The present application claims the benefit of priority based on Japanese Patent Application No. 2008-053614, filed on Mar. 4, 2008, disclosure of which is incorporated herein in its entirety by reference.
1. Field of the Invention
The present invention relates to a keyboard having a plurality of key tops which are supported so as to permit relative movement with respect to a substrate.
2. Description of Related Art
In general, a keyboard is used as an input device in the field of an electronic apparatus such as a desk-top personal computer, and the like. A keyboard has a plurality of key tops having a contact type switch on the underside thereof. A key top is mounted with an axis portion slidably fitted into a housing having a guide hole, and can slide vertically up and down along the guide hole. When the key top is depressed against an elastic force of a resilient member such as a rubber sheet or a spring, a switch is depressed in interlock with the movement of the key top. The key top can be pulled upward to be removed from the housing, and then the rubber member can be replaced in order to customize the feeling of key touch.
An example of a conventional key top is disclosed in Japanese Patent Publication (Kokoku) No. H07-70273 (JP-07-70273-B1). On page 3, lines 22-44, JP-07-70273-B1 includes a description that “Housing 30 is generally comprised of housing portion 31, flange 32, leg portion 33, engaging claw 34, and bottom plate 35. Flange 32 extends laterally from the lower portion of both sides of housing portion 31, and as shown together in
Also, Japanese Patent Publication (Kokai) No. H05-166437 (JP-05-166437-A1) discloses another example of conventional keyboard. In paragraph 0011 to 0015, JP-05-166437-A1 includes a description that “Stem 3 which is disposed in housing 2 and moves vertically in housing 2, is integrally fitted to key top 1 that is operated by depression with a finger. At the position opposed to stem 3, rubber 5, membrane sheet 6, and leg portions 4 penetrating through mounting plate 8 are provided, and hooks 4a are formed at the distal ends of leg portions 4. Rubber 5, membrane sheet 6 having movable contact 7a and fixed contact 7b, and mounting plate 8 are respectively disposed at the lower portion of housing 2. Rubber 5 abuts to the lower face of stem 3 and deforms when a depressing force acts on key top 1, and with this deformation presses membrane sheet 6 to bring movable contact 7a into contact with fixed contact 7b. Rubber 5 functions, when the depressing force is released, so as to release the deformation, and restore key top 1 to the initial state. At the positions of rubber 5 corresponding to leg portions 4 of stem 3, holes 5a for inserting leg portions 4 are formed. At corresponding positions of membrane sheet 6 and mounting plate 8, holes 6a, 8a for inserting hooks 4a formed at the distal ends of leg portions 4 of stem 3 are respectively formed. Therefore, the size of holes 6a, 8a is larger than the size of holes 5a.”
In a keyboard having the construction in which individual pieces of housings are attached to a switch panel, wherein the keyboard has the structure such that housings are attached from the front side of the switch panel, a direction for removing a key top is same as a direction of pulling out a housing, and therefore, there is a problem that the housing may come out unintentionally together with the key top.
It is an object of the present invention to provide a keyboard which can prevent housing from coming out unintentionally together with a key top when a key top has to be removed. Further, it is another object of the present invention to provide a keyboard which exhibits an improved reliability of switching operation of a membrane sheet.
In order to resolve the above-described problem, in accordance with an aspect of the present invention, there is provided a keyboard having a base panel, a switch panel which has a hole portion at predetermined position and is disposed on an upper side of the base panel, a membrane sheet which has a contact portion and is disposed between the base panel and the switch panel, a key top which are supported on an upper surface of the switch panel and are adapted to be depressed for switching the contact portion, and a stepped tubular housing which support and guide the key top vertically in up/down direction and which each has a tube portion having a guide hole formed on an upper end for inserting a stem provided integrally with the key top, and on an upper end, has a flange portion that extends laterally around the tube portion and is of a size larger than the hole portion, wherein the housing is inserted from a back side of the switch panel into the hole portion, and wherein the flange portion is attached to a back side of the switch panel.
In accordance with the above-described construction, a direction in which the key top is removed from the keyboard is contrary to a direction in which the housing is pulled off, so that the housing is prevented from coming out together with the key top.
In the above-described keyboard, it is possible to provide a plurality of leg portions on a lower surface of the flange portion capable of abutting to the base panel and to provide a plurality of insertion holes for inserting the leg portions in the membrane sheet at positions corresponding to the leg portions, such that a length of each leg portion is greater than the thickness of the membrane sheet. With such construction, since the leg portions provided on the lower surface of the flange portion are inserted through the insertion holes provided in the membrane sheet so as to abut to the base panel, the membrane sheet is prevented from being pressed by the leg portions. Therefore, expansion and shrinkage of the membrane sheet due to variation of temperature or humidity are not hampered, and troubles in switch operation can be avoided.
In the above-described keyboard, it is possible to provide at least two leg portions at positions that are rotationally symmetric with respect to a center of the flange portion. With such construction, since at least two leg portions are provided in rotational symmetry, the housing can be supported in good balance on the base panel.
In the above-described keyboard, it is also possible to form the flange portion in a shape of a square, and to provide two or four leg portions so as to form each pair in each diagonal direction of the flange, and to provide two or four insertion holes capable of accommodating two or four leg portions. With such construction, when the keyboard is assembled, the housing can be attached to the switch panel at each position rotated by 90 degrees. Thus, a degree of freedom for attaching the housing is increased, and workability of keyboard assembling is improved.
The above and other objects, features and advantages of the present invention will become more apparent from reading following description of the preferred embodiments with reference to appended drawings, in which:
The present invention will be described in detail below with reference to drawings showing specific examples according to embodiments of the invention.
