Keycaps having reduced thickness

Information

  • Patent Grant
  • 11699558
  • Patent Number
    11,699,558
  • Date Filed
    Monday, October 12, 2020
    4 years ago
  • Date Issued
    Tuesday, July 11, 2023
    a year ago
Abstract
An illuminated glass keycap having a glyph diffuser layer that may diffuse light through a glyph window opened in a background layer. The background layer may be opaque and the glyph window may be transparent. The keycap is adhered to a scissor mechanism positioned above electrical switch circuitry. Included within, below, or adjacent to the scissor mechanism may be one or more light sources positioned to emit light through the keycap, around the perimeter of the keycap, and/or through the background layer.
Description
TECHNICAL FIELD

This disclosure relates generally to input apparatuses for computing devices or other similar information processing devices and, in particular, to thin profile keyboards.


BACKGROUND

A pleasing exterior appearance of an electronic device is often difficult to pair with the market demand for advanced functionality, improved durability, and reduced thickness and weight. Some aesthetically pleasing materials may not be sufficiently durable to include in a device housing and other aesthetically pleasing materials may interfere with the advance functionality of the electronic device. Further, for certain input components such as buttons and keys, a user may physically engage the selected material several hundred thousand times, if not millions of times, over the life of a device.


Many visually pleasing solutions lack the durability for such extended function. This can be especially true when electronic devices and/or associated input devices are made smaller, thinner or otherwise reduced in dimension. Reduced dimensions of keycaps, for example, may lead to those keycaps being less structurally sound and so breaking or otherwise failing earlier during a use cycle than would thicker keycaps made of the same material.


Accordingly, there may be a present need for a durable and aesthetically pleasing external surface for an input device.


SUMMARY

This application provides techniques for forming and manufacturing an illuminated glass keycap for use with a key or keyboard as an input apparatus to an electronic computing device. In certain embodiments, an input apparatus may include a plurality of keys, each key of the plurality of keys including a transparent glass keycap having a top surface, a background layer comprising a glyph window, a glyph diffuser layer, a compressible scissor mechanism configured to activate electrical switch circuitry, and a light source having an on state and an off state. The light source may be oriented to transmit light through the transparent glass keycap. In certain embodiments, the transparent glass keycap is comprised of glass. In certain cases the glass may be a material such as sapphire, a ceramic or another scratch resistant material. Accordingly, the term “glass” may encompass such materials. The perimeter of the glass keycap may be beveled or otherwise polished.


Certain embodiments may relate to or take the form of an illuminated input apparatus having a glyph diffuser layer that may diffuse light through a glyph window. In these embodiments, the background layer may be opaque and the glyph window may be transparent. In other embodiments, the background layer may be translucent and the glyph window may be transparent. In further embodiments, the light source may be a light emitting diode, a light emitting polymer, or a light pipe or other visible light waveguide oriented to direct light through the transparent glass keycap.


Other embodiments described herein may relate to or take the form of an illuminated input apparatus having a light source including at least an on state and an off state. In certain cases, the on state may include a keycap perimeter illumination mode in which the light source may emit visible light proximate or otherwise adjacent to the perimeter of the keycap. In further embodiments, the on state may include a background illumination mode in which the light source may transmit light through the background layer. In this case, the background layer may diffuse the transmitted light before it exits the top surface of the transparent glass keycap. In further embodiments, the on state may include a glyph illumination mode in which the light source may transmit light through a glyph diffuser layer and further through the glyph window.


In other embodiments, the glyph diffuser layer is disposed partially within the glyph window, such that at least a portion of the glyph diffuser layer is coplanar with the background layer. In such an embodiment, or in similar embodiments, the glyph window may be etched from the background layer.


Other embodiments described herein may relate to or take the form of a method for manufacturing a light transmissive keycap for illuminating a keyboard, including the acts of selecting a transparent glass keycap, depositing a background ink layer on a bottom surface of the transparent glass keycap, etching a symbol aperture into the background ink layer, depositing a translucent glyph diffuser layer on the background ink over at least the symbol aperture, and aligning the transparent glass keycap along a vertical axis with a compressible scissor mechanism positioned above electrical switch circuitry. The method may also include beveling the perimeter edges of the transparent glass keycap.


Further embodiments may include positioning a light emitting element below the transparent glass keycap such that light emitted from the light emitting element transmits through the translucent glyph diffuser layer and through the symbol aperture. In certain cases the symbol aperture may be etched in a laser etching process or, in other embodiments, the symbol aperture may be formed by etching in a chemical process.


Other embodiments described herein may relate to or take the form of a keyboard with a plurality of keys, each of the plurality of keys having a keycap. Each keycap may include a glass top layer having at least four beveled edges along the perimeter of a top surface of the keycap, an ink layer disposed along a bottom surface of the glass top layer, a glyph window within the ink layer, and a diffuser fill within the glyph window. The keyboard may also include a light emissive layer, such as a layer of light emitting diodes, positioned below the keys. The keyboard can also include an electrical switch layer that has a number of electrical switches, each associated with an individual key.





BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made to representative embodiments illustrated in the accompanying figures. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the described embodiments as defined by the appended claims.



FIG. 1 is a perspective view of a sample embodiment of a sample keyboard for use with an electronic device.



FIG. 2 is a partially exploded side cross-sectional view of a keycap and supporting structure of the sample keyboard of FIG. 1, taken along line 2-2 of FIG. 1.



FIG. 3A is a top plan view of a keycap showing a symbol as a portion of the embodiment as shown in FIG. 1.



FIG. 3B is a side view of the embodiment shown in FIG. 3A taken along line 3B-3B.



FIG. 3C is a side view of the embodiment shown in FIG. 3A taken along line 3C-3C.



FIG. 3D is a side view of the embodiment shown in FIG. 3A taken along line 3D-3D.



FIG. 3E is a side view of the embodiment shown in FIG. 3A taken along line 3E-3E.



FIG. 4A is an inverted side view of an embodiment showing a sample cross section of a keycap after a background layer is applied.



FIG. 4B is an inverted side view of the embodiment shown in FIG. 4A showing a sample cross section of a keycap after a background layer has been etched to expose portions of a glyph window.



FIG. 4C is an inverted side view of the embodiment shown in FIG. 4B showing a sample cross section of a keycap after a glyph diffuser layer is applied over the background layer and the exposed portions of a glyph window.



FIG. 4D is an inverted side view of the embodiment shown in FIG. 4C showing a sample cross section of a keycap after a glyph diffuser layer is drawn in to occupy the area of the glyph window.



FIG. 4E is an inverted side view of the embodiment shown in FIG. 4D showing a sample cross section of a keycap with the glyph diffuser layer finished to a smooth plane, parallel with the planes of the keycap and the background layer.



FIG. 4F is an inverted side view of the embodiment shown in FIG. 4D showing a sample cross section of a keycap with the glyph diffuser layer finished to a smooth plane, coplanar with a surface of a background layer.



FIG. 5A is a top plan view of a keycap showing illumination of a perimeter portion, a glyph portion, and a background portion in an off state.



FIG. 5B is a top plan view of a keycap showing illumination of a perimeter portion and a background portion in an off state with the illumination of a glyph portion in an on state.



FIG. 5C is a top plan view of a keycap showing illumination of a background portion in an off state with the illumination of a perimeter portion and a glyph portion in an on state.



FIG. 5D is a top plan view of a keycap showing illumination of a perimeter portion, a glyph portion, and a background portion in an on state.



FIG. 5E is a top plan view of a keycap showing illumination of a glyph portion in an off state with the illumination of a perimeter portion and a background portion in an on state.



FIG. 5F is a top plan view of a keycap showing illumination of a glyph portion and a perimeter portion in an off state with the background portion in an on state.



FIG. 6 is a flow chart illustrating operations of a sample method for manufacturing an illuminated input apparatus.





