The present invention relates to a structure of a keyboard and, more particularly, to a keyswitch assembly and a manufacturing method thereof.
Inputting devices of computer peripheral equipment generally include keyboards, mice, and trackballs. Keyboards get much attention from users and manufactures since words, symbols, or numbers can be directly inputted to computers by keyboards. Over the last few years, keyboards were kept being developed to meet more powerful inputting function and to have an additional function with respect to visual effects. Therefore, keyboards capable of emitting light during operation are the trend of development nowadays.
Conventionally, a keyboard includes multiple keys. Each key may have multiple patterns on it, and each pattern is corresponding to a particular function. According to the patterns on each of the keys, a user can recognize what functions a key is corresponding to. One of the functions corresponding to one of the keys can be executed by being switched.
A conventional lightening keyboard can emit light during operation; however, each of the keys has only two modes of lightening, all patterns on one key being bright or being dark. That is to say, the patterns on one key have to be switched to a light-on state or a light-off state in a group way, and consequently the patterns on one key are incapable of being individually bright or dark to meet different scenarios.
The present invention provides a keyswitch assembly and a manufacturing method thereof. Multiple patterns on one of keys of a keyboard can be individually controlled to be bright or to be dark.
According to an embodiment, a keyswitch assembly comprises a display unit, a carrier, a plurality of contact pads, a light-shielding layer, and a transparent keycap. The display unit comprises a plurality of display regions. The carrier is for carrying the display unit. The contact pads are on the carrier and are electrically connected to the display regions. The light-shielding layer is positioned corresponding to the display regions of the display unit. The light-shielding layer comprises a plurality of transparent patterns. The transparent patterns are positioned respectively corresponding to the display regions of the display unit. The transparent keycap is positioned on the display unit.
According to an embodiment, a manufacturing method of a keyswitch assembly comprises: forming a plurality of contact pads on a carrier; positioning a display unit on the carrier; forming a light-shielding layer comprising a plurality of transparent patterns corresponding to a plurality of display regions of the display unit; and positioning a transparent keycap on the display unit. Wherein, the display regions of the display unit are electrically connected to the contact pads. The transparent patterns of the light-shielding layer are respectively corresponding to the display regions of the display unit.
Concisely, according to embodiments of the keyswitch assembly and the manufacturing method thereof of the present invention, each of the patterns on one key can be individually bright or dark to meet different scenarios by individually controlling the display regions corresponding to each of the transparent patterns.
The features of the present invention will no doubt become understandable to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
The carrier 120 comprises a first surface and a second surface opposite to the first surface. The carrier 120 comprises a carrying portion 121 formed on the first surface of the carrier 120. In the embodiment, the carrying portion 121 is for receiving the display unit 110, by which the display unit 110 is able to be coupled to the carrier 120 without being loose. In an embodiment, as shown in
The display unit 110 comprises a plurality of display regions. Each of the display regions can be individually switched to a light-on state (being bright) or a light-off state (being dark) in response to a corresponding control signal. Hereinafter three display regions A1-A3 are illustrated; however, the present invention is not limited to the illustration, and the number of the display regions of the display unit depends on needs.
In some embodiments, the area for displaying of the display region A1 is, but is not limited to, substantially equal to that of the display region A2. The area for displaying of the display region A3 is, but is not limited to, substantially greater than that of the display region A1.
In some embodiments, the display unit 110 comprises a display surface and a setting surface opposite to the display surface. The display surface is for displaying patterns, and the setting surface is for arranging a control region and/or a connecting electrode. In the embodiment, there are four control regions C1-C4 being arranged on the setting surface corresponding to the arrangement of the display regions A1-A3. Nevertheless, the number of the control region(s) is not limited to four.
The control regions C1-C4 can receive the control signals and individually operate in response to corresponding control signals. In some embodiments, the control regions C1-C3 can receive a first control signal, and the control region C4 can receive a second control signal. Wherein, the electrical properties of the first control signal and the second control signal are opposite to each other. For example, the second control signal is electronegative while the first control signal is electropositive.
The control region C1 is positioned corresponding to the display region A1. The control region C2 is positioned corresponding to the display region A2. The control region C3 is positioned corresponding to the display region A3. The control region C4 can be positioned anywhere. For example, the control region C4 can be positioned corresponding to the display region A3 which has the largest area for displaying. In the embodiment, the control regions C1-C4 are not electrically connected to one another.
In some embodiments, each of the display regions A1-A3 is controlled by the corresponding first control signal and the shared second control signal. For example, when the control region C1 receives the first control signal, and the control region C4 receives the second control signal, the display region A1 displays the pattern (or the pattern of the display region A1 is bright), as shown in
The display unit 110 further comprises a plurality of connecting electrodes. The connecting electrodes are on the setting surface of the display unit 110. Hereinafter four connecting electrodes 111-114 corresponding to the control regions C1-C4 are illustrated; however, the present invention is not limited to the illustration. In an embodiment, the connecting electrode 111 is electrically connected to the control region C1 and drives the control region C1 in response to the first control signal. The connecting electrode 112 is electrically connected to the control region C2 and drives the control region C2 in response to the first control signal. The connecting electrode 113 is electrically connected to the control region C3 and drives the control region C3 in response to the first control signal. The connecting electrode 114 is electrically connected to the control region C4 and drives the control region C4 in response to the second control signal.