Switch panel 3 is a monolithic metal plate and has a multiplicity of square attaching holes for mounting housings 6 which support key tops 5. Membrane sheet 4 has a laminated structure including upper electrode sheet 25a, lower electrode sheet 25b, and insulating sheet 25c between upper and lower electrode sheets 25a, 25b (see
Key top 5 is fitted into stem 8 or formed integrally with stem 8 to form a depression portion. Stem 8 has stem ring 9 integrally formed at the base side. An opening end at the smaller diameter side of dome-shaped cup rubber 10 is pressed into stem ring 9. An opening end of cup rubber 10 at the larger diameter side abuts to the surface of switch panel 3. Coil spring 11 is provided on stem 8 so as to project downward from the lower surface. The projecting end of the coil spring is adapted to press the contact portion of membrane sheet 4 when key top 5 is depressed. In the keyboard of this embodiment, stem 8 is elastically supported by cup rubber 10 and coil spring 11, so that a user of the keyboard can change the type of cup rubber 10 and coil spring 11 in order to obtain a key touch feeling that is the most suitable for the user.
As shown in
Flange portion 16 is formed in a shape of a square, and has engaging pieces 17 formed on two opposing sides. Claw portion 17a is formed facing outward at the distal end of engaging piece 17. When housing 6 is attached to attaching hole 7 of switch panel 3 from the back surface side thereof, claw portion 17a is latched on the circumferential wall of attaching hole 7. Thus, housing 6 is prevented from carelessly falling off from attaching hole 7 of switch panel 3 at the time of assembly of keyboard 1. When the assembly of keyboard 1 is completed, flange portion 16 is sandwiched between switch panel 3 and membrane sheet 4.
In this embodiment, a pair of rails 18 is provided in parallel to each other on the lower surface of flange portion 16 from one of opposing sides to the other of the opposing sides. As shown in
As has been described above, in accordance with the present embodiment, housing 6 is attached from the back surface side of switch panel 3, and since housing 6 has flange portion 16 of size larger than the size of attaching hole 7, housing 6 is prevented from carelessly coming off toward the front surface side of switch panel 3 by flange portion 16 being caught at attaching hole 7.
Next, referring to
In general, the membrane sheet is formed from resin material such as polyethylene terephthalate (PET), and therefore, expands or shrinks due to temperature variation or humidity variation. Specifically, expansion or shrinkage of membrane 4 having laminated structure may appear as the deformation or flexure of upper and lower electrode sheet 25a, 25b, and electrode 26a, 26b provided on upper and the lower electrode sheet 25a, 25b disposed with a predetermined gap may unintentionally come into contact with each other. Therefore, a keyboard that is to be used in places where variation of temperature or humidity is large should be designed so as to tolerate expansion or flexure of the membrane sheet and the membrane sheet should be designed so as not to be fixed in the keyboard.
In this embodiment, a plurality of leg portions 20 that are capable of abutting to base panel 2 are provided on the lower surface of flange portion 16A, and a plurality of insertion holes 21 for inserting leg portions 20 are provided in membrane sheet 4A, and leg portions 20 are formed longer in length than the thickness of membrane sheet 4A. Thus, leg portions 20 provided on the lower surface of flange portion 16A are prevented from interfering with membrane sheet 4A. Therefore, even when flange portion 16A of housing 6A is sandwiched between switch panel 3 and membrane sheet 4A, housing 6A is supported via legs 20 by base panel 2. Thus, the keyboard is constructed such that membrane 4A is not pressed by housing 6A, and that the expansion and shrinkage of membrane sheet 4A in case of large variation of temperature or humidity can be tolerated.
As shown in
As shown in
In case where housing 6A that supports key top 5 is provided as individual piece for each key top 5 as in the present embodiment, approximately 100 pieces of housings 6A are required for assembling a keyboard, and if housing 6A needs to be attached in a specified definite orientation, assembling of the keyboard may require considerable time. In the present embodiment, however, the shape of housing 6A has rotational symmetry with respect to the center axis, that is, tube portion 14 is cylindrical and flange portion 16A is a square, so that housing 6 needs not be in a specified definite orientation in attaching, and housing 6A may be mounted easily. Strictly speaking, the housing may be attached in any of the four orientations rotated by 90°, 180°, 270° and 360°. Although flange portion 16A is a square in the present embodiment, same effect can be obtained with flange portion 16A formed in the shape of a regular polygon.
Although leg portions 20 are provided at four positions of the lower surface of flange portion 16A in the present embodiment, the number of leg portions 20 is not limited to four, and may be two, or three, as long as housing 6A can be stably supported on base panel 2. If, however, leg portions 20 are provided at two positions in diagonal direction of square flange portion 16A, and same number of insertion holes 21 are provided in membrane sheet 4A, housing 6A needs to be attached in definite orientation in which leg portions 20 coincides with insertion holes 21 in position, so that assembling of keyboard 1A may require considerable time. In such a case, it is also possible not to provide same number of insertion holes 21 as leg portions 20, but to provide four insertion holes. Thus, housing 6A may be rotated less in order to position leg portions 20 to insertion holes 21, and the degree of freedom of attaching housing 6A can be increased.
As has been described above, in accordance with the second embodiment, leg portions 20 are formed on the lower surface of flange portion 16A and insertion holes 21 are formed in membrane sheet 4A for inserting leg portions 20, so that membrane sheet 4A can be constructed so as not to be pressed by housing 6A even when flange portion 16A of housing 6A is between switch panel 3 and membrane sheet 4A, and even if variation of temperature or humidity is large, expansion and shrinkage of membrane sheet 4A can be tolerated. Thus, reliability of contact of the upper and the lower sheet electrode portions of membrane sheet 4A can be increased.
Number | Date | Country | Kind |
---|---|---|---|
2008-053614 | Mar 2008 | JP | national |