The use of the same reference numerals in different drawings indicates similar, corresponding, or identical items.


DETAILED DESCRIPTION

Embodiments described herein may relate to or take the form of light-transmissive and power efficient input apparatuses with low-profile, durable external surfaces. In particular, certain embodiments may take the form of a fully or partially illuminated keyboard or keypad or individual key having glass keycaps. Such input apparatuses may be used in conjunction with personal computing devices such as laptop computers, tablet computers, or desktop computers as either integrated or peripheral devices. Certain other embodiments may take the form of a fully or partially illuminated button with a glass outer surface for use with other electronic devices, such as televisions, portable media players, cellular telephones, tablet computers, and the like.


One embodiment may be a back-illuminated key associated with a keyboard. The embodiment may include a glass keycap. The glass keycap can have beveled or otherwise polished edges along a top surface. Disposed immediately below the glass keycap may be a background layer formed of ink or another pigment, and may translucent, semi-transparent or opaque. In certain embodiments, the background layer may be applied to the glass keycap in a printing process, a screening process, an immersion process or any other suitable process.


Etched into the background layer may be a glyph, symbol, window, or aperture (collectively, a “glyph window”). The glyph window may take the form of any numeral, symbol or letter of any language, or any information-conveying symbol, appropriately suited to the input device as used. For example, the glyph window may take the form of an English letter or letters or symbols in one embodiment. In another embodiment, the glyph window may take the form of a simplified Chinese character or characters. The glyph window may be etched through the background layer by a laser scribing process, for example. In other embodiments, the glyph window may be etched via a mask and immerse chemical etching process. In still further embodiments, the glyph window may not be etched at all, but may instead be provided by selectively applying a background layer. For example, the background layer may be printed on a surface, such as a top or bottom surface, of the glass keycap in all areas except those reserved for the glyph window. In further embodiments, the glyph window may be formed within the background layer before the background layer is applied to the glass keycap.


A glyph diffuser layer may be disposed below the background layer. The glyph diffuser layer may be formed of a semi-transparent or translucent material that is doped with glass beads or another diffusion dopant. In certain embodiments, the glyph diffuser layer may also include a pigment or ink of a particular color. For example, in certain embodiments titanium oxide may be used to give the glyph diffuser layer a white color when light is transmitted through it. In certain further embodiments, the glyph diffuser layer may be disposed over the background layer with, and/or within the glyph window in a screening, printing, immersion, or any other suitable process. During the application of the glyph diffuser layer to the background layer, unwanted pockets of air may form within the glyph window, trapped by the application of the glyph diffuser layer. In order to remove the unwanted pockets of air, the keycap (with background layer and glyph diffuser layer formed) may be placed in a vacuum chamber such that differential pressure between the pockets and the vacuum cause the glyph diffuser layer to remove the air pockets. In another embodiment, the keycap with background layer and glyph diffuser layer may be placed within an autoclave or other high pressure chamber to facilitate a pressure differential to remove the air pockets.


The glyph diffuser layer may be smoothed or polished to a plane in a subsequent process such that a bottom surface of the glyph diffuser layer is substantially parallel with the top surface of the glass keycap. Once smoothed, the keycap may be attached to a scissor mechanism and other elements of a key, in order to assemble the key. In certain embodiments, the glyph diffuser layer may be polished such that the bottom surface of the layer is coplanar with the bottom of the background layer. In other embodiments, the glyph diffuser layer may be polished such that the bottom surface of the layer is parallel to, but separated by, a specified depth from the bottom surface of the background layer.


Included within, below, or adjacent to the scissor mechanism may be one or more light sources positioned to emit light through the keycap. In certain embodiments, the light source may include or be coupled to a light source such as an organic light-emitting diode (OLED), a light-emitting diode (LED), or any other suitable light source. In a first embodiment, the light source may be positioned to transmit light through the glyph diffuser layer and through the glyph window. In such an embodiment, the background layer may not transmit any of the light emitted by the light source. In this way, when viewing the keycap from above, a glyph may be illuminated.


In a further embodiment, the light source may be positioned to transmit light around the perimeter of the keycap. In this way, when viewing the keycap from above the perimeter of the key (or an area around the key perimeter) may be illuminated. In other words, the keycap may appear to have a halo surrounding its periphery.


In a further embodiment, the light source may be positioned to transmit light through the background layer. In such an embodiment, light may not necessarily pass through the glyph window. In this way, when viewing the keycap from above the background of a glyph may appear illuminated while the glyph itself remains dark.



FIG. 1 is a perspective view of a sample embodiment of an illuminated keyboard 100 for use with an electronic device (not shown). The illuminated keyboard 100 may be a peripheral component of a computing system, or in other embodiments, it may be an integral portion of a computing system. In further embodiments, the illuminated keyboard 100 may have a greater number of keys or a fewer number of keys. The keys may be arranged in various orders or configurations. The illuminated keyboard 100 may have one or more keys 110 and a housing 120 that fully or partially encases the internal components of the keyboard. Each of the one or more keys 110 may have a glyph window 130 associated with it (e.g., visible on the keycap). As illustrated, the one or more keys 110 may be of different sizes and/or positioned at different locations along the top surface of the illuminated keyboard 100.



FIG. 2 is a close-up and exploded side cross-sectional view of a key 200 of an embodiment of the illuminated keyboard 100 of FIG. 1 taken along line 2-2. The key 200 may be positioned at least partially within the housing 220 of the illuminated keyboard 100. A key aperture 225 may be defined through the housing 220. The key aperture 225 may be sized so that a perimeter gap 230 exists between the key 200 and the housing 220. The perimeter gap 230 may be selectively sized based on the size of the key 200. In certain embodiments, the key aperture 225 may not be present. Instead, one or more keys 110 (not shown in FIG. 2) may be arranged substantially adjacent to one another such that the perimeter gap 230 of each key is defined by its neighboring keys.


The term “horizontal” as used herein and except as otherwise noted, is defined as the plane parallel to the upper surface of the housing 220 of the illuminated keyboard 100. The term “vertical” as used herein and except as otherwise noted, is defined as the direction perpendicular to the horizontal plane. Similar directional terminology as used herein (e.g., “above” or “below” or “top” or “bottom”) is defined with respect to the orientation of the keyboard shown in FIG. 1.


The key 200 may have a keycap 240. In certain embodiments, the keycap 240 may be composed of silica glass (which may be chemically treated), sapphire, or another similar substantially transparent and scratch resistant material. The keycap 240 may have a substantially flat top surface. In certain embodiments, the keycap 240 may have a slightly concave shape so as to enhance the feel of the key when depressed by a user. The top surface of the keycap 240 may have one or more beveled edges 242. A beveled edge 242 may be angled at a 45 degree angle as shown, or in some embodiments, the beveled edge 242 may be machined such that it takes another shape that reduces or increases the angle formed by the top and sidewalls of the keycap 240 along its perimeter.


A substantially opaque background layer 250 may be formed on an underside of the keycap 240. The background layer 250 may define a glyph window 260 extending through the background layer. Although shown in cross section, one may appreciate that the glyph window 260 may, when viewed from above, take the form of any numeral, symbol or letter of any language or symbol set appropriately suited to the illuminated keyboard 100 (not shown in FIG. 2). Essentially, the portions of the underside of the keycap 240 that are not coated, treated, or otherwise covered with the background layer may form the glyph window 260. As the glyph window may correspond to a letter, symbol, character, number and the like, it may vary in size, shape and cross-section from keycap to keycap. Further, some keycaps may lack any glyph window at all; the space bar is one example of this.


