In some embodiments, in response to detecting the first input at the first location, the electronic device, in accordance with a determination that the first input was detected at the first location and that the characteristic intensity of the first input does not exceed the first intensity threshold, the electronic device replaces display of the first keyboard with display of the third keyboard (e.g., display the next keyboard of the plurality of selected keyboards, while skipping over the second keyboard). In some embodiments, in accordance a determination that the first input was detected at the second location and that the characteristic intensity of the first input exceeds the first intensity threshold, the electronic device forgoes displaying the keyboard menu. In some embodiments, in accordance with a determination that the first input was detected at the second location and that the characteristic intensity of the first input does not exceed the first intensity threshold, the electronic device replaces display of the first keyboard with display of the second keyboard (e.g., display the second keyboard, regardless of what is the next keyboard of the plurality of selected keyboards, without determining which keyboard is the next keyboard of the plurality of selected keyboards).
As a part of displaying, on the touchscreen display, the first keyboard using a first configuration, the electronic device displays (1114), at a second location (e.g., 1006a of
In some embodiments, the first keyboard (e.g., 1010) and the third keyboard (e.g., 1012) (but not the second keyboard (e.g., 1016)) are in an ordered set. In some embodiments, as a part of displaying, in accordance with a determination that the first set of keyboard configuration criteria are satisfied, a respective keyboard (e.g., each keyboard) of the plurality of selected keyboards (e.g., the first keyboard, the second keyboard, the third keyboard), the electronic device displays, at the first location on the touch-sensitive display, the first affordance, which, when activated (e.g., via a light press, when no criterion of the set of switching criteria is satisfied) replaces display of a currently displayed keyboard with display of a next keyboard in the ordered set (e.g., display the next keyboard of the ordered set of keyboards, which doesn't include the second keyboard). In some embodiments, the first set of keyboard configuration criteria include a criterion that is satisfied when the respective keyboard has been displayed for a threshold duration of time before the device detects activation of the first affordance at the first location.
In response to (1104) receiving the request to display the first keyboard, the electronic device, in accordance with a determination (1108) that a second set of keyboard configuration criteria are satisfied (e.g., and not the first set of keyboard configuration criteria, scenario 2 of
As a part of displaying, on the touchscreen display, the first keyboard using a second configuration different from the first configuration, the electronic device displays (1122), at the first location on the touchscreen display, a third affordance (e.g., an emoji affordance, same as the second affordance, different from the second affordance). In some embodiments the third affordance, when activated (e.g., via a light press), causes display of the second keyboard (e.g., the emoji keyboard), without displaying, at the second location, an affordance that, when activated, causes display of the second keyboard (or any other keyboard).
In some embodiments, the first keyboard and the third keyboard (but not the second keyboard) are in an ordered set. In some embodiments, the electronic device detects activation (e.g., via a light press) of (e.g., tap on the touch-sensitive surface at a location corresponding to) the second affordance (e.g., an emoji affordance) of the first keyboard in the first configuration. In some embodiments, the second affordance is being displayed at the second location on the touchscreen display. In some embodiments, in response to detecting activation of (e.g., tap on the touch-sensitive surface at a location corresponding to) the second affordance (e.g., an emoji affordance) of the first keyboard in the first configuration (and while the first set of keyboard configuration criteria are satisfied), the electronic device replaces display of the first keyboard in the first configuration with display of the second keyboard. In some embodiments, display of the second keyboard includes: the electronic device displaying, at the first location on the touchscreen display, the first affordance which, when activated (e.g., via a light press), cycles to a next keyboard of the ordered set; and displaying, at a third location on the touchscreen display, a switcher affordance (e.g., same as the first affordance) which, when activated (e.g., via a light press), causes the second keyboard to be replaced with a most recently previously displayed keyboard (e.g., the device determines which keyboard (that is not currently displayed) was most recently displayed and displays that keyboard when the key is activated, the first keyboard in the first configuration). In some embodiments, the third location is different from the first location and the second location.
In some embodiments, the plurality of selected keyboards include a fourth keyboard. In some embodiments, the first keyboard, the third keyboard, and the fourth keyboard (but not the second keyboard) are in an ordered set (e.g., the ordered set being, for example: first keyboard, third keyboard, and then fourth keyboard, then cycling again to the first keyboard, etc.). In some embodiments, while the first set of keyboard configuration criteria are satisfied, the electronic device detects user input (e.g., on the first affordance of the third keyboard). In some embodiments, while the first set of keyboard configuration criteria are satisfied, in response to detecting the user input, and in accordance with a determination that the fourth keyboard is next in the ordered set of the plurality of keyboards, the electronic device displays, at a first display time on the touchscreen display, the fourth keyboard of the plurality of keyboards that includes display of the first affordance at the first location. In some embodiments, while the first set of keyboard configuration criteria are satisfied and while displaying the fourth keyboard of the plurality of keyboards (e.g., before or after having detected activation of any character keys (e.g., keys that cause input into a text entry area) of the initial keyboard), the electronic device detects activation of the first affordance that is displayed at the first location on the touchscreen display. In some embodiments, while the first set of keyboard configuration criteria are satisfied and in response to detecting activation of the first affordance, the electronic device, in accordance with a determination that at least a criterion of a set of switching criteria is satisfied, replaces display of the fourth keyboard with display of the third keyboard. In some embodiments, the set of switching criteria includes a first switching criterion that is satisfied when more than a predetermined (non-zero) amount of time (e.g., 2.5 seconds) has elapsed from the first display time, and a second switching criterion that is satisfied when the electronic device has detected, since the first display time, activation of a key of the fourth keyboard that causes entry of a character into a text entry area. In some embodiments, while the first set of keyboard configuration criteria are satisfied and in response to detecting activation of the first affordance, the electronic device, in accordance with a determination that no criterion of the set of switching criteria is satisfied, replaces display of the fourth keyboard with display of the first keyboard. In some embodiments, when a respective keyboard is displayed (at a certain time), the electronic device monitors the time elapsed and monitors keys of the keyboard (e.g., character keys, keys that cause insertion of a character into a text entry area). In response to detecting activation of the first affordance (at the first location) of the respective keyboard, when the electronic device determines that either (1) a predetermined amount of time has elapsed since the respective keyboard was displayed or (2) a key of the keyboard (e.g., character key, keys that cause insertion of a character into a text entry area) has been activated since the respective keyboard was displayed, the device replaces display of the respective keyboard with display of a previous keyboard (the keyboard that was displayed previous to the respective keyboard, the keyboard that precedes the respective keyboard in the ordered set that does not include the second keyboard). In response to detecting activation of the first affordance (at the first location) of the respective keyboard, when the decide determines that (1) the predetermined amount of time has not elapsed since the respective keyboard was displayed and (2) no key of the keyboard (e.g., character key, keys that cause insertion of a character into a text entry area) has been activated since the respective keyboard was displayed, the device replaces display of the respective keyboard with display of a next keyboard (the keyboard that is next in the ordered set that does not include the second keyboard).
In some embodiments, as a part of displaying, at the first display time on the touchscreen display, the fourth keyboard of the plurality of keyboards, the electronic device displays (e.g., in a key of the fourth keyboard) an identifier (e.g., as shown in 1012b) of the fourth keyboard (e.g., the name of the keyboard, “Chinese Keyboard”, “Japanese Keyboard”, the name of the keyboard in a key (e.g., the space bar) of the keyboard). In some embodiments, in accordance with a determination that more than a predetermined (non-zero) amount of time (e.g., 2.5 seconds) has elapsed from the first display time, the electronic device ceases to display the identifier of the fourth keyboard. In some embodiments, the identifier of the fourth keyboard is displayed on a key of the fourth keyboard (e.g., the spacebar key). In some embodiments, the identifier of the fourth keyboard is text that includes the name and/or language of the keyboard. In some embodiments, the device ceases to display the identifier of the fourth keyboard in conjunction with the predetermined amount of time being reached, which is optionally also a condition for the functionality (e.g., with keyboard is displayed as a result) of the first affordance to change.
Note that details of the processes described above with respect to method 1100 (e.g.,
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.
Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.
As described above, one aspect of the present technology is the gathering and use of data available from various sources to improve input techniques for electronic devices. The present disclosure contemplates that in some instances, this gathered data may include personal information data, such as which keyboard languages are used.
The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices. In addition, policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. Hence different privacy practices should be maintained for different personal data types in each country.
Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter. In addition to providing “opt in” and “opt out” options, the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an app that their personal information data will be accessed and then reminded again just before personal information data is accessed by the app.
Moreover, it is the intent of the present disclosure that personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed.
Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data, and the technology remains operable when personal information is not collected.
