The invention relates generally to computer keyboards, and more specifically, to keyboards that provide a surface on which a computer mouse can be operated and also provide a movable numeric keypad that can be stored below that surface.
A computer keyboard has a core set of keys that conform to a QWERTY layout or otherwise provide basic punctuation and symbols. Other sets of keys have become standard and have contributed to the increasing size of a keyboard. For example, a computer keyboard commonly has a set of function keys labelled “F1” through “F12”. These are normally arranged in a straight line above the core set of alphanumeric keys and below an upper lengthwise edge of the keyboard. The software function triggered by any particular function key changes with the currently active software application. The advantage obtained is that a software application can assign a software function to a single function key rather than a core alphanumeric key in combination with one or more modifier keys, which adds to complexity of operation.
It is also common for a computer keyboard to have a distinct set of arrow keys, four in total. By convention, arrow keys are used in software applications that allow changes to character or line position in displayed text, those that allow creation and then movement of graphics on a display page, and those like spread sheets that allow focus to be moved between distinct cells. Similarly, a set of page navigation keys is commonly provided for use by software applications that generate or display scrolling electronic documents. These keys are commonly labelled “page up”, “page down”, “home” and “end” and usually include a “help” key that by convention accesses a software help file, and a forward delete key labelled “del” that deletes text character-by-character in a forward direction from the cursor position. Once again, a single key is available to trigger a software function that is similar, but not necessarily identical, in many software applications.
A numeric keypad is commonly built into the right side of a computer keyboard. The keypad usually groups keys labelled “0” through “9”, a decimal point “.”, and basic mathematical function keys such as “+, “*”, “−”, “/” and “=”. Keys such as “enter”, “clear” and “num lock” are commonly included and used to trigger similar functions in software applications that perform mathematical operations. Other keys associated with the keyboard permit such data and function entry. However, there is an advantage to having all keys required to perform mathematical operations grouped for easy access in one location.
A computer keyboard often has a thin-film circuit board that cooperates with the various keys to indicate with open or closed circuit paths which keys are currently pressed. Each key is typically associated with a plastic cap bearing the character or symbol the key produces, and a bell-shaped elastomeric spring that supports the key cap and cooperates with the conductive traces on the thin film circuit board to indicate when the key has been pressed. A keyboard processor is coupled to the circuit to detect which keys are pressed and to produce a key state signal encoding the identify of all such keys and transmitting the key state signal via a keyboard output port to an associated computer for processing by the operating system and the current software application.
A computer's operating system now commonly updates the position and appearance of a screen cursor in response to displacement of a computer mouse. The system also allows the user to specify choices with “mouse clicks”; that is, it allows a user to select files and interact with the computer by pressing a mouse button while the screen cursor is positioned over a particular screen object, such as a desktop file icon, a menu item, a dialog item or the like. The mouse normally generates signals indicating differential changes in position, which, together with mouse clicks, must be continually reported to the operating system associated with the computer. To that end, the mouse may be wired directly to the computer, for example via a universal system bus, or may be wired directly to the computer via a wireless link. The mouse may alternatively be coupled to the computer through the keyboard, also by wired or wireless connection, in which case differential changes in the position of the mouse or changes in the effective position indicated by a stationary roller mouse, together with mouse clicks, are relayed to the computer via the keyboard output port.
A significant problem with a conventional keyboard is that the user is often obliged to operate the mouse on a special pad adjacent to the keyboard or on a smooth and mildly adherent desk surface. A particular problem arises with pull-out keyboard trays associated with computer desks and furniture. The keyboard tray will typically have a length of about 21 inches while a conventional keyboard with the various sets of keys described above will have a typical length of about 19 inches, leaving inadequate room on the tray for operation of the mouse. To address this problem, the user is obliged to find an alternative location to place the mouse. This location is typically on the desk a considerable distance from the keyboard and requires the user to reach beyond the keyboard repeatedly to perform mouse operations. The result is an ergonomically incorrect arrangement that leads to muscle strain regardless whether the mouse is a stationary roller-ball or a moveable device.
In one aspect, the invention provides a keyboard device that attempts to conserve desk space and position a mouse for maximum ergonomic efficiency. The device includes an alphanumeric keyboard optionally fitted with sets of function keys, document navigation keys, and arrow keys, all labelled in accord with conventional practice. The device also includes a numeric keypad that is movable relative to the keyboard. The keyboard has structure defining a platform on which the mouse can operate smoothly (rolling or sliding) and defines a compartment below that surface in which the numeric keypad can be stored. Electrical connector means couple the alphanumeric keyboard and the numeric keypad so that any key state indicated by the keypad is accessible from within the keyboard as for conventional processing by a keyboard processor. The electrical connector means have sufficient length to accommodate movement of the numeric keypad between the storage compartment and an operative position in which a user can enter numeric data. The keypad is preferably mounted to the device for sliding movement between its storage and operative positions, and detent or stop means prevent displacement beyond the operative position.