A glyph diffuser layer 270 may be formed on the underside of the background layer 250 and may fill (either partially or fully) the glyph window 260. The glyph diffuser layer 270 may be composed of a semi-transparent or translucent material that is doped with a diffusion dopant. In certain embodiments, the glyph diffuser layer 270 may also be doped with a colored pigment to color the layer. As one example, titanium oxide may be used to give the glyph diffuser layer a white appearance. The glyph diffuser layer 270 may also include complementary geometry to the glyph window 260. In this way, the glyph diffuser layer 270 may occupy the volume of the glyph window 260 within the background layer 250.


A mechanical support may be positioned beneath and attached to the keycap. For example, a scissor mechanism 284 or butterfly mechanism may be affixed to a keycap receiving pad 280. The receiving pad 280 may be adhered or otherwise bonded to the glyph diffuser layer 270. The keycap receiving pad 280 may include a structure such as a detent, ledge or aperture to accept one or more top crossbars forming part of a scissor mechanism 284.


In more detail, the keycap receiving pad 280 may have a substantially flat top surface and may be adhered or attached to the bottom surface of the glyph diffuser layer 270.


A membrane 282 of a dome switch may be positioned below the keycap receiving pad 280. In some embodiments, the membrane 282 may contact the bottom surface of the keycap receiving pad 280 when the key is in a neutral (e.g., unpressed) state, while in other embodiments the membrane 282 and keycap receiving pad 280 may be separated by an air gap when the key is in a neutral state. The membrane 282 may be constructed of a deformable material such as rubber, silicone, or any suitable polymer and may include one or more electrical contacts (not shown in the cross-section of FIG. 2). In some embodiments the membrane 282 may be substantially transparent, while in others the membrane may be translucent or opaque. In some embodiments, light may be transmitted to or through the keycap from a light source located to a side of the key, such as an LED or a light pipe connected to an LED.


Adjacent to the membrane 282 may be a compressible scissor mechanism 284. Below the membrane 282 may be a first contact wiring layer 286. Electrical contacts (not shown in the cross-section view of FIG. 2) may be disposed on the top surface of the first contact wiring layer 286 such that when the membrane 282 and the compressible scissor mechanism 284 compress beyond a selected threshold, the electrical contacts of the membrane 282 and the electrical contacts of the first contact wiring layer 286 complete an electrical circuit and thereby signal that the key 200 has been depressed.


The first contact wiring layer 286 may be disposed upon a first substrate layer 288 to provide structural support to the key 200. The substrate layer 288 may be composed of a transparent or substantially transparent material. Below the substrate layer 288 may be an illumination layer 290 including a light emitting element 292 which is centered below the keycap 240. The light emitting element 292 may be an LED, OLED, or any other suitable light source. Although shown as a single light source, one may appreciate that multiple light sources may be used. For example, a light emitting element 292 may be positioned on the illumination layer 290 so as to direct or transmit light through the perimeter gap 230. In this manner, the light emitting element 292 may illuminate the perimeter of the key 200, creating a halo effect about the key 200 when viewed from above.


In another embodiment, a light emitting element 292 may be positioned to direct light only through the glyph window 260. In this manner, the light emitting element 292 may illuminate the glyph window 260, creating an illuminated glyph effect on the surface of the key 200 when viewed from above.


In another embodiment, a light emitting element may be positioned to direct light only through the background layer 250. In this manner, the light emitting element 292 may illuminate the background area around the glyph window, leaving the glyph window area unilluminated. In such an embodiment, one may appreciate that the background layer 250 may be composed of a semi-transparent or translucent material. For example, in this embodiment the background layer 250 may be composed of a semi-transparent or translucent material that is doped with glass beads or other diffusion dopant.


One may further appreciate that a plurality of light emitting elements 292 may be disposed upon or within the light emissive layer 290. In this manner, multiple portions of the key 200 may be selectively or jointly illuminated. Below the light emissive layer 290 may be disposed a second substrate layer 294, providing structural support to the key 200.


One may appreciate that FIG. 2 is not necessarily drawn to scale. For clarity, the relative height of each illustrated item has in some cases been exaggerated to show the relationship between each of the several layers forming key 200. For example, the background layer 250 and the glyph diffuser layer 270 may only be a few microns in height. Further, one may appreciate the keycap 240 may be less than a millimeter in height.



FIG. 3A is a top plan view of a keycap 300 showing a glyph as a portion of the embodiment as shown in FIG. 1. The keycap may include at least background area 310 and a glyph area 315, which as illustrated shows the English letter “A.” The keycap 300 may be situated within the housing 320 of an illuminated keyboard 100 (now shown, see FIG. 1). The keycap 300 may be positioned within a key aperture 325. The horizontal surface area of the key aperture 325 may be slightly larger than the horizontal surface area of the keycap 300 such that a keycap perimeter gap 380 is exposed.



FIGS. 3B-3E are close up side views of the embodiment shown in FIG. 3A taken along cross sections 3B-3E respectively. Visible in all four cross sections shown in FIGS. 3B-3E is the keycap 340. The keycap 340 sits within a key aperture (not labeled) formed in the keyboard housing 320. A perimeter gap 330 is formed between the edges of the key aperture and the keycap. As noted with respect to the embodiment illustrated by FIG. 2, the keycap 340 may be composed of glass and may have beveled or polished edges.


Visible in all four cross sections shown in FIGS. 3B-3E is the background layer 350. Also as noted with respect to the embodiment shown in FIG. 2, the background layer 350 may be disposed directly below the glass keycap 340. Disposed below the background layer 350 is the glyph diffusion layer 370.


One may appreciate that line 3B-3B of FIG. 3A may not intersect any portion of the glyph area 315 of FIG. 3A. Accordingly, in the cross-section shown in FIG. 3B, no portion of a glyph window is present or illustrated. However, line 3C-3C of FIG. 3A does intersect a portion of the glyph area 315 of FIG. 3A. Specifically, line 3C-3C intersects the crest of the “A” glyph as illustrated in FIG. 3A. Accordingly, within the cross section shown in FIG. 3C, a portion of a glyph window 360 is shown. Because line 3C-3C intersects the glyph window only once, FIG. 3C illustrates only a single portion of the glyph window 360.



FIG. 3D is a close up side view of the embodiment shown in FIG. 3A taken along line 3D-3D, which intersects both legs of the letter “A,” illustrated as the glyph area 315 in FIG. 3A. Accordingly, in cross section FIG. 3D illustrates two portions of the glyph window 360 separated by a portion of the background layer 350.


Similar to FIG. 3B, FIG. 3E does not intersect any portion of the glyph area 315 of FIG. 3A and accordingly, no portion of a glyph window is present or illustrated.


With respect to FIGS. 4A-4D, the term “horizontal” is defined as the plane parallel to the surface of the glass keycap. The term “vertical” as with respect to FIGS. 4A-4D is defined as the direction perpendicular to the horizontal plane. Similar directional terminology as used herein (e.g., “above” or “below” or “on” or “under”) is defined with respect to the horizontal plane.



FIG. 4A is an inverted close up side view of an embodiment showing a sample cross section of a keycap 440 after a background layer 450 is applied. The background layer 450 may be composed of ink or pigment, and may be translucent, semi-transparent or opaque. In certain embodiments, the background layer 450 may be applied to the glass keycap 440 in a printing process, a screening process, an immersion process or any other suitable process.



FIG. 4B is an inverted close up side view of the embodiment shown in FIG. 4A showing a sample cross section of a keycap 440 after a background layer 450 has been etched to expose portions of a glyph window 460. The glyph window 460 may be etched through the background layer in a laser-scribing process. For example, a laser may ablate the background layer 450 in order to expose the glyph window 460. In certain cases, the laser may be sufficiently powerful to ablate or otherwise remove the material of the background layer 450 while being insufficiently powerful to ablate or otherwise etch or damage the material selected for the keycap 440.


