Not applicable.
Not applicable.
The present invention is related to the manufacture of countermeasure flares, and particularly an improved housing assembly facilitating the manufacture of flares.
The present invention relates to a flare housing. The invention is directed to an improved interior structure which facilitates the manufacturing of the flare as well as improving the reliability and performance of the flare.
Aerial flares are used for such as illumination, signaling, marking, decoys, military countermeasures and the like. A flare is typically described as a pyrotechnic device designed to produce a luminous display or illumination. Due to the nature of uses, aerial flares require a high degree of reliability in their performance. When the flare is ignited for either decoy or illumination, it is imperative that it perform, or burn as designed, or its objective will not be realized.
In the area of countermeasures, flares are now designed to defeat the most sophisticated heat-seeking missiles. Unlike earlier versions of decoy flares which were dropped from aircraft like “hot bricks”, these new infrared flare countermeasure devices are self propelled kinematic flares. Current flare housings are usually a cylindrical can, open at one end. Current kinematic flare housings are typically of a composite construction made from a reinforced resin material that is manufactured by forming resin impregnated reinforcing material over a die core, placing the formed material/die core into a mold, and applying heat/pressure to form and cure the material thereby creating the housing. The formed and cured housing is removed from its mold and the die core removed rendering the housing ready for the next steps in the flare production.
The decoy flare is built-up inside of the walls of the formed housing, first including a nose weight at the head, or closed end of the housing. The nose weight is fixed securely into position, to prevent it from coming loose and interrupting the flight-path of the flare. In certain designs, the nose weight is bonded and cured to the inside surfaces of the closed end of the flare housing with an adhesive. This is a time consuming and imprecise process due to the challenges associated with applying adhesive on the interior wall at the forward end of a formed housing with a generally small interior. For example, the dimensions of the aft end opening of one such housing is about 1.5 inches by 2 inches and the housing is about 8 inches in length. The propellant is blended and then cast into the formed housing. A propellant shaping mandrel having certain longitudinal grooves for receiving propellant is plunged into the cast propellant forcing it up around the shaping mandrel and into the longitudinal grooves. The mandrel is then fixtured in place and the propellant is then cured. Once the solid propellant is cured, the shaping mandrel is removed from the assembly. Located in the cast propellant are specific cross-sectional voids created by the propellant shaping mandrel.
The cast propellant is the energetic or pyrotechnic material creating the required thrust upon ignition. Upon ignition, the exposed surface of the propellant burns. The burn rate/pressure profile can be controlled by limiting the area of the surface that is exposed. During construction of the flare, after the propellant is added to the housing and allowed to cure, a layer of non-flammable material such as an epoxy or similar material, is applied to a portion of the exposed surfaces of the propellant and allowed to cure. The propellant surfaces coated with the non-flammable material are thus inhibited from burning and the desired control of the burn/pressure profile is achieved. For example, a layer of non-flammable material may be thickly painted on the side edges or some portion of the side edges of the propellant or extruded from a nozzle in a thick bead of material alongside the propellant analogous to laying a bead from a calking nozzle. In the prior art, this non-flammable coating is applied, essentially blindly along the propellant grain. Likewise in the prior art, the nose weight is secured in position to the closed end of the housing with an adhesive which is painted on or applied in a bead. Given the manual application of the non-flammable coating, and the necessity of applying the coating on the exposed propellant surface after the propellant is bonded to the interior of the housing, the placement is time consuming and not always precise.
To complete the construction of the flare, a threaded stud is affixed approximately in the center of the nose weight such that it protrudes into the interior of the housing for receiving and holding in place the flare grain. The flare grain is inserted into the void in the housing created by the propellant shaping mandrel and is axially aligned with the housing. The propellant is intermediate the housing and flare grain. A nozzle is affixed to the aft end of the housing for propulsion of the countermeasure flare.
