1. Field of the Invention
The invention relates to data entry and, more particularly, to imitating data entry of a telephone keypad.
2. Brief Description of Prior Developments
Many telephone and multifunction devices use a touch screen and a graphical user interface (GUI) to present a virtual ITU-T (International Telecommunication Union-Telecommunication Standardization Sector) keypad for phone dialing. In this case such devices do not have physical keys for dialing a phone number. Touch screen devices may also employ virtual keyboards and/or handwriting recognition for text entry.
There is normally a 12-button numerical keypad or virtual 12-button numerical keypad in almost every mobile phone in the market. Space is reserved on the phone for the keypad or virtual keypad accordingly. However, it is foreseen that this will not be the case with all game and multimedia devices of the future, nor with wrist watch phones or pen phones. When the familiar keypad is gone, other methods for text input are needed.
Another problem is that most of the people using phones today are used to writing text using the keypad, and the learning curve for anything new is long. New data entry devices needing too much learning may drive away some potential customers.
There are virtual keypads and keyboards on touch screens. However, they have no tactile feedback, and letters may be too small for rapid writing. They also may require use of a stylus, and are practically always require two hands to enter data.
U.S. Pat. No. 6,173,194 and EP Patent Application No. 02396184 disclose some other types of data entry devices. There are also other types of joystick or roller-like devices used for data entry. Characteristic for these devices is that the user has to press or turn the device to one of the mapped positions to select the desired number. To make this usable in reality, the device cannot be very small, and it has to have excellent response and boast high quality, to enable the user to always “hit” the correct direction at the first time from the multitude of possibilities. Otherwise, at first the user easily gets a wrong character and maybe after that the correct one. Multiple successful presses in a row towards the same direction can be close to impossible with this kind of setup.
There is a desire for a new type of data entry system, and method which can emulate a telephone keypad for ease of learning and for use in smaller types of portable electronic devices.
In accordance with one aspect of the invention, a telephone keypad emulation system is provided for emulating data entry of a telephone keypad. The telephone keypad emulation system includes a first selector device and a second selector device. The first selector device has at least nine position settings generally arranged in three rows and three columns. The second selector device includes a selection actuator adapted to be actuated by a user. The second selector device is spaced from the first selector device. In a first mode of operation, a middle one of the position settings of the first selector device has a number “5” as a selectable value. The selectable value of the position settings of the first selector device is only selected when the selection actuator of the second selector device is actuated by the user while the first selector device is at that position setting.
In accordance with another aspect of the invention, a method of emulating data entry of a telephone keypad with a directional position sensor is provided comprising moving the directional position sensor to one of nine settings, wherein the nine setting are generally arranged in three row and three columns; and actuating a selection actuator by a user to select a data value corresponding to the setting of the directional position sensor. The selection actuator is spaced from the directional position sensor. In a first mode of operation a middle one of the nine settings comprises a number “5” as its data value.
In accordance with another aspect of the invention, a data entry system for a portable electronic device is provided comprising a selector positioning device having at least nine settings; and a selector actuator spaced from the selector positioning device and adapted to be actuated by a user to select a data value corresponding to a setting of the selector positioning device. In a first mode of operation, a middle one of the settings comprises the data value of “5”, two of the settings oppositely lateral to the middle setting comprises the data values of “4” and “6” respectively, three of the settings upward from the middle setting comprise the data values of “1”, “2” and “3” respectively, and three of the settings downward from the middle setting comprise data values of “7”, “8” and “9” respectively.
The foregoing aspects and other features of the invention are explained in the following description, taken in connection with the accompanying drawings, wherein:
Referring to
The device 14 is a mobile telephone. However, in alternate embodiments, the device 14 could comprise any suitable portable electronic device, such as a gaming device, or a PDA, or a wearable device, or a pen phone, or a communicator, for example. Referring also to
The first selector device 30 in this embodiment comprises a pointing device, such as a joystick, or a trackball, or a touch screen, or a multi-directional key, for example. Preferably the first selector device 30 is separate from the display 22. However, in a touch screen type of embodiment the first selector device 30 could include the display. Referring also to
In a first mode of operation, the selectable values of the position settings are as follows:
In a preferred embodiment, the first selector device 30 can also be depressed at the middle position setting or 5 position setting to provide a selectable value of “0” (zero) as indicated above.
In another mode of operation, the selectable values for the position settings can comprise alphabetic characters. In a preferred embodiment, the alphabetic characters are related to the same position settings of corresponding numbers as laid out in a telephone keypad. For example, in an ITU-T keypad as follows:
The letters could also include lower case letters; not merely upper case letters. However, any suitable layout could be provided including North American Classic, UK Classic, Mobile Phone Keypad 1, Australia (Formerly Austel Standard), Mobile Phone Keypad (European) or Mobile phone Keypad 111 (European) for example. For example, in the Mobile Phone Keypad 11 (European) and Mobile phone Keypad 111 (European) keypads, the number “5” key has the alphabetic characters “M’, “N”, and “0”. Although the invention has been described with reference to conventional telephone keypad emulation, features of the invention could be used to emulate other types of keypads or data input devices, for example “qwerty”. Thus, the first selection device could select from any set of virtual keys, and the second selector device or actuator would imitate pressing the selected key. Thus, an identification of a virtual key is provided with a first device, and an actuation of that virtual key is provided with the second separate device; regardless of the keypad or input device being imitated or emulated.