In other embodiments, the glyph window 460 may be etched with a chemical etching process. For example, a mask may be applied over the background layer 450. The mask may cover portions of the background layer 450 that will remain after etching, but may expose all portions of the background layer 450 that should be removed in order to expose the glyph window 460. After the mask is applied, the keycap 440 and background layer 450 may be immersed in or exposed to an etching solution that dissolves or otherwise reacts with the material selected for the background layer 450 but not the material selected for the mask or the material selected for the keycap 440. After a proscribed period of time, the keycap 440 may be removed from the etching solution and the mask may be removed from the background layer 450.


In still further embodiments, the glyph window 460 may not be etched at all, but may instead be formed by selectively applying background layer 450. For example, the background layer 450 may be printed along the surface of the glass keycap 440 in all areas except those reserved for the glyph window 460.



FIG. 4C is an inverted close-up side view of the embodiment shown in FIG. 4B, showing a sample cross section of a keycap 440 after a glyph diffuser layer 470 is applied over the background layer 450 and the exposed portions of a glyph window 460. In certain embodiments, during the application of the glyph diffuser layer 470 to the background layer 450, unwanted pockets of air 490 may remain within the glyph window 460. The unwanted pockets of air 490 may cause undesirable visual artifacts in the keycap 440.


In order to remove the unwanted pockets of air 490, the keycap 440 (with background layer 450 and glyph diffuser layer 470 already formed) may be placed in a vacuum chamber (not shown) such that a negative pressure differential forms to eliminate the air pockets 490. Generally, air pockets 490 may be created at or near atmospheric pressure. Accordingly, when placed in a vacuum environment, the pressure of the air pockets 490 may equalize with the vacuum, which may pull the diffuser layer 470 in to fill the entire volume of the glyph window 460, as shown in FIG. 4D.


In another embodiment, the keycap 440, with background layer 450 and glyph diffuser layer 470, may be placed within an autoclave or other high pressure chamber to facilitate a positive pressure differential to remove the air pockets 490. As noted above, the air pockets 490 may be created at or near atmospheric pressure. When placed in a high pressure environment, the difference in pressure may push the diffuser layer 470 to fill the entire volume of the glyph window 460, as shown in FIG. 4D.



FIG. 4E is an inverted close up side view of the embodiment shown in FIG. 4D showing a sample cross section of a keycap 440 with the glyph diffuser layer 470 finished to a smooth plane, parallel with the planes of the keycap 440 and the background layer 450. Once polished or otherwise smoothed, the glyph diffuser layer 470 may be attached to a scissor mechanism (not shown) or other button mechanism positioned to activate electrical switch circuitry when depressed. The glyph diffuser layer 470 may be smoothed in order to provide a substantially parallel relationship between the scissor mechanism and the top surface of the keycap 440.



FIG. 4F is an inverted close-up side view of the embodiment shown in FIG. 4D showing a sample cross section of a keycap 440 with the glyph diffuser layer 470 finished to a smooth plane that is coplanar with a surface of a background layer 450. In certain embodiments, smoothing the glyph diffuser layer in this manner may provide for an exceptionally thin overall key thickness.


One may appreciate that FIGS. 3A-4F are not drawn to scale. For clarity, the relative height of each illustrated item has in some cases been substantially exaggerated to show the relationship between each of the several layers forming the illustrated key. For example, one may appreciate that the background layer 350 and 450 and the glyph diffuser layer 370 and 470 may only be a few microns in height. Further, one may appreciate the keycap 340 and 440 may be less than a millimeter in height.



FIGS. 5A-5F illustrate various configurations of selective a joint illumination of individual portions of a key according to one embodiment of the invention.



FIG. 5A is a top plan view of a keycap showing the selective illumination of a perimeter gap portion 580, a glyph area portion 515 (not shown), and a background area portion 510 in an off state. One may note that in the illustrated embodiment, a glyph portion 515 is not visible. In certain embodiments, the boundaries between the background portion 510 and the glyph area portion 515 are not distinguishable. Accordingly, FIG. 5A is illustrated without the glyph area visible.



FIG. 5B is a top plan view of a keycap showing illumination of a perimeter gap portion 580 and a background area portion 510 in an off state with the illumination of a glyph area portion 515 in an on state.



FIG. 5C is a top plan view of a keycap showing illumination of a background area portion 510 in an off state with the illumination of a perimeter gap portion 580 and a glyph area portion 515 in an on state. In this manner, FIG. 5C illustrates a glyph illumination mode of the keycap.



FIG. 5D is a top plan view of a keycap showing illumination of a perimeter gap portion 580, a glyph area portion 515 (not shown), and a background area portion 510 in an on state. As noted above with respect to FIG. 5A, the glyph portion 515 is not visible. In certain embodiments, the boundaries between the background portion 510 and the glyph area portion 515 are not distinguishable. Accordingly, FIG. 5D is also illustrated without the glyph area visible. In this manner, FIG. 5D illustrates a perimeter illumination mode of the keycap.



FIG. 5E is a top plan view of a keycap showing illumination of a glyph area portion 515 in an off state with the illumination of a perimeter gap portion 580 and a background area portion 510 in an on state. In this embodiment, the glyph area 515 may visible to a user as a shadow and the background area portion 510 and the perimeter gap portion 580 may appear as a singular or substantially singular illuminated area.



FIG. 5F is a top plan view of a keycap showing illumination of a glyph area portion 515 and a perimeter gap portion 580 in an off state with the background area portion 510 in an on state. In this embodiment, the glyph area 515 may visible to a user as a shadow within the illuminated background area portion 510. The darkened perimeter gap portion 580 may provide enhanced contrast with the background area 510. In this manner, FIG. 5F illustrates a background illumination mode of the keycap.


Although FIGS. 5A-5F illustrate various combinations of illuminated portions of a keycap, one may appreciate that additional or fewer combinations are contemplated. One may appreciate further that individual keys on the same keyboard may be illuminated separately, sequentially, with differing brightness, for varying durations, etc.



FIG. 6 is a flow chart illustrating operations of a sample method for manufacturing an illuminated input apparatus. At 610, a glass keycap may be selected. In certain embodiments, the glass keycap may be singulated from a larger sheet or, in other embodiments a large mother sheet containing a plurality of individual glass keycaps to be singulated in a later process.


At 620, a background layer may be deposited on the glass keycap. In certain embodiments, the background layer may be applied to the glass keycap in a printing process, a screening process, an immersion process or any other suitable process. In certain embodiments, the background layer may be cured before other operations continue.


At 630, a glyph window may be etched into the background layer. The glyph window may be etched in a laser etching process, or in other embodiments, the glyph window may be formed by etching in a chemical process. The glyph window may take the form of any numeral, symbol or letter of any language appropriately suited to the keycap. One may further appreciate that in certain embodiments, operations 620 and 630 may be accomplished simultaneously if the background layer is applied in a printing process.


At 640, a diffuser layer may be applied to the background layer. The diffuser layer may be composed of a semi-transparent or translucent material that is doped with glass beads or other diffusion dopant. The diffuser layer may be disposed over the background layer with glyph window in a screening, printing, immersion, or any other suitable process.


At 650, the glass keycap, background layer, and diffuser layer may be placed in curing conditions in order to solidify or otherwise bond the layers together. Curing conditions may include but are not limited to an ultraviolet oven, a heated oven, a vacuum chamber, or an autoclave chamber. The curing process may include processes to remove unwanted air pockets from either the background layer or the diffuser layer.


At 660, the diffuser layer may be polished or otherwise finished to a plane substantially parallel to the top surface of the glass keycap. The process may conclude at 670.


One may appreciate that although many embodiments are disclosed above, that the operations presented in FIG. 6 are meant as exemplary and accordingly are not exhaustive. One may further appreciate that alternate step order, or additional or fewer steps may be used to accomplish methods contemplated here.


Where components or modules of the invention are implemented in whole or in part using software, in one embodiment, these software elements can be implemented to operate with a computing or processing module capable of carrying out the functionality described with respect thereto.


