This invention relates to a kickout flashing for directing water along an interface between members of a building, such as a vertical wall and a roof abutting the wall.
Flashings are typically disposed at the interfaces formed between roofs and walls of buildings to prevent water from leaking through the interfaces to the underlying structures. One such interface in a typical building construction is the intersection of a slanted roof with a vertical exterior wall that extends higher than the roof such that the intersection extends perpendicular to the wall at a slant defined by the angle of the roof. L-shaped pieces of flexible metal flashing are typically provided at the intersection so that a first leg of each flashing is disposed against the roof and a perpendicular second leg is disposed against the wall. Successive pieces of the flashing are installed along the intersection so that each piece of flashing is overlapped by the next successively higher piece of flashing. Thus, water flowing along the intersection of the roof and wall flows to the bottom of the roof without penetrating the flashing to the underlying roof or wall materials. Typically, shingles and wood siding are installed on the roof and wall, respectively, at least partially covering the flashings. As an alternative to wood siding, conventional stucco or stone can be used.
At the bottom of the intersection, the lowermost piece of flashing is typically cut and bent to form an angled kickout in order to direct the water flowing down the roof away from the wall. The cut made in the flashing to facilitate bending and forming the kickout can result in leaking of water, which can flow into the wall behind the siding or under the shingles to the roof, thereby causing damage to the wall or the roof. Conventional kickouts are sometimes sealed with a weld or solder joint or with caulk, but such seals require time for forming and can eventually leak, especially in the case of a caulk seal.
Thus, there exists a need for a device and method for use in directing water along interfacing members of a building and away from the interface, e.g., away from a vertical wall that is abutted by a slanted roof. The device should be relatively easy to install and economical to manufacture. Preferably, the device should be compatible with intersections of different orientations such that a single device can be selectively installed to direct water according to the orientation of each intersection.
The present invention provides a kickout flashing and an associated assembly and method for directing water along an interface defined between a roof and a wall. The flashing can be formed with an angled configuration so that the flashing does not need to be cut and bent to form an angle during installation. For example, the flashing can be formed of a unitary molded plastic member. Further, the flashing can be reversible so that the same flashing can be selectively installed at interfaces of different configurations.
According to one embodiment of the present invention, the kickout flashing includes a continuous roof portion that is configured to be disposed on a roof and first and second flanges extending perpendicularly from the roof portion. For example, the flanges can extend to a height of at least 3 inches from the roof portion, and preferably about 5 inches. The flanges define an obtuse angle therebetween, and a continuous passage extends along an intersection of the roof portion and each of the flanges for receiving water. Each of the flanges is adapted to be disposed against the wall with the other flange being configured to direct water flowing along the passage away from the wall. For example, the first and second flanges can be substantially equal in size, and the flashing can be substantially symmetric about a plane bisecting the obtuse angle between the flanges. In addition, a stop can extend between the first and second flanges to form a channel with the roof portion, e.g., parallel to the roof portion at a distance of between about ¼ and 1 inch from the roof portion.
The present invention also provides a flashing assembly for directing water along an interface. The assembly includes a vertical wall, a roof that is perpendicular to the wall and defines the interface with the wall, and a flashing disposed at the interface. A continuous roof portion of the flashing is disposed against the roof, and flanges extend perpendicularly from the roof portion to define a continuous passage extending along an intersection between the roof portion and each of the flanges for receiving water. The first flange is disposed against the wall, and the second flange define an obtuse angle with the first flange so that the second flange is configured to direct water flowing along the passage away from the wall. The flashing can be reversibly installed in an alternative assembly with the second flange disposed against a wall of the alternative assembly and the first flange configured to direct water flowing along the passage away from the wall of the alternative assembly. For example, the flanges can be substantially equal in size so that the flashing is substantially symmetric about a plane bisecting the obtuse angle between the flanges. One or more fasteners can be provided for connecting the flashing to the roof or the wall, and the roof portion and the second flange can be trimmed to define an edge that corresponds to an edge of the roof and the wall.
According to one method of the present invention, a roof portion of the flashing is disposed against the roof and one of the flanges is selectively disposed against the wall so that the other flange is configured to direct water flowing along the flanges away from the wall. For example, the flashing can be disposed with one of the flanges against the wall according to the orientation of the roof and the wall. One or more fasteners can then be used to connect the flashing to the roof or the wall. The flashing, which can be formed of a unitary molded plastic member, can be trimmed to remove part of the roof portion and one of the flanges so that the flashing defines an edge corresponding to an edge of the roof and the wall.