Movement of the first selector device 30 to one of the position settings does not select the corresponding selectable value for that position setting. Instead, movement of the first selector device 30 to one of the position settings merely identifies the corresponding selectable value for that position setting for possible selection when the user subsequently actuates the second selector device 32. This is illustrated in the flow diagram shown in
The second selector device 32 preferably comprises a selection actuator, such as a depressible button or key for example. The second selector device 32 is coupled to the electronic circuitry 24 allow a user to select the selectable value identified by the position setting/of the first selector device 30. In this embodiment, the selectable value of a position setting of the first selector device 30 is only selected when the selection actuator of the second selector device 32 is actuated by the user while the first selector device is at that position setting. For example, in the first mode of operation, if the first selector device 30 is moved to the position setting 3, the number “3” is selected when the user actuates the second selector device 32. As another example, in a second mode of operation, if the first selector device 30 is moved to the position setting 3, the letters “D” or “E” or “F” can be selected when the user actuates the second selector device 32. The actual letter selected could be determined, for example, based upon how many times the second selector device 32 is actuated. For example, if actuated once the letter “D” is selected, and if actuated twice the letter “E” is selected, and if actuated three times the letter “F” is selected. Similar different alphabet selection techniques are known in the telephone handset technology with use of twelve key keypads, including scrolling through capitalized letters and lower case letters.
With the invention, text input into a mobile phone, PDA or wearable device can be provided. The invention can be used in new types of mobile devices that do not have space for an old style keypad, or for which an old style keypad would not fit for the device's design.
The invention describes a method to emulate the “ITU-T keypad”, or other similar telephone keypads, by using a combination of a device capable of separating 8 or 9 (ninth being the select) different directions or positions, and one separate button. The first device can be, for example, a digital or analog joystick, touch screen, capacitive sensor, acceleration sensor, gyro, compass, etc. An “ITU-T keypad” is the numeric key area that is familiar to users from most of the phones on the market. The pointing device of the invention can be used to identify the desired virtual ITU-T button according to the familiar directions of how they would be mapped in the ITU-T keypad, and then the separate button 32 is pressed to represent the pressing of the “virtual key” that was selected by pointing with the joystick 30. Thus the invention is not merely a mapping of the keys to the joystick directions, but a totally new kind of usage paradigm by separating the human's writing action into two different parts: selecting a key (position setting), and pressing an actuator for selecting that key.
As the actions are separated, the user can find the desired direction of turning before pressing the virtual button with the separate second button. This significantly reduces the amount of mistakes compared to a situation where the same pointing device would give a character out of every direction where the user happens to turn it when searching the correct letter. Thus, the direction detection method need not to be very high quality and/or physically very big. Because the direction detection method does not need to be very high quality, the components used to form the apparatus do not need to be expensive. Additionally, the separate clicking button 32 enables the use of an analog pointing device, such as a touch screen or acceleration sensor, etc, to select the letters and numbers, and still get the complete ITU-T usage feeling with the separate clicking button.
Also, the invention enables a “double-action” function. The virtual button (0-9 or A-Z) which the user is going to press is identified from the pointing device direction before the virtual button is actually pressed (when the second separate button is actuated). This allows, for example, showing the identified virtual button (or the character/number about to be selected) on the phone's screen 22, so that the user sees if the correct virtual button is going to be pressed. This can minimized wrong character/number entry.
The virtual twelve button “ITU-T keypad” is imitated by a two-phase method. In a first step, the first device 30, such as a joystick, is turned to the direction according the placement of a specific button in old style keypad. (This acts also as phase 1 for the “double-action” function.) In a second separate step, the separate “writing button” 32 is pressed as many times as the user would have pressed the actual key in the old style keypad. By repeating these steps, one can write just as he/she was writing using an ITU-T keypad. Every time the user goes from step 2 back to step 1, the previous character is automatically fixed and the next “virtual button” can be identified by the pointing device. Double letters can be differentiated, for example, by moving the user's finger on the pointing device to some other direction and back, or by waiting a bit similar to the old keypad.
These steps cover all the number keys (and according letters) from 0 to 9. The rest of the ITU-T keyboard (# and *) can be used, added to the symbols, for some other functions too, like a special character menu and mode switching between alphabetic/numbers. This is not a problem since they are not needed so often; most frequently needed punctuation marks are familiarly under “1”-key. For rarely needed symbols, the process can go just like in current mobile phone user interfaces (UI): the *-button (or soft key, etc.) can open a menu from where the user can get the desired symbol by navigating with the pointing device. The same goes with the alpha/number (#) key, it can be a softkey, menu item, or a long press of the “writing button” 32. One important key is naturally the backspace key. It's function is probably most reasonable to be left for the soft key or a separate C-key, just like it has been done for many years in all ITU-devices. However, for a system providing an input system other than emulating a telephone keypad, one of the position settings could be designated as a virtual backspace key. Likewise, for a system providing an input system other than emulating a telephone keypad, one of the position settings could be designated as a virtual soft key, or virtual “*” key or virtual “#” key, or virtual written text key(s) or common telephone symbol control key(s), such as “!” or “:)” or “:(” or or just as some examples.
With the invention, advantages can include, for example:
Referring also to
The main unit 52 preferably comprises a frame 56, a display 58, a pointing device 60 and a writing button 62. In this embodiment the pointing device 60 is located on an opposite side of the frame 56 from the writing button 62. This enables the user to actuate the two devices 60, 62 with different fingers 63a, 63b of a same hand, such as similar to a pinching grasp with the thumb 63b operating one device and another finger 63a operating the other device. Thus, one handed data entry can be provided with the invention.
It should be understood that the foregoing description is only illustrative of the invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. Accordingly, the invention is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/038351 | 10/2/2006 | WO | 00 | 6/4/2010 |