Embodiments have been described herein with respect to glass keycaps, but it should be appreciated that structures, methods, processes, apparatuses and the like may employ, operate with, be incorporated into or otherwise associated with keycaps and/or keys made from other materials. For example, certain embodiments may use a metal keycap, a ceramic keycap, a polymer keycap, and so on.


Although the disclosure above is described in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead can be applied alone or in various combinations to one or more of the other embodiments of the invention, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments but is instead defined by the claims herein presented.

Claims
  • 1. A keyboard of an electronic device, the keyboard comprising: a housing defining a key aperture;a light source positioned in the housing below the key aperture; anda keycap positioned in the key aperture, the keycap including: an at least partially transparent body having a bottom surface;a background layer formed on the bottom surface of the at least partially transparent body and defining a background area portion and a glyph area portion; anda diffuser layer configured to distribute light through the background layer;wherein the keycap is selectively illuminable to at least two modes using the light source, the at least two modes including: a glyph illumination mode, wherein the glyph area portion is illuminated, and the background area portion is in an off state, anda background illumination mode, wherein the background area portion is illuminated, and the glyph area portion is in an off state.
  • 2. The keyboard of claim 1, wherein a gap is defined between the keycap and the key aperture, wherein the keycap is selectively illuminable at the gap while the glyph area portion is illuminated.
  • 3. The keyboard of claim 1, wherein a gap is defined between the keycap and the key aperture, wherein the keycap is selectively illuminable at the gap while the background area portion is illuminated.
  • 4. The keyboard of claim 1, wherein a gap is defined between the keycap and the key aperture, wherein the keycap is selectively illuminable at the gap while the background area portion is illuminated and the glyph area portion is illuminated.
  • 5. The keyboard of claim 1, wherein the at least two modes further comprises a third mode wherein the glyph area portion and the background area portion are both in an off state.
  • 6. The keyboard of claim 1, wherein the at least two modes further comprises a third mode including illumination of the glyph area portion and the background area portion.
  • 7. The keyboard of claim 1, wherein the keycap is selectively illuminable to a state wherein the glyph area portion and the background area portion appear as a substantially singular illuminated area.
  • 8. A keyboard of an electronic device, the keyboard comprising: a housing defining a key aperture;a light source positioned in the housing; anda keycap positioned in the key aperture, the keycap including: a transparent body having a top surface and a bottom surface;a background layer formed on the bottom surface of the transparent body and defining a background area portion; anda diffuser layer configured to distribute light through the background layer;wherein a gap is formed between the keycap and the key aperture; andwherein the keycap is selectively illuminable to at least two modes using the light source, the at least two modes including: a first mode, wherein the background area portion is illuminated, and the gap is in an off state, anda second mode, wherein the gap is illuminated, and the background area portion is in an off state.
  • 9. The keyboard of claim 8, wherein the background layer further defines a glyph area portion, wherein the keycap is selectively illuminable at the glyph area portion while the gap is illuminated.
  • 10. The keyboard of claim 8, wherein the background layer further defines a glyph area portion, wherein the keycap is selectively illuminable at the glyph area portion while the background area portion is illuminated.
  • 11. The keyboard of claim 8, wherein the background layer further defines a glyph area portion, wherein the keycap is selectively illuminable at the glyph area portion while the background area portion is illuminated and the gap is illuminated.
  • 12. The keyboard of claim 8, wherein the gap extends around a perimeter of the keycap.
  • 13. The keyboard of claim 8, wherein the background area portion and the gap are simultaneously illuminable.
  • 14. The keyboard of claim 13, wherein the background area portion and the gap portion appear as a substantially singular illuminated area in response to simultaneous illumination of the background area portion and the gap.
  • 15. A keycap for a keyboard of an electronic device, the keycap comprising: an at least partially transparent body having a bottom surface;a background layer positioned on the bottom surface of the at least partially transparent body, the background layer defining a background area portion and a glyph area portion; anda diffuser layer configured to distribute light through the background layer;wherein in a first lighting mode, a boundary between the background area portion and the glyph area portion is visible through the at least partially transparent body, andwherein in a second lighting mode, the boundary is not visible through the at least partially transparent body.
  • 16. The keycap of claim 15, wherein in the second lighting mode, a light source illuminates the background area portion and the glyph area portion.
  • 17. The keycap of claim 15, wherein in the second lighting mode, the background area portion and the glyph area portion are both not illuminated.
  • 18. The keycap of claim 15, wherein the boundary surrounds the glyph area portion.
  • 19. The keycap of claim 15, wherein in the first lighting mode, a light source illuminates the background area portion and the glyph area portion is visible as a shadow.
  • 20. The keycap of claim 15, wherein in the first lighting mode, a light source illuminates the glyph area portion and the background area portion is visible as a shadow.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/283,148, filed Feb. 22, 2019, and titled “Keycaps Having Reduced Thickness,” which is a continuation of U.S. patent application Ser. No. 15/640,249, filed Jun. 30, 2017, now U.S. Pat. No. 10,224,157, issued Mar. 5, 2019 and titled “Keycaps Having Reduced Thickness,” which is a continuation of U.S. patent application Ser. No. 14/502,788, filed Sep. 30, 2014, now U.S. Pat. No. 9,704,670, issued Jul. 11, 2017 and titled “Keycaps Having Reduced Thickness,” which is a non-provisional of and claims the benefit to U.S. Provisional Patent Application No. 61/884,259, filed Sep. 30, 2013 and titled “Keycaps Having Reduced Thickness,” the disclosures of which are hereby incorporated by reference herein in their entireties.