The foregoing and other advantages and features of the invention, and the manner in which the same are accomplished, will become more readily apparent upon consideration of the following detailed description of the invention taken in conjunction with the accompanying drawings, which illustrate preferred and exemplary embodiments, but which are not necessarily drawn to scale, wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
Referring to the drawings and, in particular, to
Accordingly, the flashing 10 is preferably formed of a waterproof material. For example, the flashing 10 can be formed of a variety of materials including polymers, metals, and the like. In one advantageous embodiment of the invention, the flashing 10 is formed as a unitary member of plastic, such as polypropylene, polyethylene, or polyvinyl chloride (PVC). For example, the flashing 10 can be formed by a conventional injection molding operation using one or more dies that cooperably define a die cavity corresponding to the configuration of the flashing 10 so as to form the flashing as a unitary, relatively rigid, molded plastic member.
As shown in
While the flashing 10 of the present invention is not limited to any particular angle or range of angles between the flanges 14, 16, it is appreciated that the angle A can be designed according to such factors as the slant angle of the roof 34, the size of the flashing 10, the expected maximum flow of water through the flashing 10, and the like. In particular, it is understood that the water flowing through the flashing 10 can be diverted away from the wall 32 to a greater extent by decreasing the angle A between the flanges 14, 16. However, if the angle A is too small, some of the water may spill over the second flange 16. According to one embodiment of the present invention, the obtuse angle A between the flanges 14, 16 is between about 100 and 140 degrees.
In one advantageous embodiment of the present invention, the flashing 10 is reversible, i.e., the flashing 10 can be selectively installed in multiple configurations. For example, the first and second flanges 14, 16 can be substantially equal in size so that the flashing 10 is substantially symmetric about a plane bisecting the obtuse angle A between the flanges 14, 16. Thus, the flashing 10 can be selectively installed in alternate orientations with either of the flanges 14, 16 disposed against the wall 32 and the other of the flanges 14, 16 extending at an angle from the wall 32 to direct water flowing through the passage 18 away from the wall 32. More particularly, the flashing 10 can be installed in a “right-hand” orientation, as shown in
Thus, the flashing 10 can be selectively installed in either orientation according to the orientation of the wall 32 and the roof 34. That is, if the roof 34 is situated to the right of the wall 32, as viewed from the ground in front of the roof 34 and as shown in
As shown in the figures, the flashing 10 can also include a tab or siding stop 28 that extends between the flanges 14, 16 generally parallel to and spaced above the roof portion 12. The stop 28 and the roof portion 12 define a channel therebetween through which water can flow, and the siding stop 28 prevents material from falling into the channel. For example, if the kickout flashing 10 is installed before stucco siding is applied to the wall 32, the stop 28 can prevent uncured stucco from falling into the channel and blocking the flow of water through the flashing 10. The stop 28 can also prevent other types of siding, debris such as leaves, or the like from falling onto the roof portion 12 and blocking the flow of water through the flashing 10. Typically, the width W of the channel as measured between the stop 28 and the roof portion 12 is between about 1/4 inch and 1 inch, though various other configurations of the stop 28 can alternatively be used.
During one typical installation operation, the flashing 10 is provided as a unitary molded plastic member, which is relatively rigid and defines the roof portion 12 and flanges 14, 16 as described above. Generally, the kickout flashing 10 has an angled configuration for directing water away from the wall 32 and does not need to be cut or bent during installation to achieve the angled configuration. The flashing 10 is disposed in the interface 30 of the wall 32 and the roof 34 according to the orientation of the wall 32 and roof 34. That is, if the wall 32 and roof 34 define a right-hand orientation, the first flange 14 is disposed against the wall 32 so that water will flow through the passage 18 in the direction 22 from the first flange 14 toward the second flange 16. Alternatively, if the wall 32 and roof 34 define a left-hand orientation, the second flange 16 is disposed against the wall 32 so that the water will flow through the passage 18 in the direction 24 from the second flange 16 toward the first flange 14. One or more fasteners 40 can be provided for connecting the flashing 10 to the roof 32 or the wall 34. For example, nails, screws, an adhesive, or the like can be used to secure the flashing 10 in place. Typically, the flashing 10 is then at least partially covered. For example, shingles 42 can be secured to the roof 34 to overlap the roof portion 12 of the flashing 10, and siding 44 can be disposed on the wall 32 to overlap whichever flange 14, 16 is positioned against the wall 32. Various types of siding 44 can be used including, but not limited to, wood, vinyl, or aluminum strip siding, bricks, stucco, and the like. In some cases, if fasteners are to be driven through the flashing 10 to secure the flashing 10 to the wall 32 or roof 34, the nails can be positioned on a portion of the flashing 10 that is to be overlapped by a successive piece of flashing 38, shingle 42, siding 44, or the like.
In addition, the roof portion 12 and/or the flange extending from the wall 32, i.e., the second flange 16 as shown in
Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.