The present invention relates generally to hand-held devices and particularly to a keypad arrangement for a hand-held device.
Hand-held devices such as cellular telephones and personal digital assistants (PDAs) are becoming increasingly functional as modern electronics allows more and more chips to be put in these devices. This trend of miniaturization will continue. However, the users of these devices remain the same size. This creates a problem in terms of interface technology. The keypads can only be miniaturized to the extent that they are useable by human beings.
Modern cellular telephones clearly illustrate this clash of miniaturization and human interface.
Modern cellular telephones are not only used for voice communication but are also used for instant messaging, web browsing, viewing video clips, taking photographs, etc. As a result the standard numeric telephone keypad 110 is crammed with multiple legends and symbols. Most of the time the user has to cycle through the keypad 110 legends by pressing the key multiple times while looking at the LCD 120 above the keypad 110. This is tedious and cumbersome.
Accordingly, what is needed is a more user-friendly approach to the miniaturization problem. The approach should be simple, inexpensive and capable of being easily adapted to existing technology. The present invention addresses this need.
A first aspect of the present invention is a keypad arrangement for a device. The keypad arrangement includes a molded portion and an underlying display portion coupled to the molded portion capable of dynamically displaying a plurality of different legends whereby each of the plurality of legends is associated with at least one functionality of the device.
Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The present invention relates to a keypad arrangement for a hand-held device. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the embodiments and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
As shown in the drawings for purposes of illustration, a keypad arrangement for a hand-held device is disclosed. In an embodiment, the hand-held device is a device such as a cellular telephone or personal digital assistant. Accordingly, varying embodiments of the present invention replace the permanent keys of the conventional device with a transparent keypad that functions as a lens to show an underlying touch screen LCD. As a result, the legends being displayed on the underlying LCD can be dynamically changed through software control based on the context and functionality of the desired application. Consequently, a more user friendly interface is achieved.
In an embodiment, the touch-screen 232 is a screen that is sensitive to the touch or the application of pressure. Touch screens are very resistant to harsh environments where keyboards might eventually fail. Applications are typically very specialized and greatly simplified so they can be used by anyone.
There are two primary technologies, resistive and capacitive, that are used for touch screens. Both use a clear glass panel overlaid onto the LCD screen. The resistive method is completely pressure sensitive. It uses a plastic layer on top of a metallic-coated glass layer, separated by spacers. When pressed, it shunts the current in the glass panel, and the X-Y coordinates pick up the location on the screen. The capacitive method uses a metallic coated glass panel, but without the plastic overlay. It senses the change in current from the charge in the pressure-applying element (finger, stylus, etc.).
Although the above-disclosed embodiments are described as being employed in conjunction with clear plastic material, one of ordinary skill in art will readily recognize that any of a variety of materials could be employed while remaining within the spirit and scope of the present invention.
In one embodiment, the primary functionality of the hand-held device 200 is that of a cellular telephone. However, although the primary functionality of the hand-held device 200 is that of a cellular telephone, the hand-held device 200 has multiple functionalities. For example, the hand-held device 200 can be used as a telephone, an MP3 player, a camera, an instant messager, a calendar, etc. Accordingly, through the implementation of a keypad arrangement 230 in accordance with an embodiment, these functionalities can be accessed and utilized with relative ease.
Consequently, since the device user can see the underlying second LCD screen 522, a plurality of different legends can be displayed on the underlying second LCD screen 522 based on the desired functionality of the hand-held device. A “legend”, for the purposes of this patent application, is the associated display of the functionality currently being implemented by the hand-held device. The legends can be dynamically changed through software control based on context and application.
Additionally, the configuration 500 includes a function switch 530 that allows a device user to toggle between legends based on the desired functionality of the device. For example, in order for the device user to toggle between legends, he simply depresses the function switch 530. The function switch 530 can be employed through the use of permanently designated button or it could be employed through software control by displaying a “switch” symbol on the underlying second LCD screen 522 beneath the clear, molded keypad portion 521.
Also, keeping the underlying second LCD screen 522 on all the time has a tendency to consume precious battery power. Consequently, the underlying second LCD screen 522 is programmed to turn off automatically if it is not used for a predetermined amount of time. Accordingly, the configuration 500 includes a “wake up” key 540 to turn on the underlying second LCD screen 522 once the automatic turn off has taken place. In an embodiment, the wake up key 540 is a conventional key and can alternatively be used to toggle the underlying second LCD screen 522 on and off.