US Referenced Citations (365)
Number Name Date Kind
3657492 Arndt et al. Apr 1972 A
3818153 Arvai Jun 1974 A
3917917 Murata Nov 1975 A
3978297 Lynn et al. Aug 1976 A
4095066 Harris Jun 1978 A
4319099 Asher Mar 1982 A
4349712 Michalski Sep 1982 A
4484042 Matsui Nov 1984 A
4596905 Fowler Jun 1986 A
4598181 Selby Jul 1986 A
4670084 Durand et al. Jun 1987 A
4755645 Naoki et al. Jul 1988 A
4937408 Hattori et al. Jun 1990 A
4987275 Miller et al. Jan 1991 A
5021638 Nopper et al. Jun 1991 A
5092459 Uljanic et al. Mar 1992 A
5136131 Komaki Aug 1992 A
5278372 Takagi et al. Jan 1994 A
5280146 Inagaki et al. Jan 1994 A
5340955 Calvillo et al. Aug 1994 A
5382762 Mochizuki Jan 1995 A
5397867 Demeo Mar 1995 A
5408060 Muurinen Apr 1995 A
5421659 Liang Jun 1995 A
5422447 Spence Jun 1995 A
5457297 Chen Oct 1995 A
5477430 LaRose et al. Dec 1995 A
5481074 English Jan 1996 A
5504283 Kako et al. Apr 1996 A
5512719 Okada et al. Apr 1996 A
5625532 Sellers Apr 1997 A
5769210 Tsai Jun 1998 A
5804780 Bartha Sep 1998 A
5828015 Coulon Oct 1998 A
5847337 Chen Dec 1998 A
5874700 Hochgesang Feb 1999 A
5875013 Takahara Feb 1999 A
5876106 Kordecki et al. Mar 1999 A
5878872 Tsai Mar 1999 A
5881866 Miyajima et al. Mar 1999 A
5898147 Domzalsi et al. Apr 1999 A
5924555 Sadamori et al. Jul 1999 A
5935691 Tsai Aug 1999 A
5960942 Thornton Oct 1999 A
5986227 Hon Nov 1999 A
6020565 Pan Feb 2000 A
6068416 Kumamoto et al. May 2000 A
6215420 Harrison et al. Apr 2001 B1
6257782 Maruyama et al. Jul 2001 B1
6259046 Iwama et al. Jul 2001 B1
6377685 Krishnan Apr 2002 B1
6388219 Hsu et al. May 2002 B2
6423918 King et al. Jul 2002 B1
6482032 Szu et al. Nov 2002 B1
6530283 Okada et al. Mar 2003 B2
6538801 Jacobson et al. Mar 2003 B2
6542355 Huang Apr 2003 B1
6552287 Janniere Apr 2003 B2
6556112 Van Zeeland et al. Apr 2003 B1
6559399 Hsu et al. May 2003 B2
6560612 Yamada et al. May 2003 B1
6572289 Lo et al. Jun 2003 B2
6573463 Ono Jun 2003 B2
6585435 Fang Jul 2003 B2
6624369 Ito et al. Sep 2003 B2
6648530 Kamei et al. Nov 2003 B2
6706986 Hsu Mar 2004 B2
6738050 Comiskey et al. May 2004 B2
6750414 Sullivan Jun 2004 B2
6759614 Yoneyama Jul 2004 B2
6762381 Kunthady et al. Jul 2004 B2
6765503 Chan et al. Jul 2004 B1
6788450 Kawai et al. Sep 2004 B2
6797906 Ohashi Sep 2004 B2
6850227 Takahashi et al. Feb 2005 B2
6860660 Hochgesang et al. Mar 2005 B2
6911608 Levy Jun 2005 B2
6911971 Suzuki Jun 2005 B2
6926418 Oestergaard et al. Aug 2005 B2
6940030 Takeda et al. Sep 2005 B2
6977352 Oosawa Dec 2005 B2
6979792 Lai Dec 2005 B1
6987466 Welch et al. Jan 2006 B1
6987503 Inoue Jan 2006 B2
7012206 Oikawa Mar 2006 B2
7030330 Suda Apr 2006 B2
7038832 Kanbe May 2006 B2
7126499 Lin et al. Oct 2006 B2
7129930 Cathey et al. Oct 2006 B1
7134205 Bruennel Nov 2006 B2
7146701 Mahoney et al. Dec 2006 B2
7151236 Ducruet et al. Dec 2006 B2
7151237 Mahoney et al. Dec 2006 B2
7154059 Chou Dec 2006 B2
7166813 Soma Jan 2007 B2
7172303 Shipman et al. Feb 2007 B2
7189932 Kim Mar 2007 B2
7256766 Albert et al. Aug 2007 B2
7283119 Kishi Oct 2007 B2
7301113 Nishimura et al. Nov 2007 B2
7312790 Sato et al. Dec 2007 B2
7378607 Koyano et al. May 2008 B2
7385806 Liao Jun 2008 B2
7391555 Albert et al. Jun 2008 B2
7414213 Hwang Aug 2008 B2
7429707 Yanai et al. Sep 2008 B2
7432460 Clegg Oct 2008 B2
7510342 Lane et al. Mar 2009 B2
7531764 Lev et al. May 2009 B1
7541554 Hou Jun 2009 B2
7589292 Jung et al. Sep 2009 B2
7639187 Caballero et al. Dec 2009 B2
7639571 Ishii et al. Dec 2009 B2
7651231 Chou et al. Jan 2010 B2
7674992 Hutchison et al. Mar 2010 B2
7679010 Wingett Mar 2010 B2
7724415 Yamaguchi May 2010 B2
7781690 Ishii Aug 2010 B2
7813774 Perez-Noguera Oct 2010 B2
7842895 Lee Nov 2010 B2
7847204 Tsai Dec 2010 B2
7851819 Shi Dec 2010 B2
7866866 Wahlstrom Jan 2011 B2
7893376 Chen Feb 2011 B2
7923653 Ohsumi Apr 2011 B2
7944437 Imamura May 2011 B2
7947915 Lee et al. May 2011 B2
7999748 Ligtenberg et al. Aug 2011 B2
8063325 Sung et al. Nov 2011 B2
8077096 Chiang et al. Dec 2011 B2
8080744 Yeh et al. Dec 2011 B2
8098228 Shimodaira et al. Jan 2012 B2
8109650 Chang et al. Feb 2012 B2
8119945 Lin Feb 2012 B2
8124903 Tatehata et al. Feb 2012 B2
8134094 Tsao et al. Mar 2012 B2
8143982 Lauder et al. Mar 2012 B1
8156172 Muehl et al. Apr 2012 B2
8178808 Strittmatter May 2012 B2
8184021 Chou May 2012 B2
8212160 Tsao Jul 2012 B2
8212162 Zhou Jul 2012 B2
8218301 Lee Jul 2012 B2
8232958 Tolbert Jul 2012 B2
8246228 Ko et al. Aug 2012 B2
8253048 Ozias et al. Aug 2012 B2
8253052 Chen Aug 2012 B2
8263887 Chen et al. Sep 2012 B2
8289280 Ravis Oct 2012 B2
8299382 Takemae et al. Oct 2012 B2
8317684 Matsuo et al. Nov 2012 B2
8319129 Nishino Nov 2012 B2
8319298 Hsu Nov 2012 B2
8325141 Marsden Dec 2012 B2
8330725 Mahowald et al. Dec 2012 B2
8354629 Lin Jan 2013 B2
8378857 Pance Feb 2013 B2
8383972 Liu Feb 2013 B2
8384566 Bocirnea Feb 2013 B2
8404990 Lutgring et al. Mar 2013 B2
8431849 Chen Apr 2013 B2
8436265 Koike et al. May 2013 B2
8451146 Mahowald et al. May 2013 B2
8462514 Myers et al. Jun 2013 B2
8480285 Tan et al. Jul 2013 B2
8500348 Dumont et al. Aug 2013 B2
8502094 Chen Aug 2013 B2
8542194 Akens et al. Sep 2013 B2
8548528 Kim et al. Oct 2013 B2
8564544 Jobs et al. Oct 2013 B2
8569211 Koshio et al. Oct 2013 B2
8569639 Strittmatter Oct 2013 B2
8575632 Kuramoto et al. Nov 2013 B2
8581127 Jhuang et al. Nov 2013 B2
8592699 Kessler et al. Nov 2013 B2
8592702 Tsai Nov 2013 B2
8592703 Johnson et al. Nov 2013 B2
8604370 Chao Dec 2013 B2
8629362 Knighton et al. Jan 2014 B1
8642904 Chiba et al. Feb 2014 B2
8651720 Sherman et al. Feb 2014 B2
8659882 Liang et al. Feb 2014 B2