One advantage is that the numeric keypad can be stored when not required. Also, the overall area required for the device together with an associated mouse is not increased over requirements for a conventional keyboard since the keypad is stored below the surface on which the mouse rolls or slides. Function keys may typically be oriented in a straight line inset from an upper lengthwise edge of the keyboard casing as in the prior art. To further reduce desk space requirements, document navigation keys and arrow keys may be oriented in two distinct groups between the mouse pad and the upper edge of the keyboard casing but laterally offset from one another. Also, the hand movement required from mouse to document navigation keys, QWERTY keys or arrow keys is minimized and quite natural, reducing the likelihood of repetitive muscle strain. As well, the proposed keyboard configuration allows the user to be physically centered in the QWERTY area of the keyboard thus reducing repetitive muscle strain caused by being off center as is the case with the conventional keyboard/mouse arrangement, the mouse pad being placed beside the keyboard on desk or tray.
In preferred form, the alphanumeric keyboard comprises a first casing with an upper surface, a first multiplicity of keys protruding from the upper surface, and a primary circuit board mounted in the casing and cooperating with the first keys in a conventional manner to indicate the key state of the keyboard. A processor is coupled to the primary circuit board to generate in a conventional manner a key state signal identifying which of the keys are pressed and to transmit the signal via an output port associated with the keyboard to an associated computer. The numeric keypad has a second casing with an upper surface, a second multiplicity of keys protruding from the upper surface of the second casing, and a secondary circuit board mounted in the second casing and cooperating in a conventional manner with the keys to indicate the key state of the numeric keypad. The electrical connector means couple the secondary circuit board associated with the keypad to the primary circuit board associated with the keyboard so that the processor generates and applies to the output port a master key state signal corresponding to the combined key states of the alphanumeric keyboard and the numeric keypad. In effect, the single keyboard circuit used in a conventional keyboard to identify the state of all keys, including those of a fully integrated, stationary numeric keypad, is divided into two distinct parts and housed in two distinct casings. These circuit boards are joined by electrical connector means, such as a ribbon cable, to function as one board requiring only one keyboard processor, and the electrical connector means have sufficient length that the numeric keypad can be displaced fully from its storage position to its operative position.
Other aspects of the invention will be apparent from a description below of preferred embodiments and will be more specifically defined in the appended claims.
The invention will be better understood with reference to drawings in which:
Reference is made to
A mouse pad 22 is adhered to the upper surface 20 of the case 16 where the numeric keypad 14 would normally be located. The mouse pad 22 effectively defines a platform that provides a smooth near-horizontal rolling surface 24 on which a mouse 26 can roll or slide. The case 16 also defines an internal compartment 32 beneath the mouse pad 22 and dimensioned to store the numeric keypad 14. As apparent in
Certain keys have been grouped and positioned on the keyboard 12 to reduce total space and length requirements. As is conventional, the keyboard 12 includes twelve function keys grouped in three sets S1, S2, S3 of four keys and collectively oriented in a straight line, above the alphanumeric keys and inset from an upper lengthwise edge 52 of the keyboard 12. Four of the function keys S3 (labelled “F9” through “F12”) are detailed in
The numeric keypad 14 is associated with a secondary circuit board 74 similar in overall construction to the primary circuit board 56 in the alphanumeric keyboard 12. When keys in the numeric keypad 14 are operated, paths in the secondary circuit 76 are opened and closed as in the prior art. The keypad circuit 76 is associated with a set of parallel electrical conductor traces 78 adjacent one edge of the keypad circuit board 74, and the keyboard circuit 58 has a similar set of conductor traces 80 proximate an adjacent edge of the primary circuit board 56. The two sets 78, 80 of conductor traces on the adjacent board edges are coupled by a ribbon cable 82 and two conventional end-connectors 84, 86. The end-connectors 84, 86 simply place a different one of the conductors in one set of conductive traces 78 in electrical contact with a corresponding one of the conductors in the other set of conductive traces 80. The result is that the open or closed states of the conductive paths in the secondary keypad circuit 76 are made available within the keyboard 12 and ultimately available to the keyboard microprocessor 64.
The primary and secondary circuits 58, 76 may simply be viewed as corresponding to the one circuit normally found in a conventional prior art keyboard. That circuit is effectively divided into two parts to allow the secondary circuit 76 to move with the numeric keypad 14 in order to respond to the pressing of the keys 36 associated with the numeric keypad 14. The parallel conductor traces 78, 80 and the ribbon cable 82 effectively permits the two circuit boards 56, 74 to function as a single board for purposes of operation of the keyboard microprocessor 64, and the length of the ribbon cable 82 is simply selected to accommodate the range of travel of the numeric keypad 14 between its stored and operative orientations.
It will be appreciated that a particular embodiment of the invention has been described and that modifications may be made therein without departing from the spirit of the invention or the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2513069 | Mar 2005 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA06/00289 | 3/3/2006 | WO | 00 | 2/25/2008 |