The present invention facilitates the manufacture of the countermeasure, as well as providing more precise way to inhibit the burn rate/pressure profile exhibited by the flare and ensuring accurate placement of the nose weight and other internal features of the decoy.
Accordingly, it is an object of the present invention to provide an improved kinematic countermeasure flare and method of constructing the same wherein the housing is of a built-up construction wherein the nose weight is set at the end of the die core prior to the lay-up and molding/curing of the housing. Housing material, such as resin impregnated reinforcing material, is formed over the die core and nose weight and placed in a mold. Those of skill in the art will recognize that other light weight, heat resistant, non-flammable materials are suitable for the housing material.
Longitudinal grooves and other recesses in the die core allow for the formation of internal longitudinal ribs which propellant can bond to and a retaining bead for retaining the nose weight in the housing which are integrated with the housing. Additionally, the longitudinal ribs act as supports for the nose weight and hold it in position. During the lay-up process, housing material is formed over the die's core and nose weight, including forcing housing material into the grooves and recessed in the die mold. In one embodiment, a strip of housing material may be placed about the circumference of the die core and nose weight assembly such that it is intermediate the die core and nose weight. During molding, housing material is cast into the grooves and recesses of the die core where it is allowed to cure thereby forming longitudinal ribs and a nose weight retaining bead all of which are internal to and integrated with the housing.
Once the molding process is complete and the die core removed from the housing, the molded integral nose weight retaining bead and the forward ends of the molded integral longitudinal ribs retain the nose weight in position. Additionally, the molding process bonds the forward surface of the nose weight to cured reinforced resin material of the housing.
Propellant is cast into the formed housing and a propellant shaping mandrel is then inserted into the formed housing thereby forcing the propellant into the internal cavity created by the integrally molded longitudinal ribs, the shaping mandrel and the wall of the flare housing such that the propellant is bonded to the interior housing wall and the longitudinal ribs. Once the propellant has cured, the shaping mandrel is removed. The integrally molded longitudinal ribs, which protrude into the internal cavity of the housing, form surfaces for the cast propellant to bond to during this propellant casting/curing process. The longitudinal ribs effectively reduce the exposed surface area of the propellant thereby controlling the burn rate/pressure profile of the propellant and thus eliminating the need to apply a non-flammable coating to those surfaces after the propellant is cast in place. Likewise, the integrated nose weight is held more securely in place by this improved manufacturing process.
In an alternate construction, the housing may be produced by injection molding with the nose weight insert molded in the housing and the nose weight retaining bead and the longitudinal rib features generated by the molding die and the die core during the injection molding process. In yet another alternative construction, the internal ribs and/or retaining bead are fabricated separately from the housing and insert molded in the housing during an injection molding process.
To complete the construction of the flare, the flare grain is inserted into the void in the housing created by the propellant shaping mandrel and is axially aligned with the housing. The propellant is intermediate the housing and flare grain. A nozzle is affixed to the aft end of the housing for propulsion of the countermeasure flare.
Various refinements exist of the features noted in relation to one or more of the above-described aspects of the present invention. Further features may also be incorporated into one or more of those aspects as well. These refinements and additional features may exist individually or in any combination. For instance, the various features discussed below in relation to the illustrated embodiments may be employed in any of those aspects, individually or in any combination.
The present invention will now be described in relation to the accompanying drawings, which at least assist in illustrating the various pertinent features thereof.
Referring now to
Referring now to
Referring now to
The improved kinematic countermeasure of the present invention having integrated, burn inhibiting ribs 1 and an integrated nose weight 7 of the present invention can be fabricated as follows. A die core 9 having appropriate longitudinal grooves 10 for forming integrated longitudinal ribs 1 is selected. The die core 9 may also have appropriate recesses 11 for forming the retaining bead 3, if needed. The nose weight 7 is set at the forward end of the die core 5. A reinforcing housing material such as resin impregnated reinforcing material, for example in strips, is inserted into the grooves 10 and recesses 11, if applicable, of the die core 9. A reinforcing housing material such as resin impregnated reinforcing material or fiber cloth made, for example, of glass, arimid or carbon fiber for structural integrity, is formed around the nose weight 7 and die core 9 assembly before the assembly is placed in the mold. The housing material is chosen from those having the cured strength and temperature resistance to withstand operating temperatures and pressures of the finished countermeasure.