This application is a continuation of U.S. Non-provisional application Ser. No. 16/814,770, filed Mar. 10, 2020, and entitled “KEYBOARD MANAGEMENT USER INTERFACES,” which claims priority to U.S. Provisional Application No. 62/856,037, filed Jun. 1, 2019, and entitled “KEYBOARD MANAGEMENT USER INTERFACES,” the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4317109 | Odaka et al. | Feb 1982 | A |
4685142 | Ooi et al. | Aug 1987 | A |
5128672 | Kaehler | Jul 1992 | A |
5252951 | Tannenbaum et al. | Oct 1993 | A |
5313528 | Nishida et al. | May 1994 | A |
5347295 | Agulnick et al. | Sep 1994 | A |
5428736 | Kahl et al. | Jun 1995 | A |
5438631 | Dai et al. | Aug 1995 | A |
5491758 | Bellegarda et al. | Feb 1996 | A |
5500937 | Thompson-Rohrlich | Mar 1996 | A |
5524201 | Shwarts et al. | Jun 1996 | A |
5526440 | Sakano et al. | Jun 1996 | A |
5528260 | Kent | Jun 1996 | A |
5539839 | Bellegarda et al. | Jul 1996 | A |
5544257 | Bellegarda et al. | Aug 1996 | A |
5544264 | Bellegarda et al. | Aug 1996 | A |
5581484 | Prince | Dec 1996 | A |
5655094 | Cline et al. | Aug 1997 | A |
5677708 | Matthews et al. | Oct 1997 | A |
5687254 | Poon et al. | Nov 1997 | A |
5710831 | Beernink et al. | Jan 1998 | A |
5734597 | Molnar | Mar 1998 | A |
5742705 | Parthasarathy | Apr 1998 | A |
5751851 | Guzik et al. | May 1998 | A |
5781662 | Mori et al. | Jul 1998 | A |
5796867 | Chen et al. | Aug 1998 | A |
5805161 | Tiphane | Sep 1998 | A |
5805165 | Thorne et al. | Sep 1998 | A |
5812697 | Sakai et al. | Sep 1998 | A |
5818437 | Grover et al. | Oct 1998 | A |
5828999 | Bellegarda et al. | Oct 1998 | A |
5847709 | Card et al. | Dec 1998 | A |
5850477 | Takada | Dec 1998 | A |
5864636 | Chisaka | Jan 1999 | A |
5880733 | Horvitz et al. | Mar 1999 | A |
5896321 | Miller et al. | Apr 1999 | A |
5903666 | Guzik et al. | May 1999 | A |
5926566 | Wang et al. | Jul 1999 | A |
5943052 | Allen et al. | Aug 1999 | A |
5949408 | Kang et al. | Sep 1999 | A |
5991441 | Jourjine | Nov 1999 | A |
6006227 | Freeman et al. | Dec 1999 | A |
6011865 | Fujisaki et al. | Jan 2000 | A |
6035063 | Nakashima et al. | Mar 2000 | A |
6069606 | Sciammarella et al. | May 2000 | A |
6069626 | Cline et al. | May 2000 | A |
6073036 | Heikkinen et al. | Jun 2000 | A |
6094197 | Buxton et al. | Jul 2000 | A |
6181339 | Decarmo et al. | Jan 2001 | B1 |
6212298 | Yoshii et al. | Apr 2001 | B1 |
6259436 | Moon et al. | Jul 2001 | B1 |
6285916 | Kadaba et al. | Sep 2001 | B1 |
6307548 | Flinchem et al. | Oct 2001 | B1 |
6313855 | Shuping et al. | Nov 2001 | B1 |
6323859 | Gantt | Nov 2001 | B1 |
6340967 | Maxted | Jan 2002 | B1 |
6377965 | Hachamovitch et al. | Apr 2002 | B1 |
6401060 | Critchlow et al. | Jun 2002 | B1 |
6426761 | Kanevsky et al. | Jul 2002 | B1 |
6438631 | Kawase et al. | Aug 2002 | B1 |
6462733 | Murakami | Oct 2002 | B1 |
6479949 | Nerone et al. | Nov 2002 | B1 |
6486895 | Robertson et al. | Nov 2002 | B1 |
6489975 | Patil et al. | Dec 2002 | B1 |
6559869 | Lui et al. | May 2003 | B1 |
6570594 | Wagner | May 2003 | B1 |
6573844 | Venolia et al. | Jun 2003 | B1 |
6597345 | Hirshberg | Jul 2003 | B2 |
6629793 | Miller | Oct 2003 | B1 |
6636163 | Hsieh | Oct 2003 | B1 |
6683628 | Nakagawa et al. | Jan 2004 | B1 |
6707942 | Cortopassi et al. | Mar 2004 | B1 |
6801659 | O'Dell | Oct 2004 | B1 |
6856318 | Lewak | Feb 2005 | B1 |
6970599 | Longe et al. | Nov 2005 | B2 |
6987991 | Nelson | Jan 2006 | B2 |
6990452 | Ostermann et al. | Jan 2006 | B1 |
7030861 | Westerman et al. | Apr 2006 | B1 |
7152210 | Van Den Hoven et al. | Dec 2006 | B1 |
7167731 | Nelson | Jan 2007 | B2 |
7202857 | Hinckley et al. | Apr 2007 | B2 |
7231231 | Kokko et al. | Jun 2007 | B2 |
7283126 | Leung | Oct 2007 | B2 |
7319957 | Robinson et al. | Jan 2008 | B2 |
7408538 | Hinckley et al. | Aug 2008 | B2 |
7419469 | Vacca et al. | Sep 2008 | B2 |
7443316 | Lim | Oct 2008 | B2 |
7479949 | Jobs et al. | Jan 2009 | B2 |
7487147 | Bates et al. | Feb 2009 | B2 |
7502017 | Ratzlaff et al. | Mar 2009 | B1 |
7508324 | Suraqui | Mar 2009 | B2 |
7584093 | Potter et al. | Sep 2009 | B2 |
7634137 | Simard et al. | Dec 2009 | B2 |
7650562 | Bederson et al. | Jan 2010 | B2 |
7669135 | Cunningham et al. | Feb 2010 | B2 |
7669149 | Dietl et al. | Feb 2010 | B2 |
7676763 | Rummel et al. | Mar 2010 | B2 |
7679534 | Kay et al. | Mar 2010 | B2 |
7683886 | Willey | Mar 2010 | B2 |
7712053 | Bradford et al. | May 2010 | B2 |
7720316 | Shilman et al. | May 2010 | B2 |
7725838 | Williams | May 2010 | B2 |
7768501 | Maddalozzo et al. | Aug 2010 | B1 |
7793228 | Mansfield et al. | Sep 2010 | B2 |
7797269 | Rieman et al. | Sep 2010 | B2 |
7864163 | Ording et al. | Jan 2011 | B2 |
7941762 | Tovino et al. | May 2011 | B1 |
7957955 | Christie et al. | Jun 2011 | B2 |
8010901 | Rogers et al. | Aug 2011 | B1 |
8074172 | Kocienda et al. | Dec 2011 | B2 |
8094941 | Rowley et al. | Jan 2012 | B1 |
8112529 | Van et al. | Feb 2012 | B2 |
8117195 | Dave et al. | Feb 2012 | B1 |
8136052 | Shin et al. | Mar 2012 | B2 |
8175389 | Matic et al. | May 2012 | B2 |
8232973 | Kocienda et al. | Jul 2012 | B2 |
8245156 | Mouilleseaux et al. | Aug 2012 | B2 |
8255810 | Moore et al. | Aug 2012 | B2 |
8286085 | Denise | Oct 2012 | B1 |
8290478 | Shim et al. | Oct 2012 | B2 |
8299943 | Longe et al. | Oct 2012 | B2 |
8310461 | Morwing et al. | Nov 2012 | B2 |
8400417 | Kocienda et al. | Mar 2013 | B2 |
8423916 | Chihara et al. | Apr 2013 | B2 |
8504946 | Williamson et al. | Aug 2013 | B2 |
8543927 | Mckinley et al. | Sep 2013 | B1 |
8564544 | Jobs et al. | Oct 2013 | B2 |
8566403 | Pascal et al. | Oct 2013 | B2 |
8601389 | Schulz et al. | Dec 2013 | B2 |
8645825 | Cornea et al. | Feb 2014 | B1 |
8669950 | Forstall et al. | Mar 2014 | B2 |
8671343 | Oberstein | Mar 2014 | B2 |
8706750 | Hansson et al. | Apr 2014 | B2 |
8825484 | Yamada et al. | Sep 2014 | B2 |
8843845 | Bi et al. | Sep 2014 | B2 |
8884905 | Morwig et al. | Nov 2014 | B2 |
8893023 | Perry et al. | Nov 2014 | B2 |
8896556 | Frazier et al. | Nov 2014 | B2 |
8996639 | Faaborg et al. | Mar 2015 | B1 |
9007311 | Kwak et al. | Apr 2015 | B2 |
9021380 | Ouyang et al. | Apr 2015 | B2 |
9026428 | Sternby et al. | May 2015 | B2 |
9046928 | Kumhyr | Jun 2015 | B2 |
9058092 | Rogers | Jun 2015 | B2 |
9086802 | Kocienda et al. | Jul 2015 | B2 |
9111139 | Morwing et al. | Aug 2015 | B2 |
9116551 | Huang et al. | Aug 2015 | B2 |
9143907 | Caldwell et al. | Sep 2015 | B1 |
9213754 | Zhang et al. | Dec 2015 | B1 |
9250797 | Roberts et al. | Feb 2016 | B2 |
9310889 | Griffin et al. | Apr 2016 | B2 |
9317870 | Tew et al. | Apr 2016 | B2 |
9329770 | Williamson et al. | May 2016 | B2 |
9330331 | Kasthuri | May 2016 | B2 |
9335924 | Jobs et al. | May 2016 | B2 |
9338242 | Suchland et al. | May 2016 | B1 |
9355090 | Goldsmith et al. | May 2016 | B2 |
9436380 | Chmielewski et al. | Sep 2016 | B2 |
9465985 | Xia et al. | Oct 2016 | B2 |
9495620 | Dolfing et al. | Nov 2016 | B2 |
9535597 | Wong et al. | Jan 2017 | B2 |
9557913 | Griffin et al. | Jan 2017 | B2 |
9557916 | Robinson et al. | Jan 2017 | B2 |
9633191 | Fleizach et al. | Apr 2017 | B2 |
9740399 | Paek et al. | Aug 2017 | B2 |
9898187 | Xia et al. | Feb 2018 | B2 |
9904906 | Kim et al. | Feb 2018 | B2 |
9906928 | Kim et al. | Feb 2018 | B2 |
9921744 | Ha et al. | Mar 2018 | B2 |
9928651 | Mariappan | Mar 2018 | B2 |
9934430 | Dolfing et al. | Apr 2018 | B2 |
9952759 | Jobs et al. | Apr 2018 | B2 |
9977499 | Westerman et al. | May 2018 | B2 |
9998888 | Chang et al. | Jun 2018 | B1 |
10003938 | Chang et al. | Jun 2018 | B2 |
10013162 | Fleizach et al. | Jul 2018 | B2 |
10013601 | Ebersman et al. | Jul 2018 | B2 |
10019136 | Ozog | Jul 2018 | B1 |
10037139 | Pasquero et al. | Jul 2018 | B2 |
10051103 | Gordon et al. | Aug 2018 | B1 |
10083213 | Podgorny et al. | Sep 2018 | B1 |
10133397 | Smith | Nov 2018 | B1 |
10341826 | Chang et al. | Jul 2019 | B2 |
10445425 | Jon et al. | Oct 2019 | B2 |
10747334 | Elazari et al. | Aug 2020 | B2 |
11016577 | Jian et al. | May 2021 | B2 |
11016658 | Xia et al. | May 2021 | B2 |
11182069 | Xia et al. | Nov 2021 | B2 |
11327649 | Spivak | May 2022 | B1 |
20010015718 | Hinckley et al. | Aug 2001 | A1 |
20010024195 | Hayakawa | Sep 2001 | A1 |
20020010726 | Rogson | Jan 2002 | A1 |
20020015064 | Robotham et al. | Feb 2002 | A1 |
20020019731 | Masui et al. | Feb 2002 | A1 |
20020030667 | Hinckley et al. | Mar 2002 | A1 |
20020033848 | Sciammarella et al. | Mar 2002 | A1 |
20020036618 | Wakai et al. | Mar 2002 | A1 |
20020056575 | Keely et al. | May 2002 | A1 |
20020067854 | Reintjes et al. | Jun 2002 | A1 |
20020126097 | Savolainen | Sep 2002 | A1 |
20020149605 | Grossman | Oct 2002 | A1 |
20020167545 | Kang et al. | Nov 2002 | A1 |
20020186201 | Gutta et al. | Dec 2002 | A1 |
20030001898 | Bernhardson | Jan 2003 | A1 |
20030016252 | Noy et al. | Jan 2003 | A1 |
20030038788 | Demartines et al. | Feb 2003 | A1 |
20030041147 | Van et al. | Feb 2003 | A1 |
20030043189 | Rieffel et al. | Mar 2003 | A1 |
20030086611 | Loudon et al. | May 2003 | A1 |
20030095135 | Kaasila et al. | May 2003 | A1 |
20030098871 | Kawano et al. | May 2003 | A1 |
20030099398 | Izumi et al. | May 2003 | A1 |
20030122787 | Zimmerman et al. | Jul 2003 | A1 |
20030154292 | Spriestersbach et al. | Aug 2003 | A1 |
20030159113 | Bederson et al. | Aug 2003 | A1 |
20030174149 | Fujisaki et al. | Sep 2003 | A1 |
20030177067 | Cowell et al. | Sep 2003 | A1 |
20030185444 | Honda | Oct 2003 | A1 |
20030212961 | Soin et al. | Nov 2003 | A1 |
20030229607 | Zellweger et al. | Dec 2003 | A1 |
20040008222 | Hovatter et al. | Jan 2004 | A1 |
20040017946 | Longéet al. | Jan 2004 | A1 |
20040023696 | Kim et al. | Feb 2004 | A1 |
20040049541 | Swahn et al. | Mar 2004 | A1 |
20040078752 | Johnson | Apr 2004 | A1 |
20040095395 | Kurtenbach | May 2004 | A1 |
20040100479 | Nakano et al. | May 2004 | A1 |
20040119754 | Bangalore et al. | Jun 2004 | A1 |
20040135818 | Thomson et al. | Jul 2004 | A1 |
20040136244 | Nakamura et al. | Jul 2004 | A1 |
20040140956 | Kushler et al. | Jul 2004 | A1 |
20040150670 | Feldman et al. | Aug 2004 | A1 |
20040155869 | Robinson et al. | Aug 2004 | A1 |
20040155908 | Wagner | Aug 2004 | A1 |
20040160419 | Padgitt | Aug 2004 | A1 |
20040181804 | Billmaier et al. | Sep 2004 | A1 |
20040183833 | Chua | Sep 2004 | A1 |
20040223004 | Lincke et al. | Nov 2004 | A1 |
20040230912 | Clow et al. | Nov 2004 | A1 |
20050012723 | Pallakoff | Jan 2005 | A1 |
20050020317 | Koyama | Jan 2005 | A1 |
20050024239 | Kupka | Feb 2005 | A1 |
20050052427 | Wu et al. | Mar 2005 | A1 |
20050057524 | Hill et al. | Mar 2005 | A1 |
20050071782 | Barrett et al. | Mar 2005 | A1 |
20050081150 | Beardow et al. | Apr 2005 | A1 |
20050091596 | Anthony et al. | Apr 2005 | A1 |
20050093826 | Huh | May 2005 | A1 |
20050099398 | Garside et al. | May 2005 | A1 |
20050114324 | Mayer | May 2005 | A1 |
20050114785 | Finnigan et al. | May 2005 | A1 |
20050131687 | Sorrentino | Jun 2005 | A1 |
20050134578 | Chambers et al. | Jun 2005 | A1 |
20050156873 | Walter et al. | Jul 2005 | A1 |
20050162395 | Unruh | Jul 2005 | A1 |
20050169527 | Longe et al. | Aug 2005 | A1 |
