The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description in conjunction with the accompanying drawings, in which:
Hereinafter, preferred embodiments of the present invention are described in detail with reference to the accompanying drawings. The same reference symbols identify the same or corresponding elements in the drawings. In the following description of the present invention, a detailed description of known constructions and processes incorporated herein will be omitted when it may obscure the subject matter of the present invention with unnecessary detail.
The keypad 110 is a portion of a key input unit formed in a specific area of a mobile terminal body, and alphanumeric keys are disposed on the keypad 110 in a format of 3 columns×4 rows or 5 columns×4 rows. The keypad 110 enables input of characters and numbers by a user's normal operation of pressing, or short-cut commands for performing special functions.
The touch sensor 120 is installed under the keypad 110, and preferably occupies the same location as the keypad 110. The touch sensor 120 is a kind of pressure sensor, such as a gliding sensor, and various types of touch sensors can be used. The touch sensor 120 detects, if the user performs a touch operation on the keypad 110, generation of the touch by detecting a change of physical properties such as resistance and capacitance. The detected change of the physical property is converted to an electric signal (“touch signal”). The touch signal detected by the touch sensor 120 is transmitted to the touch identifier 132 of the control unit 130.
The touch sensor 120 is partitioned into a plurality of physical and virtual areas. Therefore, if a touch is generated, the corresponding position of the touch can be identified. Position information is transmitted to the control unit 130 together with the touch signal. The touch signal is set as an input signal for operation control of the pointer 142 and the screen highlight 146 displayed on the display unit 140. The touch signal generated by touching the keypad 110 is completely different from a normal input signal generated by pressing the keypad 110. Apart from a functional located to a normal keypad input signal, a function for a pointer and screen highlight control is allocated to the touch signal.
The control unit 130 controls general operation of the mobile terminal 100, and includes a touch identifier 132, a pointer controller 134, and a screen highlight controller 136. The touch identifier 132 receives the touch signal transmitted by the touch sensor 120, and identifies a touch direction therefrom. The touch direction can be identified by a continuous change of the touch position while the user's finger moves on the keypad 110. The pointer controller 134 controls operation of the pointer 142 by linking the touch position on the keypad 110 with a position of the pointer 142 displayed on the screen of the display unit 143. The screen highlight controller 136 controls operation of the screen highlight 146 displayed on the screen of the display unit 142 according to the touch direction identified by the touch identifier 132.
The display unit 140 displays various menus for the mobile terminal 100, information input by the user, and information to be provided for the user. The display unit 140 is preferably an liquid crystal display (LCD). As shown in
Referring to
Subsequently, the touch identifier 132 of the control unit 130 receives the touch position information transmitted with the touch, and identifies a touch direction (i.e., finger movement direction 91) (S12). The touch direction is classified into several types according to an angle in the range 0° to 360°.
Referring to
Table 1 can be summarized as set forth in Table 2.
As shown in Tables 1 and 2, and
A path of the screen highlight is preset such that the screen highlight moves along different paths according to the type of touch direction. As shown in
However, the present invention is not limited to the above examples of screen highlight path.
In
Step S12 of identifying a touch direction and step S13 of moving a screen highlight 146 can be performed as shown in
If the angle (θ) of the touch direction satisfies the condition |θ−90°|>δ, the screen highlight 146 moves in a backward direction with continuous movement (step S13-1). If the angle (θ) of the touch direction does not satisfy the condition |θ−90°|>δ, the screen highlight 146 moves in a backward direction with discontinuous movement (step S13-2). If the angle (θ) of the touch direction satisfies the condition |θ−270°|>δ, the screen highlight 146 moves in a forward direction with continuous movement (step S13-3). If the angle (θ) of the touch direction does not satisfy the conditions |θ−270°|>δ, the screen highlight 146 moves in a forward direction with discontinuous movement in step S13-4.
In addition to step S12 of identifying a touch direction and the step S13 of moving a screen highlight 146, the pointer controller 134 links the touch position on the keypad 110 with the position of the pointer 142 on the display unit 140 by using touch position information. Accordingly, if the finger 90 moves on the keypad 110, each touch position is continuously linked with the position of the pointer 142, and the pointer 142 is activated on the screen of the display unit 140.
Whereas,
As shown in
The pointer 142 is preferably linked in real time with the movement of the finger 90. Alternatively, the screen highlight 146 can be set to move only when the finger 90 remains on the keypad 110 for longer than predetermined time duration after moving in a specific direction. If the finger 90 is released from the keypad 110 while the screen highlight 146 is moving along the path 141, the screen highlight 146 does not move.
If all blocks 144 cannot be displayed on the screen of the display unit 140 at the same time, a scroll bar 148 is displayed on the right side of the screen of the display unit 140. In this case, the screen highlight 146 can be set to move up to a block 144 on which the pointer 142 is located. However, the screen highlight 146 is preferably set to move up to the last block beyond the current position of the pointer 142 as long as the finger touches the keypad 110. Such an example is shown in
The present invention provides a user for interface executing a predetermined function by detecting a touch and identifying the type of the touch when a user touches a keypad installed with a touch sensor by using their fingers. The user interface utilizing a keypad touch method is suitable for execution of various applications in a mobile terminal, because it enables execution of a normal function of a keypad press operation and an additional function.
In particular, the user interface method according to the present invention enables, by using a keypad touch, control of pointer operation on a display unit and screen highlight movement between blocks, when a plurality of blocks are displayed on the screen of the display unit. Accordingly, the present invention provides an operation environment of a mobile terminal close to a personal computing environment, simplicity in use even in a screen having a complicated option structure, and excellent user accessibility as well as convenience.
In the user interface method according to the present invention, because operation of a mobile terminal is performed only in a keypad area differently from the conventional touch screen method, operation on both keypad area and display area are not required. Accordingly, the user interface according to the present invention provides a much simpler operation compared to a conventional method, and operation with one hand is possible, because use of a stylus pen is unnecessary. Further, the user interface according to the present invention has an economical effect of cost saving compared to a conventional touch screen method, because the manufacturing cost of the keypad is lower than that of the touch screen.
Although preferred embodiments of the present invention have been described in detail hereinabove, it should be understood that many variations and modifications of the basic inventive concept herein described, which may appear to those skilled in the art, will still fall within the spirit and scope of the present invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-0057393 | Jun 2006 | KR | national |