In some embodiments, housing material, for example in a strip, is wrapped around the circumference of the die core 9 and nose weight 7 assembly above the nose weight 7 during the lay-up process for forming into the retaining bead 3 during casting. The wrapped die core 9 and nose weight 7 assembly is inserted into the mold for casting and curing. During casting, the housing material is formed into the housing 4. The housing material in the grooves 10 and recesses 11 of the die core 9 forms the integrated ribs 1 and retaining bead 3 during casting and curing. In another embodiment, injection molding is used to form the housing.
In yet another embodiment, the housing 4 and its components are insert molded. The nose weight 7 is inserted into the mold followed by the die core 9 and the housing 4 is cast in the mold. Reinforcing fibers may be added to the housing material prior to addition to the mold. The housing material in the grooves 10 and recesses 11 of the die core form the integrated ribs 1 and retaining bead 3 during casting and curing. In another embodiment, the longitudinal ribs 1 and retaining bead 3 are prefabricated and inserted into the mold. The ribs 1 are inserted such that they will protrude into the housing interior upon formation of the housing 4 during the molding process. When the housing material is added to the mold, the prefabricated ribs 1 and retaining bead 3 are bonded to the interior housing wall 4c.
Once the housing is cured, the die core 9 is removed. The ribs 1 protrude into the interior of the housing 4. The retaining bead 3 is integrated with the housing interior wall 4c above the nose weight 7. The nose weight 7 is retained at the housing forward end 4b by the retaining bead 3 and longitudinal ribs 1.
Propellant is blended and then cast into formed housing. A propellant shaping mandrel 5 is inserted into the formed housing 4 and propellant 6 thereby forcing propellant 6 into the at least one cavity created between the housing interior wall 4c, the longitudinal ribs 1, and the shaping mandrel 5. (See
To complete the construction of the flare, the flare grain (not shown) is inserted into the void in the housing 4 created by the propellant shaping mandrel 5 (See
Those skilled in the art will appreciate that certain modifications can be made to the system and methods herein disclosed with respect to the illustrated embodiments, without departing from the spirit of the instant invention. And while the invention has been described above with respect to the preferred embodiments, it will be understood that the invention is adapted to numerous rearrangements, modifications, and alterations, and all such arrangements, modifications, and alterations are intended to be within the scope of the appended claims.
This application is a divisional of and claims priority to U.S. patent application Ser. No. 13/080,771 filed Apr. 6, 2011 which is a continuation-in-part of and claims priority of U.S. patent application Ser. No. 13/348,104 filed on Jan. 2, 2009 (now abandoned) which is a non-provisional of and claims priority of U.S. Patent Application Ser. No. 61/018,694 filed on Jan. 3, 2008, all of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4340197 | Campbell | Jul 1982 | A |
5074216 | Dunne et al. | Dec 1991 | A |
5619073 | Posey et al. | Apr 1997 | A |
6170399 | Nielson et al. | Jan 2001 | B1 |
6427599 | Posson et al. | Aug 2002 | B1 |
7469640 | Nielson et al. | Dec 2008 | B2 |
7690308 | Nielson et al. | Apr 2010 | B2 |
8191478 | Herbage et al. | Jun 2012 | B2 |
8418619 | Phillips | Apr 2013 | B1 |
8561541 | Pfersmann | Oct 2013 | B2 |
Number | Date | Country | |
---|---|---|---|
61018694 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13080771 | Apr 2011 | US |
Child | 13798454 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13348104 | Jan 2009 | US |
Child | 13080771 | US |