The following examples are sample key functionality adaptation based on context and application:
Cell Phone Functionality
A cell phone is a portable telephone that transmits to and receives signals from multiple base stations over vast geographical distances. The concept behind a cellular system is that an area is divided into a number of slightly overlapping circular “cells.” Each cell contains a base station, which is identifiable from its transmitting and receiving tower. The multiple cells combined with low power transmitters allow the same frequencies to be reused with different conversations in different cells within the same city or locale. The primary digital cell phone technologies are Time Division Multiple Access, Code Division Multiple Access and Global System for Mobile Communications.
MP3 Player Functionality
The MP3 player functionality relates to the playing of audio files encoded in MPEG Audio Layer 3. MPEG Audio Layer 3 is an audio compression technology that is part of the MPEG-1 and MPEG-2 specifications. Developed in Germany in 1991 by the Fraunhofer Institute, MP3 uses perceptual audio coding to compress CD-quality sound by a factor up to 12, while providing almost the same fidelity. MP3 music files are played via software or a physical player that cables to the PC for transfer.
MP3 made it feasible to download quality audio from the Web very quickly, causing it to become a worldwide auditioning system for new musicians and labels. Established bands post sample tracks from new albums to encourage CD sales, and new bands post their music on MP3 sites in order to develop an audience. MP3 players often support other audio formats such as Windows WAV and WMA.
Digital Camera Functionality
A digital camera behaves more or less like a conventional point-and-shoot cameras. Unlike conventional cameras however, most digital cameras store digital images in an internal flash memory or on external memory cards, and are equipped with a liquid-crystal display (LCD) screen. Through the use of the LCD, most digital cameras operate in two modes, record and play, although some only have a record mode. In record mode, the LCD is used as a viewfinder in which the user may view an object or scene before taking a picture. In play mode, the LCD is used as a playback screen for allowing the user to review previously captured images either individually or in arrays of four, nine, or sixteen images. Digital cameras can typically be coupled with a peripheral display, such as a television set or a computer display. In this manner, the user may view the various images stored within the digital camera on a larger display.
Indicators 812 and 814 could be utilized to rotate the current image being displayed on the first LCD screen 810. Indicator 815 could be utilized as the camera “action” button to capture and store images displayed on the first LCD screen 810 when the device is in a camera mode. The digital camera legend 800 also includes the function switch 830 and the wake up key 840.
Text Messaging Functionality
Text messaging involves sending short messages to a smart phone, pager, personal digital assistant or other handheld device. Text messaging implies sending short messages generally no more than a couple of hundred characters in length. In Europe, text messaging was popularized by the GSM cell phone system's Short Messaging Service (SMS), which supports messages of up to 160 characters.
Furthermore, in an embodiment, the letters 950 can be rotated under the keypad portion 921 with each pressing of the associated key. For example, key 921′ can rotate through letters the “A, B, C” as shown in
Although the above disclosed embodiments show a variety of legends associated with a variety of functionalities of the hand-held device, one of ordinary skill in the art will readily recognize that a variety of different legends could be employed while remaining within the spirit and scope of the present invention.
Additionally, although the primary functionality of the above described embodiment is a cell phone, one of ordinary skill in the art will readily recognize that any of variety of primary functionalities could be employed while remaining within the spirit and scope of the present invention.
A keypad arrangement for a hand-held device is disclosed. Accordingly, varying embodiments of the present invention employ a transparent keypad that functions as a lens to show an underlying touch screen LCD. As a result, the legends being displayed on the underlying LCD can be dynamically changed through software control based on the context and functionality of the desired application. Also, the transparent keypad provides the device user with the same key snap and tactile feedback of a conventional keypad. Consequently, a more user friendly interface is achieved.
Without further analysis, the foregoing so fully reveals the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention. Therefore, such applications should and are intended to be comprehended within the meaning and range of equivalents of the following claims. Although this invention has been described in terms of certain embodiments, other embodiments that are apparent to those of ordinary skill in the art are also within the scope of this invention, as defined in the claims which follow.