20050190970 | Griffin | Sep 2005 | A1 |
20050192727 | Shostak et al. | Sep 2005 | A1 |
20050192924 | Drucker et al. | Sep 2005 | A1 |
20050222848 | Napper et al. | Oct 2005 | A1 |
20050237311 | Nakajima | Oct 2005 | A1 |
20050243069 | Yorio et al. | Nov 2005 | A1 |
20050246365 | Lowles et al. | Nov 2005 | A1 |
20050256712 | Yamada et al. | Nov 2005 | A1 |
20050275633 | Varanda | Dec 2005 | A1 |
20050283726 | Lunati | Dec 2005 | A1 |
20050289173 | Vacca et al. | Dec 2005 | A1 |
20060001650 | Robbins et al. | Jan 2006 | A1 |
20060001652 | Chiu et al. | Jan 2006 | A1 |
20060007176 | Shen | Jan 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060026535 | Hotelling et al. | Feb 2006 | A1 |
20060033724 | Chaudhri et al. | Feb 2006 | A1 |
20060033751 | Keely et al. | Feb 2006 | A1 |
20060038796 | Hinckley et al. | Feb 2006 | A1 |
20060044278 | Fux et al. | Mar 2006 | A1 |
20060047386 | Kanevsky et al. | Mar 2006 | A1 |
20060050962 | Geiger et al. | Mar 2006 | A1 |
20060053386 | Kuhl et al. | Mar 2006 | A1 |
20060055662 | Rimas-Ribikauskas et al. | Mar 2006 | A1 |
20060062461 | Longe et al. | Mar 2006 | A1 |
20060092128 | Gao et al. | May 2006 | A1 |
20060101354 | Hashimoto et al. | May 2006 | A1 |
20060119582 | Ng et al. | Jun 2006 | A1 |
20060125799 | Hillis | Jun 2006 | A1 |
20060132460 | Kolmykov-Zotov et al. | Jun 2006 | A1 |
20060136576 | Ookuma et al. | Jun 2006 | A1 |
20060143573 | Harrison et al. | Jun 2006 | A1 |
20060161846 | Van Leeuwen | Jul 2006 | A1 |
20060161861 | Holecek et al. | Jul 2006 | A1 |
20060161870 | Hotelling et al. | Jul 2006 | A1 |
20060164399 | Cheston et al. | Jul 2006 | A1 |
20060190256 | Stephanick et al. | Aug 2006 | A1 |
20060190833 | Sangiovanni et al. | Aug 2006 | A1 |
20060206454 | Forstall et al. | Sep 2006 | A1 |
20060227116 | Zotov et al. | Oct 2006 | A1 |
20060241944 | Potter et al. | Oct 2006 | A1 |
20060265208 | Assadollahi | Nov 2006 | A1 |
20060265648 | Rainisto et al. | Nov 2006 | A1 |
20060274051 | Longe et al. | Dec 2006 | A1 |
20060277478 | Seraji et al. | Dec 2006 | A1 |
20070002077 | Gopalakrishnan et al. | Jan 2007 | A1 |
20070005537 | Abdulkader et al. | Jan 2007 | A1 |
20070016862 | Kuzmin | Jan 2007 | A1 |
20070046641 | Lim | Mar 2007 | A1 |
20070061753 | Ng et al. | Mar 2007 | A1 |
20070067738 | Flynt et al. | Mar 2007 | A1 |
20070106950 | Hutchinson et al. | May 2007 | A1 |
20070130128 | Garg et al. | Jun 2007 | A1 |
20070140561 | Abdulkader et al. | Jun 2007 | A1 |
20070143262 | Kasperski | Jun 2007 | A1 |
20070146340 | Webb et al. | Jun 2007 | A1 |
20070152978 | Kocienda et al. | Jul 2007 | A1 |
20070152980 | Kocienda et al. | Jul 2007 | A1 |
20070156747 | Samuelson et al. | Jul 2007 | A1 |
20070174387 | Jania et al. | Jul 2007 | A1 |
20070180392 | Russo | Aug 2007 | A1 |
20070229476 | Huh | Oct 2007 | A1 |
20070238489 | Scott | Oct 2007 | A1 |
20070250786 | Jeon et al. | Oct 2007 | A1 |
20070262964 | Zotov et al. | Nov 2007 | A1 |
20070271340 | Goodman et al. | Nov 2007 | A1 |
20070300140 | Makela et al. | Dec 2007 | A1 |
20080019591 | Iwayama et al. | Jan 2008 | A1 |
20080036743 | Westerman et al. | Feb 2008 | A1 |
20080057926 | Forstall et al. | Mar 2008 | A1 |
20080059876 | Hantier et al. | Mar 2008 | A1 |
20080082934 | Kocienda et al. | Apr 2008 | A1 |
20080094370 | Ording et al. | Apr 2008 | A1 |
20080098456 | Alward et al. | Apr 2008 | A1 |
20080109401 | Sareen et al. | May 2008 | A1 |
20080114591 | Williamson | May 2008 | A1 |
20080122796 | Jobs et al. | May 2008 | A1 |
20080133479 | Zelevinsky et al. | Jun 2008 | A1 |
20080168144 | Lee | Jul 2008 | A1 |
20080168366 | Kocienda | Jul 2008 | A1 |
20080177717 | Kumar et al. | Jul 2008 | A1 |
20080195388 | Bower et al. | Aug 2008 | A1 |
20080201650 | Lemay et al. | Aug 2008 | A1 |
20080209358 | Yamashita | Aug 2008 | A1 |
20080240570 | Shi et al. | Oct 2008 | A1 |
20080260252 | Borgaonkar et al. | Oct 2008 | A1 |
20080266261 | Idzik et al. | Oct 2008 | A1 |
20080270118 | Kuo et al. | Oct 2008 | A1 |
20080304890 | Shin et al. | Dec 2008 | A1 |
20080310723 | Manu et al. | Dec 2008 | A1 |
20080316183 | Westerman et al. | Dec 2008 | A1 |
20090005011 | Christie et al. | Jan 2009 | A1 |
20090007017 | Anzures et al. | Jan 2009 | A1 |
20090033633 | Newman et al. | Feb 2009 | A1 |
20090041354 | Liu et al. | Feb 2009 | A1 |
20090058823 | Kocienda | Mar 2009 | A1 |
20090085881 | Keam | Apr 2009 | A1 |
20090106695 | Perry et al. | Apr 2009 | A1 |
20090109188 | Ohshita et al. | Apr 2009 | A1 |
20090113315 | Fisher et al. | Apr 2009 | A1 |
20090119289 | Gibbs et al. | May 2009 | A1 |
20090161958 | Markiewicz et al. | Jun 2009 | A1 |
20090177981 | Christie et al. | Jul 2009 | A1 |
20090189904 | Roth | Jul 2009 | A1 |
20090193332 | Lee | Jul 2009 | A1 |
20090226091 | Goldsmith et al. | Sep 2009 | A1 |
20090228842 | Westerman et al. | Sep 2009 | A1 |
20090254840 | Churchill et al. | Oct 2009 | A1 |
20090256808 | Kun et al. | Oct 2009 | A1 |
20090259969 | Pallakoff | Oct 2009 | A1 |
20090262076 | Brugger et al. | Oct 2009 | A1 |
20090284471 | Longe et al. | Nov 2009 | A1 |
20090295750 | Yamazaki et al. | Dec 2009 | A1 |
20090306969 | Goud et al. | Dec 2009 | A1 |
20090319172 | Almeida et al. | Dec 2009 | A1 |
20090326918 | Georgiev | Dec 2009 | A1 |
20090327976 | Williamson et al. | Dec 2009 | A1 |
20100029255 | Kim et al. | Feb 2010 | A1 |
20100066691 | Li et al. | Mar 2010 | A1 |
20100088616 | Park et al. | Apr 2010 | A1 |
20100104189 | Aravamudhan et al. | Apr 2010 | A1 |
20100123724 | Moore et al. | May 2010 | A1 |
20100125785 | Moore et al. | May 2010 | A1 |
20100179991 | Lorch et al. | Jul 2010 | A1 |
20100246964 | Matic et al. | Sep 2010 | A1 |
20100287486 | Coddington et al. | Nov 2010 | A1 |
20100299601 | Kaplan et al. | Nov 2010 | A1 |
20100306185 | Smith et al. | Dec 2010 | A1 |
20100309147 | Fleizach et al. | Dec 2010 | A1 |
20100325194 | Williamson et al. | Dec 2010 | A1 |
20100329562 | Zhu et al. | Dec 2010 | A1 |
20100333030 | Johns | Dec 2010 | A1 |
20110004849 | Oh | Jan 2011 | A1 |
20110009109 | Hyon | Jan 2011 | A1 |
20110012919 | Tai et al. | Jan 2011 | A1 |
20110087747 | Hirst et al. | Apr 2011 | A1 |
20110183720 | Dinn | Jul 2011 | A1 |
20110201387 | Paek et al. | Aug 2011 | A1 |
20110202876 | Badger et al. | Aug 2011 | A1 |
20110209098 | Hinckley et al. | Aug 2011 | A1 |
20110279323 | Hung et al. | Nov 2011 | A1 |
20110279379 | Morwing et al. | Nov 2011 | A1 |
20110294525 | Jonsson | Dec 2011 | A1 |
20120008526 | Borghei et al. | Jan 2012 | A1 |
20120014601 | Jiang et al. | Jan 2012 | A1 |
20120036469 | Suraqui | Feb 2012 | A1 |
20120047135 | Hansson et al. | Feb 2012 | A1 |
20120060089 | Heo et al. | Mar 2012 | A1 |
20120089632 | Zhou et al. | Apr 2012 | A1 |
20120095748 | Li et al. | Apr 2012 | A1 |
20120113007 | Koch et al. | May 2012 | A1 |
20120117506 | Koch et al. | May 2012 | A1 |
20120119997 | Gutowitz et al. | May 2012 | A1 |
20120136855 | Ni et al. | May 2012 | A1 |
20120136897 | Kawauchi | May 2012 | A1 |
20120139859 | Ohira et al. | Jun 2012 | A1 |
20120167009 | Davidson et al. | Jun 2012 | A1 |
20120216113 | Li | Aug 2012 | A1 |
20120216141 | Li et al. | Aug 2012 | A1 |
20120239395 | Foo et al. | Sep 2012 | A1 |
20120240036 | Howard et al. | Sep 2012 | A1 |
20120242579 | Chua | Sep 2012 | A1 |
20120287062 | Akiyama et al. | Nov 2012 | A1 |
20120302256 | Pai et al. | Nov 2012 | A1 |
20120308143 | Bellegarda et al. | Dec 2012 | A1 |
20120311032 | Murphy et al. | Dec 2012 | A1 |
20120319985 | Moore et al. | Dec 2012 | A1 |
20130002553 | Colley et al. | Jan 2013 | A1 |
20130034303 | Morwing et al. | Feb 2013 | A1 |
20130036387 | Murata | Feb 2013 | A1 |
20130054634 | Chakraborty et al. | Feb 2013 | A1 |
20130104068 | Murphy | Apr 2013 | A1 |
20130120274 | Ha et al. | May 2013 | A1 |
20130125037 | Pasquero et al. | May 2013 | A1 |
20130136360 | Maruyama et al. | May 2013 | A1 |
20130159919 | Leydon | Jun 2013 | A1 |
20130182956 | Wang et al. | Jul 2013 | A1 |
20130187858 | Griffin et al. | Jul 2013 | A1 |
20130204897 | Mcdougall | Aug 2013 | A1 |
20130205210 | Jeon et al. | Aug 2013 | A1 |
20130212511 | Kim et al. | Aug 2013 | A1 |
20130246329 | Pasquero et al. | Sep 2013 | A1 |
20130251247 | Khorsheed et al. | Sep 2013 | A1 |
20130251249 | Huo et al. | Sep 2013 | A1 |
20130275923 | Griffin et al. | Oct 2013 | A1 |
20130275924 | Weinberg et al. | Oct 2013 | A1 |
20130285927 | Pasquero et al. | Oct 2013 | A1 |
20130300645 | Fedorov | Nov 2013 | A1 |
20130314337 | Asano | Nov 2013 | A1 |
20130325970 | Roberts et al. | Dec 2013 | A1 |
20130326334 | Williamson et al. | Dec 2013 | A1 |
20130339283 | Grieves et al. | Dec 2013 | A1 |
20140002363 | Griffin et al. | Jan 2014 | A1 |
20140025737 | Kruglick | Jan 2014 | A1 |
20140028571 | St. Clair et al. | Jan 2014 | A1 |
20140035823 | Khoe et al. | Feb 2014 | A1 |
20140035851 | Kim et al. | Feb 2014 | A1 |
20140040732 | Kokubu | Feb 2014 | A1 |
20140044357 | Moorthy et al. | Feb 2014 | A1 |
20140063067 | Compton et al. | Mar 2014 | A1 |
20140066105 | Bridge et al. | Mar 2014 | A1 |
20140085215 | Och et al. | Mar 2014 | A1 |
20140085311 | Gay et al. | Mar 2014 | A1 |
20140093161 | Oda et al. | Apr 2014 | A1 |
20140098038 | Paek et al. | Apr 2014 | A1 |
20140108004 | Sternby et al. | Apr 2014 | A1 |
20140129931 | Hashiba | May 2014 | A1 |
20140143721 | Suzuki et al. | May 2014 | A1 |
20140156262 | Yuen et al. | Jun 2014 | A1 |
20140160032 | Che et al. | Jun 2014 | A1 |
20140163954 | Joshi et al. | Jun 2014 | A1 |
20140176776 | Morita | Jun 2014 | A1 |
20140181205 | Sherrets et al. | Jun 2014 | A1 |
20140195979 | Branton et al. | Jul 2014 | A1 |
20140210759 | Toriyama et al. | Jul 2014 | A1 |
20140214398 | Sanders et al. | Jul 2014 | A1 |
20140244234 | Huang et al. | Aug 2014 | A1 |
20140245221 | Dougherty et al. | Aug 2014 | A1 |
20140267072 | Andersson et al. | Sep 2014 | A1 |
20140270529 | Sugiura et al. | Sep 2014 | A1 |
20140282211 | Ady et al. | Sep 2014 | A1 |
20140285460 | Morwing et al. | Sep 2014 | A1 |
20140294167 | Kim et al. | Oct 2014 | A1 |
20140310639 | Zhai et al. | Oct 2014 | A1 |
20140317547 | Bi et al. | Oct 2014 | A1 |
20140327629 | Jobs et al. | Nov 2014 | A1 |
20140337438 | Govande et al. | Nov 2014 | A1 |
20140340333 | Hoshi et al. | Nov 2014 | A1 |
20140344684 | Jang | Nov 2014 | A1 |
20140361983 | Dolfing et al. | Dec 2014 | A1 |
20140363074 | Dolfing et al. | Dec 2014 | A1 |
20140363082 | Dixon et al. | Dec 2014 | A1 |
20140363083 | Xia et al. | Dec 2014 | A1 |
20140365944 | Moore et al. | Dec 2014 | A1 |
20140365949 | Xia et al. | Dec 2014 | A1 |
20150020317 | Im et al. | Jan 2015 | A1 |
20150040213 | Fleizach et al. | Feb 2015 | A1 |
20150046828 | Desai et al. | Feb 2015 | A1 |
20150058720 | Smadja et al. | Feb 2015 | A1 |
20150067488 | Liu | Mar 2015 | A1 |
20150089660 | Song et al. | Mar 2015 | A1 |
20150100537 | Grieves et al. | Apr 2015 | A1 |
20150113435 | Phillips | Apr 2015 | A1 |
20150121285 | Eleftheriou et al. | Apr 2015 | A1 |
20150139550 | Kuno | May 2015 | A1 |
20150142602 | Williams et al. | May 2015 | A1 |
20150161463 | Morwing et al. | Jun 2015 | A1 |
20150169948 | Motoi | Jun 2015 | A1 |