The contact pads 130 are on the carrier 120. The contact pads are for receiving the first control signal and the second control signal. Each of the contact pads 130 is positioned on the carrying portion 121 of the carrier 120 corresponding to the positions of the connecting electrodes 111-114, by which when the display unit 110 is installed on the carrying portion 121, each of the contact pads 130 can be electrically connected to the control regions C1-C4 by the corresponding connecting electrodes 111-114, and the display regions A1-A3 can operate according to the control regions C1-C4 being driven.
In some embodiments, the contact pads 130 can be metallic films attached to the carrier 120.
In addition, the contact pads 130 are not only positioned on the first surface of the carrier 120 but also extend to the second surface of the carrier 120, by which both of two opposite sides of the carrier 120 can be electrically connected to other components by the contact pads 130.
The light-shielding layer 140 is for shielding light to prevent light from passing through it. The light-shielding layer 140 comprises a plurality of transparent patterns. The transparent patterns are positioned respectively corresponding to the display regions A1-A3 of the display unit 110. Hereinafter three transparent patterns P1-P3 are illustrated; however, the present invention is not limited to the illustration. That is to say, the number of the transparent patterns can be greater than that of the display regions, and multiple transparent patterns can be positioned corresponding to one display region. For example, when two transparent patterns are corresponding to one display region, the two transparent patterns can be bright or dark in the same time corresponding to whether the display region is switched to the light-on state or the light-off state.
The transparent pattern P1 is positioned corresponding to the display region A1 so as to be bright or dark corresponding to the state of the display region A1. The transparent pattern P2 is positioned corresponding to the display region A2 so as to be bright or dark corresponding to the state of the display region A2. The transparent pattern P3 is positioned corresponding to the display region A3 so as to be bright or dark corresponding to the state of the display region A3. In other words, the state of each of the transparent patterns P1-P3 with respect to being bright or dark can be controlled by the corresponding display regions A1-A3 being switched to the light-on state or the light-off state.
In the embodiment, each of the transparent patterns P1-P3 can be a through hole on the light-shielding layer 140 so as to expose a part of the corresponding display regions A1-A3, by which light emitted from the display regions A1-A3 can pass through the transparent patterns P1-P3. As a result, each of the transparent patterns P1-P3 is capable of being bright.
In some embodiments, the light-shielding layer 140 can be a coating material with colors or with a single color and can be formed by a spray process. In addition, the light-shielding layer 140 can be, but not limited to, a structure with a single layer. To meet a better effect of light shielding, the light-shielding layer 140 can also be a structure with multiple layers. The transparent patterns P1-P3 of the light-shielding layer 140 can be formed in a laser-carving manner, which results in predetermined positions of the light-shielding layer 140 being hollowed out. In some embodiments, the transparent patterns P1-P3 can be words, symbols, letters, or numbers.
In addition to the display regions A1-A3 of the display unit 110 being able to be bright or dark in a group way, the display regions A1-A3 are also able to display one or more predetermined, particular patterns, which is one of the features of the embodiments (the part of the particular pattern(s) is bright while the other part of other pattern(s) is dark). Particular patterns displayed by each of the display regions A1-A3 are corresponding to the transparent patterns P1-P3 of the light-shielding layer 140. In other words, each of the transparent patterns P1-P3 can expose the particular patterns displayed by each of the display regions A1-A3, such that each of the transparent patterns P1-P3 can be bright or dark.
In some embodiments, the display unit 110 can be, but not limited to, an LED display, an OLED display, or an electronic paper.
In an embodiment, the light-shielding layer 140 can be directly positioned on the display unit 110, as shown in
The transparent keycap 150 can be positioned on the carrier 120 and can protect the display unit 110 to prevent steam or dust from damaging the display unit 110 and also prevent users from scratching the display surface of the display unit 110. In some embodiments, the transparent keycap 150 can be a transparent plastic housing made by, for example, polycarbonate (PC).
In an embodiment, as shown in
The keyswitch assembly 100 further comprises a medium layer 160. The medium layer 160 is positioned between the transparent keycap 150 and the display unit 110. The medium layer 160 is beneficial of light guiding and/or can be an adhesive medium between the transparent keycap 150, the display unit 110, and the carrier 120. In some embodiments, the medium layer 160 can be an ultraviolet-curing adhesive (UV-curing adhesive).
In some embodiments, the manufacturing method of the keyswitch assembly 100 further comprises positioning a plurality of connecting electrodes 111-114 on the display unit 110 (step S2). In addition, the sequence of the steps S1 and S2 can be reversed. That is to say, the connecting electrodes 111-114 are positioned on the setting surface corresponding to the driving mechanism of the display unit 110 in advance, and then the contact pads 130 are positioned on the carrying portion 121 of the carrier 120 corresponding to the positions of the connecting electrodes 111-114. When the step S3 is done, each of the connecting electrodes 111-114 of the display unit 110 can contact each of the corresponding contact pads 130.
Please refer to
Concisely, according to embodiments of the keyswitch assembly and the manufacturing method thereof of the present invention, each of the patterns on one key can be individually bright or dark to meet different scenarios by individually controlling the display regions corresponding to each of the transparent patterns.
While the present invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the present invention needs not be limited to the disclosed embodiments. For anyone skilled in the art, various modifications and improvements within the spirit of the present invention are covered under the scope of the present invention. The covered scope of the present invention is based on the appended claims.