8731618 Jarvis et al. May 2014 B2
8748767 Ozias et al. Jun 2014 B2
8759705 Funakoshi et al. Jun 2014 B2
8760405 Nam Jun 2014 B2
8779308 Takemae et al. Jul 2014 B2
8786548 Oh et al. Jul 2014 B2
8791378 Lan Jul 2014 B2
8835784 Hirota Sep 2014 B2
8847089 Fujibayashi Sep 2014 B2
8847090 Ozaki Sep 2014 B2
8847711 Yang et al. Sep 2014 B2
8853580 Chen Oct 2014 B2
8854312 Meierling Oct 2014 B2
8870477 Merminod et al. Oct 2014 B2
8884174 Chou et al. Nov 2014 B2
8888305 Chen Nov 2014 B2
8921473 Hyman Dec 2014 B1
8922476 Stewart et al. Dec 2014 B2
8943427 Heo et al. Jan 2015 B2
8976117 Krahenbuhl et al. Mar 2015 B2
8994641 Stewart et al. Mar 2015 B2
9007297 Stewart et al. Apr 2015 B2
9012795 Niu et al. Apr 2015 B2
9024214 Niu et al. May 2015 B2
9029723 Pegg May 2015 B2
9063627 Yairi et al. Jun 2015 B2
9064642 Welch et al. Jun 2015 B2
9086733 Pance Jul 2015 B2
9087663 Los Jul 2015 B2
9093229 Leong et al. Jul 2015 B2
9213416 Chen Dec 2015 B2
9223352 Smith et al. Dec 2015 B2
9234486 Das et al. Jan 2016 B2
9235236 Nam Jan 2016 B2
9274654 Slobodin et al. Mar 2016 B2
9275810 Pance et al. Mar 2016 B2
9300033 Han et al. Mar 2016 B2
9305496 Kimura Apr 2016 B2
9405369 Modarres et al. Aug 2016 B2
9412533 Hendren et al. Aug 2016 B2
9443672 Martisauskas Sep 2016 B2
9448628 Tan et al. Sep 2016 B2
9448631 Winter et al. Sep 2016 B2
9449772 Leong et al. Sep 2016 B2
9471185 Guard Oct 2016 B2
9477382 Hicks et al. Oct 2016 B2
9502193 Niu et al. Nov 2016 B2
9612674 Degner et al. Apr 2017 B2
9640347 Kwan et al. May 2017 B2
9704670 Leong et al. Jul 2017 B2
9734965 VerdúMartinez et al. Aug 2017 B2
9793066 Brock et al. Oct 2017 B1
10224157 Leong et al. Mar 2019 B2
20020079211 Katayama et al. Jun 2002 A1
20020093436 Lien Jul 2002 A1
20020113770 Jacobson et al. Aug 2002 A1
20020114153 Chan et al. Aug 2002 A1
20020122683 Kamei et al. Sep 2002 A1
20020149835 Kanbe Oct 2002 A1
20030169232 Ito Sep 2003 A1
20040004559 Rast Jan 2004 A1
20040129542 Kawaguchi et al. Jul 2004 A1
20040225965 Garside et al. Nov 2004 A1
20050035950 Daniels Feb 2005 A1
20050071771 Nagasawa et al. Mar 2005 A1
20050253801 Kobayashi Nov 2005 A1
20060011458 Purcocks Jan 2006 A1
20060020469 Rast Jan 2006 A1
20060037848 Kobayashi Feb 2006 A1
20060120790 Chang Jun 2006 A1
20060181511 Woolley Aug 2006 A1
20060243987 Lai Nov 2006 A1
20070200823 Bytheway et al. Aug 2007 A1
20070285393 Ishakov Dec 2007 A1
20080131184 Brown et al. Jun 2008 A1
20080136782 Mundt et al. Jun 2008 A1
20080202824 Philipp et al. Aug 2008 A1
20080251370 Aoki Oct 2008 A1
20090021400 Tsai Jan 2009 A1
20090046053 Shigehiro et al. Feb 2009 A1
20090103964 Takagi et al. Apr 2009 A1
20090128496 Huang May 2009 A1
20090262085 Wassingbo et al. Oct 2009 A1
20090267892 Faubert Oct 2009 A1
20090295736 Laurent et al. Dec 2009 A1
20090322568 Yoshida Dec 2009 A1
20100045705 Vertegaal et al. Feb 2010 A1
20100066568 Lee Mar 2010 A1
20100109921 Annerfors May 2010 A1
20100156796 Kim et al. Jun 2010 A1
20100213044 Strittmatter et al. Aug 2010 A1
20100252407 Merminod et al. Oct 2010 A1
20100253630 Homma et al. Oct 2010 A1
20110002724 Sauvage et al. Jan 2011 A1
20110032127 Roush Feb 2011 A1
20110043384 Cheng Feb 2011 A1
20110056817 Wu Mar 2011 A1
20110056836 Tatebe et al. Mar 2011 A1
20110203912 Niu Aug 2011 A1
20110205161 Myers et al. Aug 2011 A1
20110205179 Braun Aug 2011 A1
20110261031 Muto Oct 2011 A1
20110267272 Meyer et al. Nov 2011 A1
20110284355 Yang Nov 2011 A1
20110298716 Mahowald et al. Dec 2011 A1
20120012446 Hwa Jan 2012 A1
20120012448 Pance et al. Jan 2012 A1
20120032972 Hwang Feb 2012 A1
20120043191 Kessler et al. Feb 2012 A1
20120090973 Liu Apr 2012 A1
20120098751 Liu Apr 2012 A1
20120168294 Pegg Jul 2012 A1
20120186965 Zieder Jul 2012 A1
20120193202 Chen Aug 2012 A1
20120286701 Yang et al. Nov 2012 A1
20120298496 Zhang Nov 2012 A1
20120313856 Hsieh Dec 2012 A1
20130043115 Yang et al. Feb 2013 A1
20130093500 Bruwer Apr 2013 A1
20130093684 Wang et al. Apr 2013 A1
20130093733 Yoshida Apr 2013 A1
20130100030 Los et al. Apr 2013 A1
20130120265 Horii et al. May 2013 A1
20130161170 Fan et al. Jun 2013 A1
20130162450 Leong et al. Jun 2013 A1
20130215079 Johnson et al. Aug 2013 A1
20130242601 Broer et al. Sep 2013 A1
20130270090 Lee Oct 2013 A1
20130336127 Wu Dec 2013 A1
20140015777 Park et al. Jan 2014 A1
20140027259 Kawana et al. Jan 2014 A1
20140071654 Chien Mar 2014 A1
20140082490 Jung et al. Mar 2014 A1
20140090967 Inagaki Apr 2014 A1
20140098042 Kuo et al. Apr 2014 A1
20140116865 Leong et al. May 2014 A1
20140118264 Leong et al. May 2014 A1
20140151211 Zhang Jun 2014 A1
20140184496 Gribetz et al. Jul 2014 A1
20140191973 Zellers et al. Jul 2014 A1
20140218851 Klein et al. Aug 2014 A1
20140251772 Welch et al. Sep 2014 A1
20140252881 Dinh et al. Sep 2014 A1
20140291133 Fu et al. Oct 2014 A1
20140346025 Hendren et al. Nov 2014 A1
20140375141 Nakajima Dec 2014 A1
20150016038 Niu et al. Jan 2015 A1
20150083561 Han et al. Mar 2015 A1
20150090570 Kwan et al. Apr 2015 A1
20150090571 Leong et al. Apr 2015 A1
20150243457 Niu et al. Aug 2015 A1
20150270073 Yarak, III et al. Sep 2015 A1
20150277559 Vescovi et al. Oct 2015 A1
20150287553 Welch et al. Oct 2015 A1
20150309538 Zhang Oct 2015 A1
20150332874 Brock et al. Nov 2015 A1
20150348726 Hendren Dec 2015 A1
20150370339 Ligtenberg et al. Dec 2015 A1
20150378391 Huitema et al. Dec 2015 A1
20160049266 Stringer et al. Feb 2016 A1
20160093452 Zercoe et al. Mar 2016 A1
20160172129 Zercoe et al. Jun 2016 A1
20160189890 Leong et al. Jun 2016 A1
20160189891 Zercoe et al. Jun 2016 A1
20160259375 Andre et al. Sep 2016 A1
20160329166 Hou et al. Nov 2016 A1