20150169975 | Kienzle et al. | Jun 2015 | A1 |
20150172393 | Oplinger et al. | Jun 2015 | A1 |
20150180980 | Welinder et al. | Jun 2015 | A1 |
20150185995 | Shoemaker et al. | Jul 2015 | A1 |
20150188861 | Esplin et al. | Jul 2015 | A1 |
20150193141 | Goldsmith et al. | Jul 2015 | A1 |
20150201062 | Shih et al. | Jul 2015 | A1 |
20150220774 | Ebersman et al. | Aug 2015 | A1 |
20150222586 | Ebersman et al. | Aug 2015 | A1 |
20150227782 | Salvador et al. | Aug 2015 | A1 |
20150234588 | Andersson et al. | Aug 2015 | A1 |
20150235097 | Wang et al. | Aug 2015 | A1 |
20150242114 | Hirabayashi et al. | Aug 2015 | A1 |
20150248235 | Offenberg et al. | Sep 2015 | A1 |
20150256491 | Eatough et al. | Sep 2015 | A1 |
20150268768 | Woodhull et al. | Sep 2015 | A1 |
20150269432 | Motoi | Sep 2015 | A1 |
20150281788 | Noguerol | Oct 2015 | A1 |
20150294145 | Bouaziz et al. | Oct 2015 | A1 |
20150310267 | Nicholson et al. | Oct 2015 | A1 |
20150317069 | Clements et al. | Nov 2015 | A1 |
20150317078 | Kocienda et al. | Nov 2015 | A1 |
20150324011 | Czelnik et al. | Nov 2015 | A1 |
20150331605 | Park et al. | Nov 2015 | A1 |
20150347007 | Jong et al. | Dec 2015 | A1 |
20150347379 | Jong et al. | Dec 2015 | A1 |
20150347985 | Gross et al. | Dec 2015 | A1 |
20150370529 | Zambetti et al. | Dec 2015 | A1 |
20150370779 | Dixon et al. | Dec 2015 | A1 |
20150378982 | Mckenzie et al. | Dec 2015 | A1 |
20160019201 | Qian | Jan 2016 | A1 |
20160026258 | Ou et al. | Jan 2016 | A1 |
20160026730 | Hasan | Jan 2016 | A1 |
20160041966 | Pasquero | Feb 2016 | A1 |
20160044269 | Kang | Feb 2016 | A1 |
20160062589 | Wan | Mar 2016 | A1 |
20160070441 | Paek et al. | Mar 2016 | A1 |
20160073034 | Mukherjee et al. | Mar 2016 | A1 |
20160073223 | Woolsey et al. | Mar 2016 | A1 |
20160077734 | Buxton et al. | Mar 2016 | A1 |
20160088335 | Zucchetta | Mar 2016 | A1 |
20160092431 | Motoi | Mar 2016 | A1 |
20160098186 | Sugiura | Apr 2016 | A1 |
20160132232 | Baba et al. | May 2016 | A1 |
20160139805 | Kocienda et al. | May 2016 | A1 |
20160165032 | Chang | Jun 2016 | A1 |
20160179225 | Black et al. | Jun 2016 | A1 |
20160182410 | Janakiraman et al. | Jun 2016 | A1 |
20160202889 | Shin et al. | Jul 2016 | A1 |
20160224540 | Stewart et al. | Aug 2016 | A1 |
20160239724 | Arfvidsson et al. | Aug 2016 | A1 |
20160246473 | Jobs et al. | Aug 2016 | A1 |
20160259548 | Ma | Sep 2016 | A1 |
20160274686 | Alonso Ruiz et al. | Sep 2016 | A1 |
20160274756 | Sakaguchi | Sep 2016 | A1 |
20160294958 | Zhang et al. | Oct 2016 | A1 |
20160295384 | Shan et al. | Oct 2016 | A1 |
20160337301 | Rollins et al. | Nov 2016 | A1 |
20160357752 | Yang et al. | Dec 2016 | A1 |
20160359771 | Sridhar | Dec 2016 | A1 |
20170010802 | Xia et al. | Jan 2017 | A1 |
20170017835 | Dolfing et al. | Jan 2017 | A1 |
20170026430 | Beckhardt et al. | Jan 2017 | A1 |
20170041549 | Kim et al. | Feb 2017 | A1 |
20170048686 | Chang et al. | Feb 2017 | A1 |
20170063753 | Probasco et al. | Mar 2017 | A1 |
20170068439 | Mohseni | Mar 2017 | A1 |
20170075878 | Jon et al. | Mar 2017 | A1 |
20170090748 | Williamson et al. | Mar 2017 | A1 |
20170090751 | Paek et al. | Mar 2017 | A1 |
20170091153 | Thimbleby | Mar 2017 | A1 |
20170093780 | Lieb et al. | Mar 2017 | A1 |
20170115875 | Ha et al. | Apr 2017 | A1 |
20170300559 | Fallah | Oct 2017 | A1 |
20170344257 | Gnedin et al. | Nov 2017 | A1 |
20170351420 | Rigouste | Dec 2017 | A1 |
20170357438 | Dixon et al. | Dec 2017 | A1 |
20170359302 | Van Os et al. | Dec 2017 | A1 |
20180018073 | Lemay et al. | Jan 2018 | A1 |
20180034765 | Keszler et al. | Feb 2018 | A1 |
20180039406 | Kong et al. | Feb 2018 | A1 |
20180047189 | Diverdi et al. | Feb 2018 | A1 |
20180063324 | Van Meter, II | Mar 2018 | A1 |
20180091732 | Wilson et al. | Mar 2018 | A1 |
20180121074 | Peron et al. | May 2018 | A1 |
20180143761 | Choi et al. | May 2018 | A1 |
20180146349 | Chang et al. | May 2018 | A1 |
20180173415 | Xia et al. | Jun 2018 | A1 |
20180239520 | Hinckley et al. | Aug 2018 | A1 |
20180270627 | Chang et al. | Sep 2018 | A1 |
20180309801 | Rathod | Oct 2018 | A1 |
20180329586 | Sundstrom | Nov 2018 | A1 |
20180329622 | Missig et al. | Nov 2018 | A1 |
20180349020 | Jon et al. | Dec 2018 | A1 |
20190147035 | Chaudhri et al. | May 2019 | A1 |
20190163359 | Dixon et al. | May 2019 | A1 |
20190187889 | Moon | Jun 2019 | A1 |
20190187892 | Kocienda et al. | Jun 2019 | A1 |
20190303423 | Thimbleby | Oct 2019 | A1 |
20190320301 | Chang et al. | Oct 2019 | A1 |
20190332259 | Xia et al. | Oct 2019 | A1 |
20190339822 | Devine et al. | Nov 2019 | A1 |
20200026405 | Lemay et al. | Jan 2020 | A1 |
20200057556 | Dixon et al. | Feb 2020 | A1 |
20200089374 | Hill et al. | Mar 2020 | A1 |
20200110524 | Lemay et al. | Apr 2020 | A1 |
20200110798 | Jon et al. | Apr 2020 | A1 |
20200118325 | Sasikumar et al. | Apr 2020 | A1 |
20200174658 | Xia et al. | Jun 2020 | A1 |
20200174663 | Kocienda et al. | Jun 2020 | A1 |
20200211250 | Sasikumar et al. | Jul 2020 | A1 |
20200379638 | Zhu | Dec 2020 | A1 |
20200380208 | Garcia, III et al. | Dec 2020 | A1 |
20210034860 | Bednarowicz et al. | Feb 2021 | A1 |
20210124485 | Dixon et al. | Apr 2021 | A1 |
20210149549 | Ubillos et al. | May 2021 | A1 |
20210150121 | Thimbleby | May 2021 | A1 |
20210342535 | Garcia et al. | Nov 2021 | A1 |
20210349631 | Kocienda et al. | Nov 2021 | A1 |
20210374995 | Zhang | Dec 2021 | A1 |
20220083216 | Xia et al. | Mar 2022 | A1 |
20220291793 | Zambetti | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
2015100705 | Jun 2015 | AU |
2014327147 | May 2019 | AU |
101123044 | Feb 2008 | CN |
101676838 | Mar 2010 | CN |
101893987 | Nov 2010 | CN |
101894266 | Nov 2010 | CN |
102135838 | Jul 2011 | CN |
102243570 | Nov 2011 | CN |
102449640 | May 2012 | CN |
102455911 | May 2012 | CN |
102566933 | Jul 2012 | CN |
102722240 | Oct 2012 | CN |
103294257 | Sep 2013 | CN |
103365446 | Oct 2013 | CN |
104471521 | Mar 2015 | CN |
104487927 | Apr 2015 | CN |
104487928 | Apr 2015 | CN |
104685470 | Jun 2015 | CN |
104951175 | Sep 2015 | CN |
105247540 | Jan 2016 | CN |
105874447 | Aug 2016 | CN |
106843711 | Jun 2017 | CN |
107710197 | Feb 2018 | CN |
0269364 | Jun 1988 | EP |
0651544 | May 1995 | EP |
0827094 | Mar 1998 | EP |
1124175 | Aug 2001 | EP |
1517228 | Mar 2005 | EP |
2031485 | Mar 2009 | EP |
2172833 | Apr 2010 | EP |
2336871 | Jun 2011 | EP |
2367097 | Sep 2011 | EP |
2386984 | Nov 2011 | EP |
2386984 | Jun 2013 | EP |
2650766 | Oct 2013 | EP |
3065083 | Sep 2016 | EP |
2331204 | May 1999 | GB |
2470585 | Dec 2010 | GB |
2550639 | Nov 2017 | GB |
1220276 | Apr 2017 | HK |
60-153574 | Aug 1985 | JP |
61-272890 | Dec 1986 | JP |
62-251922 | Nov 1987 | JP |
5-224869 | Sep 1993 | JP |
6-95794 | Apr 1994 | JP |
6-149531 | May 1994 | JP |
7-37041 | Feb 1995 | JP |
07057053 | Mar 1995 | JP |
7-57053 | Jun 1995 | JP |
7-200723 | Aug 1995 | JP |
8-55182 | Feb 1996 | JP |
8-339415 | Dec 1996 | JP |
9-507936 | Aug 1997 | JP |
9-507937 | Aug 1997 | JP |
10-91346 | Apr 1998 | JP |
10-232864 | Sep 1998 | JP |
10-307675 | Nov 1998 | JP |
11-143604 | May 1999 | JP |
11-338600 | Dec 1999 | JP |
2000-75851 | Mar 2000 | JP |
2000-75979 | Mar 2000 | JP |
2000-101879 | Apr 2000 | JP |
2000-105772 | Apr 2000 | JP |
2000-163031 | Jun 2000 | JP |
2000-194493 | Jul 2000 | JP |
2002-15282 | Jan 2002 | JP |
2002-123355 | Apr 2002 | JP |
2003-76846 | Mar 2003 | JP |
2003-162687 | Jun 2003 | JP |
2003-173226 | Jun 2003 | JP |
2003-178257 | Jun 2003 | JP |
2003-198975 | Jul 2003 | JP |
2003-263256 | Sep 2003 | JP |
2003-330613 | Nov 2003 | JP |
2003-330700 | Nov 2003 | JP |
2004-118434 | Apr 2004 | JP |
2004-220128 | Aug 2004 | JP |
2004-246607 | Sep 2004 | JP |
2004-363707 | Dec 2004 | JP |
2004-363892 | Dec 2004 | JP |
2005-43676 | Feb 2005 | JP |
2005-44036 | Feb 2005 | JP |
2005-110286 | Apr 2005 | JP |
2005-130133 | May 2005 | JP |
2005-150936 | Jun 2005 | JP |
2005-185361 | Jul 2005 | JP |
2005-269243 | Sep 2005 | JP |
2005-328242 | Nov 2005 | JP |
2005-341387 | Dec 2005 | JP |
2005-341411 | Dec 2005 | JP |
2005-352924 | Dec 2005 | JP |
2006-80878 | Mar 2006 | JP |
2006-164275 | Jun 2006 | JP |
2006-166248 | Jun 2006 | JP |
2006-211690 | Aug 2006 | JP |
2006-323502 | Nov 2006 | JP |
2007-526548 | Sep 2007 | JP |
2009-110092 | May 2009 | JP |
2009-289188 | Dec 2009 | JP |
2011-65623 | Mar 2011 | JP |
2012-216027 | Nov 2012 | JP |
2012-238108 | Dec 2012 | JP |
2013-88925 | May 2013 | JP |
2013-89131 | May 2013 | JP |
2013-206141 | Oct 2013 | JP |
2014-56389 | Mar 2014 | JP |
2014-178954 | Sep 2014 | JP |
2015-501022 | Jan 2015 | JP |
2015-97103 | May 2015 | JP |
2015-148946 | Aug 2015 | JP |
2016-24684 | Feb 2016 | JP |
6427703 | Nov 2018 | JP |
1998-032331 | Jul 1998 | KR |
2001-0105317 | Nov 2001 | KR |
2003-0088374 | Nov 2003 | KR |
10-2005-0052720 | Jun 2005 | KR |
10-2005-0078690 | Aug 2005 | KR |
10-0537280 | Dec 2005 | KR |
10-2006-0135056 | Dec 2006 | KR |
10-1417286 | Jul 2014 | KR |
10-2016-0003112 | Jan 2016 | KR |
10-2016-0065174 | Jun 2016 | KR |
10-2023663 | Sep 2019 | KR |
1286708 | Sep 2007 | TW |
201142627 | Dec 2011 | TW |
201201113 | Jan 2012 | TW |
201216124 | Apr 2012 | TW |
201234280 | Aug 2012 | TW |
201237764 | Sep 2012 | TW |
201305925 | Feb 2013 | TW |
200008757 | Feb 2000 | WO |
200038041 | Jun 2000 | WO |
200208881 | Jan 2002 | WO |
2005001680 | Jan 2005 | WO |
2005018129 | Feb 2005 | WO |
2006020304 | Feb 2006 | WO |
2006020305 | Feb 2006 | WO |
2006037545 | Apr 2006 | WO |
2006055675 | May 2006 | WO |
2006115825 | Nov 2006 | WO |
2008005304 | Jan 2008 | WO |
2008030976 | Mar 2008 | WO |
2010117505 | Oct 2010 | WO |
2010117505 | Jan 2011 | WO |
2012071730 | Jun 2012 | WO |
2012140935 | Oct 2012 | WO |
2013048880 | Apr 2013 | WO |
2013169854 | Nov 2013 | WO |
2013169870 | Nov 2013 | WO |
2013169877 | Nov 2013 | WO |
2014166114 | Oct 2014 | WO |
2014197340 | Dec 2014 | WO |
2014200736 | Dec 2014 | WO |
2014205648 | Dec 2014 | WO |
2015087084 | Jun 2015 | WO |
2015094587 | Jun 2015 | WO |
2015122885 | Aug 2015 | WO |
2017027632 | Feb 2017 | WO |
Entry |
---|
Decision to Grant received for European Patent Application No. 19171354.4, dated Jun. 30, 2022, 2 pages. |
Office Action received for Japanese Patent Application No. 2020-205139, dated Jun. 27, 2022, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Advisory Action received for U.S. Appl. No. 14/292,138, dated Aug. 30, 2018, 6 pages. |
Advisory Action received for U.S. Appl. No. 14/292,138, dated May 10, 2019, 7 pages. |
Advisory Action received for U.S. Appl. No. 14/846,574, dated Jul. 31, 2020, 8 pages. |
Advisory Action received for U.S. Appl. No. 16/270,396, dated Apr. 9, 2020, 5 pages. |
Advisory Action received for U.S. Appl. No. 16/454,884, dated Jan. 1, 2021, 6 pages. |
Anonymous, “Swipe to Edit Using BetterTouchTool: Mac Automation Tips”, Mac Automation Tips , XP55217837 , Retrieved from the Internet: URL:https:jjmacautomationtips.wordpress.com/2011/03/11/swipe-to-edit-using-bettertouchtool/, Mar. 11, 2011, 1 page. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/782,380, dated Apr. 27, 2021, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 14/846,574, dated Feb. 3, 2020, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 14/846,574, dated Jan. 14, 2021, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 14/846,574, dated Jul. 21, 2020, 7 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/145,033, dated Apr. 30, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/145,033, dated Jun. 29, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/145,033, dated Nov. 24, 2020, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/245,140, dated Apr. 2, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/245,140, dated Feb. 1, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/245,140, dated Sep. 16, 2020, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/270,396, dated Apr. 6, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/270,396, dated Feb. 22, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/270,396, dated Sep. 14, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/454,884, dated Dec. 4, 2020, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/454,884, dated Jun. 2, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/572,314, dated Aug. 11, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/572,314, dated Dec. 16, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/572,314, dated Mar. 25, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/601,064, dated Dec. 14, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/736,711, dated Oct. 16, 2020, 3 pages. |
Archos Team, “English Language User Manual Pocket Media Assistant PMA430(TM) Video Player & Recorder/Music & Audio/ Wifi /Linux/Personal Information Manager (PIM)”, XP055525286, Retrieved on Nov. 20, 2018, Dec. 31, 2015, 39 pages. |
Board Opinion received for Chinese Patent Application No. 200780001219.1, dated Mar. 25, 2015, 7 pages. |
Board Opinion received for Chinese Patent Application No. 200780001219.1, dated Sep. 18, 2014, 10 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 19724963.4, dated Jun. 22, 2021, 2 pages. |
Certificate of Examination received for Australian Patent Application No. 2019100490, dated Oct. 16, 2019, 2 pages. |
Chavda, Prekesh, “Swipe to Edit”, Dribbble, XP55217832 , Retrieved from the Internet:URL: https://dribbble.comjshots/1320750-Swipe-to-Edit-animation, Nov. 21, 2013, 7 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/265,676, dated Aug. 26, 2019, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/290,935, dated Dec. 18, 2017, 6 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/614,276, dated Dec. 10, 2018, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/663,070, dated Nov. 5, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/663,070, dated Nov. 18, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/663,070, dated Oct. 20, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/736,711, dated Jun. 17, 2021, 6 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/736,711, dated May 17, 2021, 6 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/782,380, dated Jul. 16, 2021, 6 pages. |
Das et al., “A statistical-topological feature combination for recognition of handwritten numerals”, Applied Soft Computing, vol. 12, 2012, pp. 2486-2495. |
Decision on Appeal received for Korean Patent Application No. 10-2017-7023591, dated Apr. 14, 2020, 30 pages. |
Decision to Grant received for Danish Patent Application No. PA201670624, dated Feb. 5, 2018, 3 pages. |
Decision to Grant received for Danish Patent Application No. PA201670626, dated Mar. 21, 2018, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201870385, dated Mar. 26, 2020, 2 pages. |
Decision to Grant received for European Patent Application No. 12175086.3, dated Nov. 10, 2016, 3 pages. |
Decision to Grant received for European Patent Application No. 15716372.6, dated Aug. 16, 2019, 2 pages. |
Decision to Grant received for European Patent Application No. 16844879.3, dated Sep. 24, 2020, 2 pages. |
Decision to Grant received for European Patent Application No. 17173810.7, dated Apr. 4, 2019, 2 pages. |
Decision to Grant received for European Patent Application No. 17211174.2, dated Aug. 29, 2019, 2 pages. |
Decision to Refuse received for European Patent Application No. 12175083.0, dated Dec. 14, 2018, 11 Pages. |
“Docomo PRIME series F-04B, user's manual, NTT DOCOMO”, Inc., Mar. 31, 2010, 21 pages. |
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 12175083.0, dated Oct. 26, 2012, 7 pages. |
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 12175086.3, dated Dec. 4, 2012, 7 pages. |
Extended European Search Report received for European Patent Application No. 17211174.2, dated Mar. 27, 2018, 13 pages. |
Extended European Search Report received for European Patent Application No. 16844879.3, dated Mar. 1, 2019, 6 pages. |
Extended European Search Report received for European Patent Application No. 17173810.7, dated Oct. 17, 2017, 24 pages. |
Extended European Search Report received for European Patent Application No. 19171354.4, dated Sep. 23, 2019, 11 pages. |
Extended European Search Report received for European Patent Application No. 20197945.7, dated Feb. 9, 2021, 8 pages. |
Extended European Search Report received for European Patent Application No. 16807953.1, dated Dec. 4, 2018, 7 pages. |
Filipowicz, Luke, “How to use the QuickType keyboard in iOS 8”, available online at <https://www.imore.com/comment/568232>, Oct. 11, 2014, pp. 1-17. |
Final Office Action received for U.S. Appl. No. 14/502,711, dated Sep. 22, 2017, 27 pages. |
Final Office Action received for U.S. Appl. No. 11/549,624, dated Apr. 10, 2009, 9 pages. |
Final Office Action received for U.S. Appl. No. 11/549,624, dated Feb. 1, 2010, 9 pages. |
Final Office Action received for U.S. Appl. No. 11/620,641, dated Jun. 25, 2010, 31 pages. |
Final Office Action received for U.S. Appl. No. 11/850,635, dated Apr. 24, 2012, 10 pages. |
Final Office Action received for U.S. Appl. No. 11/850,635, dated Jan. 28, 2011, 21 pages. |
Final Office Action received for U.S. Appl. No. 12/163,899 dated Apr. 13, 2012, 16 pages. |
Final Office Action received for U.S. Appl. No. 13/559,495, dated Sep. 8, 2014, 7 pages. |
Final Office Action received for U.S. Appl. No. 14/290,935, dated Apr. 10, 2017, 15 pages. |
Final Office Action received for U.S. Appl. No. 14/290,945, dated Jan. 21, 2016, 12 pages. |
Final Office Action received for U.S. Appl. No. 14/292,138, dated Jan. 10, 2019, 35 pages. |
Final Office Action received for U.S. Appl. No. 14/292,138, dated Jun. 1, 2018, 31 pages. |
Final Office Action received for U.S. Appl. No. 14/292,138, dated Jun. 3, 2016, 28 pages. |
Final Office Action received for U.S. Appl. No. 14/502,711, dated Apr. 12, 2017, 29 pages. |
Final Office Action received for U.S. Appl. No. 14/503,147, dated Jun. 15, 2017, 18 pages. |
Final Office Action received for U.S. Appl. No. 14/800,378, dated Sep. 7, 2018, 18 pages. |
Final Office Action received for U.S. Appl. No. 14/846,574, dated Jun. 4. 2020, 25 pages. |
Final Office Action received for U.S. Appl. No. 14/846,574, dated May 10, 2019, 36 pages. |
Final Office Action received for U.S. Appl. No. 15/148,417, dated Jul. 17, 2017, 13 pages. |
Final Office Action received for U.S. Appl. No. 15/188,081, dated Dec. 13, 2018, 10 pages. |
Final Office Action received for U.S. Appl. No. 15/662,174, dated Sep. 4, 2019, 19 pages. |
Final Office Action received for U.S. Appl. No. 16/145,033, dated Jul. 6, 2021, 113 pages. |
Final Office Action received for U.S. Appl. No. 16/145,033, dated Sep. 22, 2020, 49 pages. |
Final Office Action received for U.S. Appl. No. 16/245,140, dated Feb. 11, 2021, 23 pages. |
Final Office Action received for U.S. Appl. No. 16/270,396, dated Mar. 6, 2020, 11 pages. |
Final Office Action received for U.S. Appl. No. 16/270,396, dated Oct. 19, 2020, 10 pages. |
Final Office Action received for U.S. Appl. No. 16/454,884, dated Sep. 11, 2020, 28 pages. |
Final Office Action received for U.S. Appl. No. 16/572,314, dated Aug. 31, 2021, 14 pages. |
Final Office Action received for U.S. Appl. No. 16/572,314, dated Dec. 30, 2020, 11 pages. |
Final Office Action received for U.S. Appl. No. 16/601,064, dated Mar. 8, 2021, 8 pages. |
Final Office Action received for U.S. Appl. No. 16/736,711, dated Dec. 10, 2020, 11 pages. |
Final Office Action received for U.S. Appl. No. 15/662,174, dated Sep. 4, 2018, 17 pages. |
Ghosh et al., “Script Recognition—A Review”, IEEE Transactions on Pattern Analysis and MachineIntelligence, vol. 32, No. 12, Dec. 2010, pp. 2142-2161. |
Hazra et al., “Sentiment Learning Using Twitter Ideograms”, 8th Annual Industrial Automation and Electromechanical Engineering Conference, 2017, pp. 115-120. |
Howpc, “Windows XP Manual”, Available at <http://cfile208.uf.daum.net/attach/152FF50A4968C827141411>, Feb. 2003, pp. 1-4. |
Huang et al., “A Hybrid HMM-SVM Method for Online Handwriting Symbol Recognition”, Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, Jinan, 2006, pp. 887-891. |
Ikeda, Masaru, “beGLOBAL SEOUL 2015 Startup Battle: Talkey”, YouTube Publisher, Online Available at: https://www.youtube.com/watch?v=4Wkp7sAAIdg, May 14, 2015, 1 page. |
Inews and Tech, “How To Use The QuickType Keyboard In IOS 8”, Available online at:-http://www.inewsandtech.com/how-to-use-the-quicktype-keyboard-in-ios-8/, Sep. 17, 2014, 6 pages. |
Intention to Grant received for Danish Patent Application No. PA201670624, dated Oct. 17, 2017, 2 pages. |
Intention to grant received for Danish Patent Application No. PA201670626, dated Jan. 26, 2018, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201870385, dated Jan. 24, 2020, 2 pages. |
Intention to Grant received for European Patent Application No. 12175086.3 dated Jun. 28, 2016, 8 pages. |
Intention to Grant received for European Patent Application No. 15716372.6, dated Apr. 3, 2019, 7 pages. |
Intention to Grant received for European Patent Application No. 16844879.3, dated May 11, 2020, 8 pages. |
Intention to Grant received for European Patent Application No. 17173810.7, dated Nov. 21, 2018, 8 pages. |
Intention to Grant received for European Patent Application No. 17211174.2, dated Apr. 9, 2019, 7 pages. |
Intention to Grant received for European Patent Application No. 17211174.2, dated Aug. 20, 2019, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/023946 , dated Dec. 15, 2016, 17 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2007/077777, dated Oct. 13, 2009, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2007/088872, dated Jul. 7, 2009, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040417, dated Dec. 23, 2015, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/025418, dated Dec. 21, 2017, 16 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/046828, dated Mar. 1, 2018, 19 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/048044, dated Mar. 22, 2018, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/024790, dated Nov. 19, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023946 , dated Oct. 12, 2015, 22 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/077777, dated Oct. 8, 2009, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088872, dated May 8, 2008, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040417, dated Sep. 25, 2014, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/025418, dated Jul. 1, 2016, 20 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/046828, dated Dec. 15, 2016, 22 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/048044, dated Oct. 31, 2016, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/024790, dated Sep. 11, 2019, 18 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/028215, dated Aug. 10, 2020, 18 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2019/024790, dated Jul. 18, 2019, 10 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2016/046828, dated Sep. 23, 2016, 2 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2020/028215, dated Jun. 19, 2020, 11 pages. |