20160336124 Leong et al. Nov 2016 A1
20160336128 Leong et al. Nov 2016 A1
20160343523 Hendren et al. Nov 2016 A1
20160351360 Knopf et al. Dec 2016 A1
20160365204 Cao et al. Dec 2016 A1
20160378234 Ligtenberg et al. Dec 2016 A1
20160379775 Leong et al. Dec 2016 A1
20170004937 Leong et al. Jan 2017 A1
20170004939 Kwan et al. Jan 2017 A1
20170011869 Knopf et al. Jan 2017 A1
20170090104 Cao et al. Mar 2017 A1
20170090106 Cao et al. Mar 2017 A1
20170301487 Leong et al. Oct 2017 A1
20170315624 Leong et al. Nov 2017 A1
20180029339 Niu et al. Feb 2018 A1
20180040441 Wu et al. Feb 2018 A1
20180074694 Lehmann et al. Mar 2018 A1
Foreign Referenced Citations (190)
Number Date Country
2155620 Feb 1994 CN
2394309 Aug 2000 CN
1463458 Dec 2003 CN
1533128 Sep 2004 CN
1542497 Nov 2004 CN
2672832 Jan 2005 CN
1624842 Jun 2005 CN
1738328 Feb 2006 CN
1812030 Aug 2006 CN
1838036 Sep 2006 CN
1855332 Nov 2006 CN
101051569 Oct 2007 CN
200961844 Oct 2007 CN
200986871 Dec 2007 CN
101146137 Mar 2008 CN
201054315 Apr 2008 CN
201084602 Jul 2008 CN
201123174 Sep 2008 CN
201149829 Nov 2008 CN
101315841 Dec 2008 CN
201210457 Mar 2009 CN
101438228 May 2009 CN
101465226 Jun 2009 CN
101494130 Jul 2009 CN
101502082 Aug 2009 CN
201298481 Aug 2009 CN
101546667 Sep 2009 CN
101572195 Nov 2009 CN
101800281 Aug 2010 CN
101807482 Aug 2010 CN
101868773 Oct 2010 CN
201655616 Nov 2010 CN
102110542 Jun 2011 CN
102163084 Aug 2011 CN
201927524 Aug 2011 CN
201945951 Aug 2011 CN
201945952 Aug 2011 CN
201956238 Aug 2011 CN
102197452 Sep 2011 CN
202008941 Oct 2011 CN
202040690 Nov 2011 CN
102280292 Dec 2011 CN
102338348 Feb 2012 CN
102375550 Mar 2012 CN
202205161 Apr 2012 CN
102469527 May 2012 CN
102496509 Jun 2012 CN
102622089 Aug 2012 CN
102629526 Aug 2012 CN
102629527 Aug 2012 CN
102679239 Sep 2012 CN
202434387 Sep 2012 CN
202523007 Nov 2012 CN
102832068 Dec 2012 CN
102955573 Mar 2013 CN
102956386 Mar 2013 CN
102969183 Mar 2013 CN
103000417 Mar 2013 CN
103165327 Jun 2013 CN
103180979 Jun 2013 CN
203012648 Jun 2013 CN
203135988 Aug 2013 CN
103377841 Oct 2013 CN
103489986 Jan 2014 CN
203414880 Jan 2014 CN
103681056 Mar 2014 CN
103699181 Apr 2014 CN
203520312 Apr 2014 CN
203588895 May 2014 CN
103839715 Jun 2014 CN
103839720 Jun 2014 CN
103839722 Jun 2014 CN
103903891 Jul 2014 CN
103956290 Jul 2014 CN
203733685 Jul 2014 CN
104021968 Sep 2014 CN
204102769 Jan 2015 CN
204117915 Jan 2015 CN
104517769 Apr 2015 CN
204632641 Sep 2015 CN
105097341 Nov 2015 CN
2530176 Jan 1977 DE
3002772 Jul 1981 DE
29704100 Apr 1997 DE
202008001970 May 2008 DE
0441993 Aug 1991 EP
1835272 Sep 2007 EP
1928008 Jun 2008 EP
2022606 Feb 2009 EP
2426688 Mar 2012 EP
2439760 Apr 2012 EP
2463798 Jun 2012 EP
2664979 Nov 2013 EP
2147420 Mar 1973 FR
2911000 Jul 2008 FR
2950193 Mar 2011 FR
1361459 Jul 1974 GB
S50115562 Sep 1975 JP
S60055477 Mar 1985 JP
S61172422 Oct 1986 JP
S62072429 Apr 1987 JP
S63182024 Nov 1988 JP
H01105419 Apr 1989 JP
H0422024 Feb 1992 JP
H0520963 Mar 1993 JP
H0524512 Mar 1993 JP
H05211020 Aug 1993 JP
H05342944 Dec 1993 JP
H09147658 Jun 1997 JP
2627692 Jul 1997 JP
H09204148 Aug 1997 JP
H10312726 Nov 1998 JP
H1166995 Mar 1999 JP
H11194882 Jul 1999 JP
2000010709 Jan 2000 JP
2000057871 Feb 2000 JP
2000339097 Dec 2000 JP
2001100889 Apr 2001 JP
2002260478 Sep 2002 JP
2002298689 Oct 2002 JP
2003114751 Apr 2003 JP
2003522998 Jul 2003 JP
2005108041 Apr 2005 JP
2006060334 Mar 2006 JP
2006164929 Jun 2006 JP
2006185906 Jul 2006 JP
2006521664 Sep 2006 JP
2006269439 Oct 2006 JP
2006277013 Oct 2006 JP
2006344609 Dec 2006 JP
2007115633 May 2007 JP
2007514247 May 2007 JP
2007156983 Jun 2007 JP
2008021428 Jan 2008 JP
2008041431 Feb 2008 JP
2008100129 May 2008 JP
2008191850 Aug 2008 JP
2008533559 Aug 2008 JP
2008293922 Dec 2008 JP
2009099503 May 2009 JP
2009181894 Aug 2009 JP
2010061956 Mar 2010 JP
2010244088 Oct 2010 JP
2010244302 Oct 2010 JP
2010287528 Dec 2010 JP
2011018484 Jan 2011 JP
2011065126 Mar 2011 JP
2011150804 Aug 2011 JP
2011165630 Aug 2011 JP
2011524066 Aug 2011 JP
2011187297 Sep 2011 JP
2012022473 Feb 2012 JP
2012043705 Mar 2012 JP
2012063630 Mar 2012 JP
2012098873 May 2012 JP
2012134064 Jul 2012 JP
2012186067 Sep 2012 JP
2012230256 Nov 2012 JP
2014017179 Jan 2014 JP
2014026807 Feb 2014 JP
2014216190 Nov 2014 JP
2014220039 Nov 2014 JP
2016053778 Apr 2016 JP
1019990007394 Jan 1999 KR
1020020001668 Jan 2002 KR
100454203 Oct 2004 KR
1020060083032 Jul 2006 KR
20080064116 Jul 2008 KR
1020080066164 Jul 2008 KR
2020110006385 Jun 2011 KR
1020120062797 Jun 2012 KR
1020130040131 Apr 2013 KR
20150024201 Mar 2015 KR
200703396 Jan 2007 TW
M334397 Jun 2008 TW
201108284 Mar 2011 TW
201108286 Mar 2011 TW
M407429 Jul 2011 TW
201246251 Nov 2012 TW
201403646 Jan 2014 TW
9744946 Nov 1997 WO
2005057320 Jun 2005 WO
2006022313 Mar 2006 WO
2007049253 May 2007 WO
2008045833 Apr 2008 WO
2009005026 Jan 2009 WO
2012011282 Jan 2012 WO
2012027978 Mar 2012 WO
2013096478 Jun 2013 WO
2014175446 Oct 2014 WO
Non-Patent Literature Citations (3)
Entry
International Search Report and Written Opinion, PCT/US2014/052005, 17 pages, dated Jan. 29, 2015.
Elekson, “Reliable and Tested Wearable Electronics Embedment Solutions”, http://www.wearable.technology/our-technologies, at least as early as Jan. 6, 2016, 3 pages.
Bound Volume of Computer Paper 2009, vol. 2.
Related Publications (1)
Number Date Country
20210166895 A1 Jun 2021 US
Provisional Applications (1)
Number Date Country
61884259 Sep 2013 US
Continuations (3)
Number Date Country
Parent 16283148 Feb 2019 US
Child 17068553 US
Parent 15640249 Jun 2017 US
Child 16283148 US
Parent 14502788 Sep 2014 US
Child 15640249 US