K.C. et al., “A Comprehensive Survey on On-Line Handwriting Recognition Technology and its Real Application to the Nepalese Natural Handwriting”, Kathmandu University Journal of Science, Engineering, and Technology, vol. 5, No. 1, Jan. 2009, pp. 31-55. |
Kessentini et al., “A Multi-Stream HMM-based Approach for Off-line Multi-Script Handwritten Word Recognition”, Proceedings of the ICFHR'08, Jan. 1, 2011, 6 pages. |
Komninos et al., “Text Input on a Smart Watch”, IEEE, 2014, pp. 50-58. |
Malaviya et al., “Fuzzy handwriting description language: FOHDEL”, Pattern Recognition, vol. 33,, 2000, pp. 119-131. |
Milic-Frayling et al., “Smartview: Enhanced Document Viewer for Mobile Devices”, Microsoft Technical Report, available at <ftp://ftp.research.microsoft.com/pub/tr/tr-2002-114.pdf>, Nov. 15, 2002, 10 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 12175083.0, dated Dec. 14, 2018, 6 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 15716372.6, dated Mar. 29, 2019, 9 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 15716372.6, dated Feb. 21, 2019, 6 pages. |
Natarajan et al., “Multilingual Machine Printed OCR”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 15, No. 1, 2001, pp. 43-63. |
Natarajan et al., “Multi-lingual Offline Handwriting Recognition Using Hidden Markov Models: A Script-Independent Approach”, Arabic and Chinese Handwriting Recognition, Lecture Notes in Computer Science, Sep. 27, 2006, pp. 231-250. |
Non-Final Office Action received for U.S. Appl. No. 11/620,641, dated Nov. 20, 2009, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/163,899, dated Oct. 7, 2011, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/163,899, dated Sep. 14, 2012, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/291,865, dated Sep. 24, 2015, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/292,138, dated Sep. 10, 2015, 29 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/292,138, dated Sep. 12, 2018, 33 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/502,711, dated Apr. 26, 2018, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/503,147 , dated Nov. 2, 2016, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/502,711, dated Nov. 21, 2016, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/850,635, dated Oct. 6, 2010, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/898,025, dated Jul. 11, 2019, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/549,624, dated Jul. 22, 2009, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/549,624, dated Sep. 30, 2008, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/165,554, dated Nov. 21, 2011, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/458,995, dated Jul. 5, 2012, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/559,495, dated Dec. 16, 2013, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/559,495, dated Dec. 7, 2012, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/959,631, dated Jul. 20, 2015, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/056,350, dated Nov. 13, 2014, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/290,935, dated Jun. 7, 2016, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/290,945, dated Jul. 16, 2015, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/291,722, dated Aug. 26, 2016, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/292,138, dated Aug. 10, 2017, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/292,138, dated Dec. 15, 2016, 25 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/800,378, dated Feb. 23, 2018, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/846,574, dated Nov. 29, 2017, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/846,574, dated Sep. 24, 2020, 29 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/846,574, dated Sep. 30, 2019, 29 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/142,661, dated Jan. 25, 2017, 29 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/148,417, dated Jan. 27, 2017, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/188,081, dated Jun. 8, 2017, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/188,081, dated Mar. 30, 2018, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/275,309, dated Feb. 27, 2018, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/280,749, dated Jan. 17, 2017, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/614,276, dated Jul. 12, 2018, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/662,174, dated Apr. 2, 2019, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/985,570, dated Aug. 16, 2018, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/145,033, dated Feb. 9, 2021, 55 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/145,033, dated Mar. 4, 2020, 50 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/245,140, dated Jun. 2, 2020, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/245,140, dated Oct. 30, 2020, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/270,396, dated Aug. 22, 2019, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/270,396, dated Jun. 12, 2020, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/454,884, dated Jan. 14, 2020, 41 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/505,044, dated Oct. 22, 2020, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/572,314, dated Apr. 21, 2021, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/572,314, dated Aug. 12, 2020, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/601,064, dated Oct. 7, 2020, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/703,472, dated Jan. 12, 2021, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/736,711, dated Jun. 11, 2020, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/782,380, dated Feb. 3, 2021, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 90/012,308, dated Dec. 3, 2012, 47 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/846,574, dated Jun. 22, 2017, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/846,574, dated Sep. 20, 2018, 61 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/143,902, dated Mar. 30, 2017, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/662,174, dated Jan. 10, 2018, 25 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/850,635, dated Jan. 4, 2012, 10 pages. |
Notice of Acceptance received for Australian Patent Application No. 2013200529, dated Feb. 9, 2016, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2016203172, dated Jan. 24, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2017203816, dated Jul. 30, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018203219, dated Jul. 21, 2020, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018260930, dated Nov. 11, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020200191, dated Nov. 30, 2020, 3 pages. |
Notice of Allowance received for Canadian Patent Application No. 2,735,309, dated Dec. 9, 2014, 1 page. |
Notice of Allowance received for Canadian Patent Application No. 2,893,513, dated May 29, 2017, 1 page. |
Notice of Allowance received for Canadian Patent Application No. 2,986,582, dated Mar. 22, 2019, 1 page. |
Notice of Allowance received for Chinese Patent Application No. 201480030897.0, dated Aug. 3, 2018, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201680031609.2, dated Mar. 18, 2021, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201680049868.8, dated Feb. 9, 2021, 4 pages. |
Notice of Allowance received for Chinese Patent Application No. 201710424212.6, dated Mar. 4, 2021, 4 pages. |
Notice of Allowance received for Chinese Patent Application No. 201711258408.9, dated Mar. 12, 2021, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201811136445.7, dated Aug. 11, 2021, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 200780001219.1, dated Apr. 20, 2016, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2012-173257, dated Dec. 1, 2014, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2014-259187, dated Oct. 16, 2020, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2014259188, dated Jan. 6, 2017, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2016-518366, dated May 8, 2017, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2017-108227, dated Feb. 4, 2019, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2017-109294, dated Jun. 24, 2019, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2018-089430, dated Oct. 1, 2018, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2018-203160, dated Mar. 27, 2020, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2019-077312, dated Oct. 30, 2020, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2020-197242, dated May 24, 2021, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2009-7006231, dated Sep. 23, 2014, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2012-7023375, dated Sep. 30, 2014, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2013-7019464, dated Sep. 30, 2014, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2014-7013454, dated Mar. 15, 2016, 6 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2015-7033627, dated May 28, 2018, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2017-0068927, dated Feb. 25, 2019, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2018-7024261, dated Apr. 24, 2019, 7 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2018-7029349, dated Jun. 14, 2019, 6 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2019-0054454, dated Oct. 24, 2019, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2019-7021958, dated Apr. 28, 2020, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2019-7026997, dated Oct. 16, 2020, 6 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-0010129, dated Dec. 1, 2020, 5 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-7016098, dated Dec. 16, 2020, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2021-7001726, dated Apr. 16, 2021, 4 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 103119279, dated Nov. 29, 2018, 5 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 103119324, dated Sep. 30, 2016, 2 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 103119951, dated Aug. 23, 2016, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 15/898,025, dated Nov. 27, 2019, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 12/163,899, dated Apr. 2, 2013, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 11/549,624, dated Jun. 3, 2010, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 11/620,641, dated Apr. 13, 2011, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 11/620,641, dated Mar. 18, 2011, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 11/850,635, dated Jun. 11, 2013, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 12/101,832, dated Feb. 2, 2009, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 12/101,832, dated Sep. 26, 2008, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 12/165,554, dated Apr. 2, 2012, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 13/458,995, dated Nov. 13, 2012, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 13/559,495, dated Aug. 15, 2013, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 13/559,495, dated Dec. 12, 2014, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 13/559,495, dated Jun. 25, 2013, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 13/559,495, dated Mar. 13, 2015, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/056,350, dated Apr. 24, 2015, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 14/056,350, dated Sep. 16, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/290,935, dated Oct. 12, 2017, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 14/290,945, dated Jun. 8, 2016, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 14/291,865, dated Apr. 8, 2016, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 14/502,711, dated Sep. 28, 2018, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 14/503,147, dated Jan. 28, 2019, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/503,147, dated Sep. 12, 2018, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/846,574, dated Feb. 9, 2021, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 15/142,661, dated Feb. 15, 2018, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/142,661, dated Oct. 4, 2017, 22 pages. |
Notice of Allowance received for U.S. Appl. No. 15/148,417, dated Dec. 7, 2017, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 15/188,081, dated Jun. 26, 2019, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/188,081, dated Mar. 20, 2019, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 15/275,309, dated Sep. 27, 2018, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 15/280,749, dated Jul. 11, 2017, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 15/280,749, dated Nov. 29, 2017, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/614,276, dated Jan. 17, 2019, 4 pages. |
Notice of Allowance received for U.S. Appl. No. 15/614,276, dated Oct. 31, 2018, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 15/876,673, dated May 4, 2018, 27 pages. |
Notice of Allowance received for U.S. Appl. No. 15/985,570, dated Mar. 13, 2019, 22 pages. |
Notice of Allowance received for U.S. Appl. No. 16/245,140, dated Jul. 30, 2021, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/245,140, dated May 18, 2021, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 16/265,676, dated Jul. 3, 2019, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 16/270,396, dated Apr. 1, 2021, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/505,044, dated Mar. 4, 2021, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 16/601,064, dated May 17, 2021, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/663,070, dated Sep. 3, 2020, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/703,472, dated Feb. 3, 2021, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/736,711, dated Apr. 21, 2021, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/736,711, dated Jun. 8, 2021, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/782,380, dated Jul. 1, 2021, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/814,770, dated Jun. 1, 2021, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/814,770, dated Sep. 17, 2021, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 13/959,631, dated Jan. 5, 2016, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/056,350, dated Jan. 7, 2016, 5 pages. |
Notice of Amendment Dismissal received for Korean Patent Application No. 10-2016-7016026 , dated Sep. 18, 2017, 10 pages. |
Notice of Intent to Issue Ex-Parte Reexamination Certificate received for U.S. Appl. No. 90/012,308, dated Aug. 23, 2013, 9 pages. |
Office Action received for Australian Patent Application No. 2013200529, dated Dec. 12, 2014, 3 pages. |
Office Action received for Australian Patent Application No. 2016203172, dated Apr. 21, 2017, 4 pages. |
Office Action received for Australian Patent Application No. 2017203816, dated Feb. 12, 2018, 3 pages. |
Office Action received for Australian Patent Application No. 2018203219, dated May 13, 2020, 3 pages. |
Office Action received for Australian Patent Application No. 2018203219, dated Nov. 1, 2019, 5 pages. |
Office Action received for Australian Patent Application No. 2018260930, dated Jun. 26, 2019, 3 pages. |
Office Action received for Australian Patent Application No. 2019100490, dated Jul. 26, 2019, 4 pages. |
Office Action received for Australian Patent Application No. 2019266054, dated Aug. 23, 2021, 4 pages. |
Office Action received for Australian Patent Application No. 2019266054, dated Jun. 29, 2021, 3 pages. |
Office Action received for Australian Patent Application No. 2020200191, dated Sep. 25, 2020, 3 pages. |
Office Action received for Canadian Patent Application No. 2,893,513, dated Jun. 14, 2016, 5 pages. |
Office Action received for Canadian Patent Application No. 2,986,582, dated Sep. 11, 2018, 3 pages. |
Office Action received for Chinese Patent Application No. 201480030897.0, dated Mar. 12, 2018, 10 pages. |
Office Action received for Chinese Patent Application No. 201610525800.4, dated Apr. 10, 2019, 8 pages. |
Office Action received for Chinese Patent Application No. 201610525800.4, dated Aug. 22, 2019, 8 pages. |
Office Action received for Chinese Patent Application No. 201610525800.4, dated Aug. 27, 2018, 13 pages. |
Office Action received for Chinese Patent Application No. 201610525800.4, dated Feb. 18, 2020, 7 pages. |
Office Action received for Chinese Patent Application No. 201680031609.2, dated Aug. 20, 2020, 6 pages. |
Office Action received for Chinese Patent Application No. 201680031609.2, dated Jan. 15, 2020, 20 pages. |
Office Action received for Chinese Patent Application No. 201680049868.8, dated May 25, 2020, 30 pages. |
Office Action received for Chinese Patent Application No. 201680049868.8, dated Oct. 20, 2020, 8 pages. |
Office Action received for Chinese Patent Application No. 201710424212.6, dated Oct. 28, 2019, 20 pages. |
Office Action received for Chinese Patent Application No. 201710424212.6, dated Sep. 9, 2020, 6 pages. |
Office Action received for Chinese Patent Application No. 201711258408.9, dated Jan. 4, 2021, 6 pages. |
Office Action received for Chinese Patent Application No. 201711258408.9, dated Jun. 23, 2020, 14 pages. |
Office Action received for Chinese Patent Application No. 201811136445.7, dated Apr. 14, 2021, 7 pages. |
Office Action received for Chinese Patent Application No. 201811136445.7, dated Oct. 28, 2020, 17 pages. |
Office Action received for Danish Patent Application No. PA201670624, dated Jun. 28, 2017, 3 pages. |
Office Action received for Danish Patent Application No. PA201670624, dated Oct. 20, 2016, 8 pages. |
Office Action received for Danish Patent Application No. PA201670626, dated Jun. 30, 2017, 3 Pages. |
Office Action received for Danish Patent Application No. PA201670626, dated Oct. 24, 2016, 8 pages. |
Office Action received for Danish Patent Application No. PA201770921, dated Apr. 26, 2019, 6 pages. |
Office Action received for Danish Patent Application No. PA201770921, dated Dec. 6, 2018, 6 pages. |
Office Action received for Danish Patent Application No. PA201770921, dated May 3, 2018, 3 pages. |
Office Action received for Danish Patent Application No. PA201870385, dated Aug. 23, 2019, 3 pages. |
Office Action received for European Patent Application No. 07841984.3, dated Jul. 6, 2010, 10 pages. |
Office Action received for European Patent Application No. 07869922.0, dated Dec. 7, 2010, 5 pages. |
Office Action received for European Patent Application No. 07869922.0, dated May 26, 2010, 5 pages. |
Office Action received for European Patent Application No. 121750830, dated Nov. 30, 2015, 5 pages. |
Office Action received for European Patent Application No. 16807953.1, dated Apr. 7, 2021, 4 pages. |
Office Action received for European Patent Application No. 16807953.1, dated Sep. 10, 2020, 4 pages. |
Office Action received for European Patent Application No. 19171354.4, dated Apr. 14, 2021, 8 pages. |
Office Action received for European Patent Application No. 19724963.4, dated Jul. 28, 2020, 6 pages. |
Office Action received for European Patent Application No. 15716372.6, dated Nov. 15, 2017, 8 pages. |
Office Action received for Japanese Patent Application No. 2012-173257, dated Dec. 13, 2013, 2 pages. |
Office Action received for Japanese Patent Application No. 2014-259187, dated Feb. 3, 2017, 4 pages. |
Office Action received for Japanese Patent Application No. 2014-259187, dated Feb. 14, 2020, 44 pages. |
Office Action received for Japanese Patent Application No. 2014-259187, dated Jan. 4, 2018, 6 pages. |
Office Action received for Japanese Patent Application No. 2014259187, dated Mar. 11, 2016, 4 pages. |
Office Action received for Japanese Patent Application No. 2014-259187, dated May 31, 2019, 44 pages. |
Office Action received for Japanese Patent Application No. 2014259188, dated Feb. 1, 2016, 8 pages. |
Office Action received for Japanese Patent Application No. 2016-518366, dated Nov. 7, 2016, 8 pages. |
Office Action received for Japanese Patent Application No. 2017-108227, dated Aug. 6, 2018, 8 pages. |
Office Action received for Japanese Patent Application No. 2017-109294, dated Aug. 3, 2018, 9 pages. |
Office Action received for Japanese Patent Application No. 2017-109294, dated Dec. 14, 2018, 4 pages. |
Office Action received for Japanese Patent Application No. 2018-203160, dated Oct. 11, 2019, 5 pages. |
Office Action received for Japanese Patent Application No. 2019-040836, dated Aug. 14, 2020, 4 pages. |
Office Action received for Japanese Patent Application No. 2019-040836, dated May 15, 2020, 5 pages. |
Office Action received for Japanese Patent Application No. 2019-077312, dated Jul. 17, 2020, 8 pages. |
Office Action received for Japanese Patent Application No. 2020-076922, dated Mar. 19, 2021, 7 pages. |
Office Action received for Japanese Patent Application No. 2020-197242, dated Mar. 12, 2021, 6 pages. |
Office Action received for Korean Patent Application No. 10-2009-7006231, dated Mar. 19, 2014, 5 pages. |
Office Action received for Korean Patent Application No. 10-2012-7023375, dated Nov. 5, 2013, 8 pages. |
Office Action received for Korean Patent Application No. 10-2013-7019464, dated Nov. 5, 2013, 6 pages. |
Office Action received for Korean Patent Application No. 10-2014-7013454, dated Apr. 17, 2015, 11 pages. |
Office Action received for Korean Patent Application No. 10-2014-7013454, dated Aug. 11, 2014, 11 pages. |
Office Action received for Korean Patent Application No. 10-2014-7013455, dated Apr. 14, 2015, 8 pages. |
Office Action received for Korean Patent Application No. 10-2014-7013455, dated Aug. 11, 2014,12 pages. |
Office Action received for Korean Patent Application No. 10-2014-7013455, dated Jan. 28, 2016, 7 pages. |
Office Action received for Korean Patent Application No. 10-2015-7033627, dated Jul. 26, 2017, 5 pages. |
Office Action received for Korean Patent Application No. 10-2016-7016026 , dated Apr. 24, 2017, 7 pages. |
Office Action received for Korean Patent Application No. 10-2016-7016026 , dated Jul. 29, 2016, 9 pages. |
Office Action received for Korean Patent Application No. 10-2017-0068927, dated Jun. 11, 2018, 14 pages. |
Office Action received for Korean Patent Application No. 10-2017-7023591, dated Oct. 31, 2017, 12 pages. |
Office Action received for Korean Patent Application No. 10-2017-7023591, dated Sep. 10, 2018, 7 pages. |
Office Action received for Korean Patent Application No. 10-2018-7024261, dated Oct. 24, 2018, 5 pages. |
Office Action received for Korean Patent Application No. 10-2018-7029349, dated Dec. 17, 2018, 8 pages. |
Office Action received for Korean Patent Application No. 10-2019-0054454, dated May 20, 2019, 7 pages. |
Office Action received for Korean Patent Application No. 10-2019-7021958, dated Oct. 21, 2019, 5 pages. |
Office Action received for Korean Patent Application No. 10-2019-7026997, dated May 7, 2020, 10 pages. |
Office Action received for Korean Patent Application No. 10-2019-7026997, dated Nov. 18, 2019, 9 pages. |
Office Action received for Korean Patent Application No. 10-2020-0010129, dated Jul. 27, 2020, 11 pages. |
Office Action received for Korean Patent Application No. 10-2020-7016098, dated Jun. 15, 2020, 5 pages. |
Office Action received for Korean Patent Application No. 10-2021-0024638, dated May 6, 2021, 9 pages. |
Office Action received for Korean Patent Application No. 10-2021-7005264, dated Apr. 16, 2021, 9 pages. |
Office Action received for Korean Patent Application No. 10-2021-7022553, dated Aug. 20, 2021, 10 pages. |
Office Action received for Taiwanese Patent Application No. 103119279, dated Aug. 1, 2018, 14 pages. |
Office Action received for Taiwanese Patent Application No. 103119279, dated Dec. 21, 2016, 15 pages. |
Office Action received for Taiwanese Patent Application No. 103119279, dated May 4, 2016, 13 pages. |
Office Action received for Taiwanese Patent Application No. 103119279, dated Sep. 21, 2015, 21 pages. |
Office Action received for Taiwanese Patent Application No. 103119324, dated Mar. 10, 2016, 23 pages. |
Office Action received for Taiwanese Patent Application No. 103119816, dated Jun. 22, 2016, 9 pages. |
Office Action received for Taiwanese Patent Application No. 103119951, dated Nov. 20, 2015, 6 pages. |
Office Action received for Taiwanese Patent Application No. 103119952, dated Oct. 8, 2015, 16 pages. |
Office Action received for Taiwanese Patent Application No. 103119952, dated Apr. 27, 2016, 2 pages. |
Pham, Dũngv. , “Online handwriting recognition using multi convolution neural networks”, In Proceedings of the 9th International Conference on Simulated Evolution and Learning (SEAL'12). Springer-Verlag, Berlin, Heidelberg, 2012, pp. 310-319. |
Pogue, David, “iPhone: The Missing Manual”, Aug. 2007, 306 pages. |
Quick Type Keyboard on iOS 8 Makes Typing Easier, Online available at: < https://www.youtube.com/watch?v=0CldLR4fhVU >, Jun. 3, 2014, 3 pages. |
Result of Consultation received for European Patent Application No. 16807953.1, dated Sep. 24, 2020, 3 pages. |
Result of Consultation received for European Patent Application No. 19724963.4, dated Jul. 8, 2021, 3 pages. |
Result of Consultation received for European Patent Application No. 19724963.4, dated May 31, 2021, 3 pages. |
Ritchie, Rene, “QuickType keyboard in iOS 8: Explained”, Retrieved via URL: https://www.imore.com/quicktype-keyboards-ios-8-explained, Jun. 21, 2014, pp. 1-19. |
Rodríguez-Serrano et al., “Handwritten word-spotting using hidden Markov models and universal vocabularies”, Pattern Recognition, vol. 42, 2009, pp. 2106-2116. |
Rubine D., “Specifying Gestures by Example”, Computer Graphics vol. 25, No. 4. Jul. 1991, pp. 329-337. |
Search Report and Opinion received for Danish Patent Application No. PA201870385, dated Nov. 16, 2018, 10 pages. |
Search Report received for Danish Patent Application No. PA201770921, dated Jan. 23, 2018, 7 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 07841984.3, dated Jun. 28, 2011, 18 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 12175083.0, dated Jun. 25, 2018, 9 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 19724963.4, dated Dec. 23, 2020, 8 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 15716372.6, dated Jul. 13, 2018, 9 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 07841984.3, dated Dec. 22, 2015, 11 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 14/846,574, dated Apr. 15, 2021, 3 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 14/846,574, dated Apr. 30, 2021, 3 pages. |
Suresh et al., “Fuzzy technique-based recognition of handwritten characters”, Image and Vision Computing, vol. 25, 2007, pp. 230-239. |
Tokuda, Ichiro, “Built-in software: Inspirium”, vol. 63, No. 4, Fujitsu Limited, Jul. 10, 2012, 9 pages. |
Tomic et al., “Emoticons”, FIP—Journal of Finance and Law, vol. 1, No. 1, 2013, pp. 35-42. |
Warren, Tom, “Microsoft Android Wear keyboard”, Online Available at <https://www.youtube.com/watch?v=_lu7bUKKrJE>, Oct. 11, 2014, 4 pages. |
Wikipedia, “Framebuffer”, Retrieved from the Internet https://en.wikipedia.org/wiki/Framebuffer, [retrieved on Dec. 7, 2015], pp. 1-7. |
Yoshino, Mariko, “Let's use! Outlook Express”, Nikkei PC Beginners, Nikkei Business Publications, Inc., vol. 7, No. 24, Dec. 13, 2002, 75 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/385,547, dated May 2, 2022, 5 pages. |
Board Decision received for Chinese Patent Application No. 201610525800.4, dated Feb. 21, 2022, 13 pages (1 page of English Translation and 12 pages of Official Copy). |
Board Opinion received for Chinese Patent Application No. 201610525800.4, dated Dec. 22, 2021, 8 pages (2 pages of English Translation and 6 pages of Official Copy). |
Corrected Notice of Allowance received for U.S. Appl. No. 17/373,272, dated Apr. 26, 2022, 5 pages. |
Decision on Appeal received for U.S. Appl. No. 16/454,884, dated Feb. 16, 2022, 12 pages. |
Decision to Grant received for European Patent Application No. 19724963.4, dated Feb. 3, 2022, 2 pages. |
Extended European Search Report received for European Patent Application No. 22152524.9, dated May 2, 2022, 10 pages. |
Intention to Grant received for European Patent Application No. 19171354.4, dated Mar. 24, 2022, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/028215, dated Dec. 16, 2021, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/385,547, dated Feb. 3, 2022, 15 pages. |
Notice of Acceptance received for Australian Patent Application No. 2019266054, dated Nov. 25, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020260488, dated Nov. 25, 2021, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2019-040836, dated Nov. 26, 2021, 16 pages (1 page of English Translation and 15 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2021-104255, dated Dec. 20, 2021, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2022-004546, dated Apr. 25, 2022, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2021-0024638, dated Nov. 22, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 17/373,272, dated Feb. 9, 2022, 10 pages. |
Office Action received for Australian Patent Application No. 2020273352, dated Jan. 21, 2022, 3 pages. |
Office Action received for Chinese Patent Application No. 202110446637.3, dated Dec. 20, 2021, 19 pages (9 pages of English Translation and 10 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2021-7022553, dated Jan. 24, 2022, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Record of Oral Hearing received for U.S. Appl. No. 16/454,884, dated Feb. 14, 2022, 13 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/385,547, dated Aug. 1, 2022, 4 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 16/145,033, dated Aug. 4, 2022, 10 pages. |
Office Action received for Chinese Patent Application No. 202110446637.3, dated Jul. 11, 2022, 9 pages (4 pages of English Translation and 5 pages of Official Copy). |
Final Office Action received for U.S. Appl. No. 17/385,547, dated Jun. 10, 2022, 14 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020273352, dated May 25, 2022, 3 pages. |
Office Action received for Korean Patent Application No. 10-2022-7010233, dated May 30, 2022, 10 pages (4 pages of English Translation and 6 pages of Official Copy). |
Advisory Action received for U.S. Appl. No. 16/145,033, dated Nov. 2, 2021, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/145,033, dated Oct. 7, 2021, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/782,380, dated Oct. 27, 2021, 7 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 16/454,884, dated Sep. 17, 2021, 33 pages. |
Intention to Grant received for European Patent Application No. 19724963.4, dated Sep. 20, 2021, 7 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 19724963.4, dated Sep. 3, 2021, 6 pages. |
Notice of Allowance received for Japanese Patent Application No. 2020-076922, dated Sep. 13, 2021, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2021-7005264, dated Nov. 15, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
NTT DOCOMO, Inc., “Ascend D2 HW-03E User Manual”, 2013, 196 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)). |
Office Action received for Australian Patent Application No. 2020260488, dated Oct. 15, 2021, 3 pages. |
Office Action received for Australian Patent Application No. 2020273352, dated Nov. 15, 2021, 5 pages. |
Office Action received for Japanese Patent Application No. 2020-205139, dated Nov. 12, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2021-104255, dated Oct. 1, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2021-7005264, dated Aug. 31, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 17/140,671, dated Sep. 6, 2022, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 17/385,547, dated Aug. 24, 2022, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/454,884, dated May 18, 2022, 9 pages. |
Office Action received for Chinese Patent Application No. 202110446637.3, dated Apr. 8, 2022, 15 pages (7 pages of English Translation and 8 pages of Official Copy). |
Decision of Appeal received for Korean Patent Application No. 10-2021-7022553, dated Aug. 31, 2022, 27 pages (2 pages of English Translation and 25 pages of Official Copy). |
Supplemental Notice of Allowance received for U.S. Appl. No. 17/140,671, dated Sep. 14, 2022, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20220057931 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
62856037 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16814770 | Mar 2020 | US |
Child | 17519229 | US |