Kinetic energy rod warhead with aiming mechanism

Information

  • Patent Grant
  • 8127686
  • Patent Number
    8,127,686
  • Date Filed
    Wednesday, July 20, 2005
    19 years ago
  • Date Issued
    Tuesday, March 6, 2012
    12 years ago
Abstract
An aimable kinetic energy rod warhead system includes a plurality of rods and explosive segments disposed about the plurality of rods. There is at least one detonator for each explosive segment. A target locator system is configured to locate a target relative to the explosive segments. A controller is responsive to the target locator system and is configured to selectively detonate specified explosive segments at different times dependent on the desired deployment direction of the rods to improve the aiming resolution of the warhead.
Description
FIELD OF THE INVENTION

This subject invention relates to improvements in kinetic energy rod warheads.


BACKGROUND OF THE INVENTION

Destroying missiles, aircraft, re-entry vehicles and other targets falls into three primary classifications: “hit-to-kill” vehicles, blast fragmentation warheads, and kinetic energy rod warheads.


“Hit-to-kill” vehicles are typically launched into a position proximate a re-entry vehicle or other target via a missile such as the Patriot, Trident or MX missile. The kill vehicle is navigable and designed to strike the re-entry vehicle to render it inoperable. Countermeasures, however, can be used to avoid the “hit-to-kill” vehicle. Moreover, biological warfare bomblets and chemical warfare submunition payloads are carried by some “hit-to-kill” threats and one or more of these bomblets or chemical submunition payloads can survive and cause heavy casualties even if the “hit-to-kill” vehicle accurately strikes the target.


Blast fragmentation type warheads are designed to be carried by existing missiles. Blast fragmentation type warheads, unlike “hit-to-kill” vehicles, are not navigable. Instead, when the missile carrier reaches a position close to an enemy missile or other. target, a pre-made band of metal on the warhead is detonated and the pieces of metal are accelerated with high velocity and strike the target. The fragments, however, are not always effective at destroying the target and, again, biological bomblets and/or chemical submunition payloads survive and cause heavy casualties.


The textbooks by the inventor hereof, R. Lloyd, “Conventional Warhead Systems Physics and Engineering Design,” Progress in Astronautics and Aeronautics (AIAA) Book Series, Vol. 179, ISBN 1-56347-255-4, 1998, and “Physics of Direct Hit and Near Miss Warhead Technology”, Volume 194, ISBN 1-56347-473-5, incorporated herein by this reference, provide additional details concerning “hit-to-kill” vehicles and blast fragmentation type warheads. Chapter 5 and Chapter 3 of these textbooks propose a kinetic energy rod warhead.


The two primary advantages of a kinetic energy rod warhead is that 1) it does not rely on precise navigation as is the case with “hit-to-kill” vehicles and 2) it provides better penetration than blast fragmentation type warheads.


The primary components associated with a theoretical kinetic energy rod warhead are a projectile core or bay including a number of individual lengthy rod projectiles or penetrators, and an explosive charge. When the explosive charge is detonated, the rod projectiles or penetrators are deployed. Typically, these components are within a hull or housing.


Greater lethality is achieved when all of the rods are deployed to interrupt the target. In order to aim the projectiles in a specific direction, the explosive charge can be divided into a number of explosive charge segments or sections, with sympathetic shields between these segments. Each explosive segment may have its own detonator. Selected explosive charge segments are detonated to aim the projectiles in a specific direction and to control the spread pattern of the projectiles. For instance, detonators on one side of the projectile core can be detonated to cause their associated explosive charge segments to eject specified hull sections, creating an opening in the hull on the target side. Other detonators on the opposite side of the core are detonated to deploy the projectile rods in the direction of the opening and thus towards the target. See e.g. U.S. Pat. No. 6,598,534 and U.S. Pat. Publ. No. 20040055500A1 which are incorporated herein by reference.


While a kinetic energy warhead including the foregoing design may be highly effective, the exact position of the target in relation to the warhead explosive charge segments may affect aiming accuracy. The target may be positioned relative to the warhead such that the center of the rod set does not travel close to the target direction, resulting in aiming errors. For example, the target may be in a position where deploying one set of explosive segments, i.e. three adjacent segments, will result in the center of the rod core travelling in a direction which is not the target direction, but where deploying a different set of explosive segments, i.e. four adjacent segments, still may not direct the rods towards the target as desired. Additionally, the number of explosive segments detonated will affect the total spray pattern diameter, which may be critical in some applications.


SUMMARY OF THE INVENTION

It is therefore an object of this invention to provide an improved kinetic energy rod warhead.


It is a further object of this invention to provide a higher lethality kinetic energy rod warhead.


It is a further object of this invention to provide a kinetic energy rod warhead which has a better chance of destroying a target.


It is a further object of this invention to provide a kinetic energy rod warhead with improved aiming accuracy.


The subject invention results from the realization that a kinetic energy rod warhead with enhanced aiming resolution can be achieved with explosive charge segments deployed in timed combinations to drive the rods in a specific deployment direction to more accurately strike a target.


The present invention thus provides a unique way to destroy a target, and may be used exclusively, or in conjunction with any of the warhead configurations and/or features for destroying targets disclosed in the applicant's other patents or patent applications such as those enumerated above. Additionally, the kinetic energy rod warhead of the present invention may further include features for kinetic energy rod warheads disclosed in U.S. patent application Ser. Nos. 11/059,891 and 11/060,179, to which this application claims priority and which are incorporated herein by reference, and/or other features as desired for a particular application.


The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.


This invention features an aimable kinetic energy rod warhead system including a plurality of rods, explosive segments disposed about the plurality of rods, and at least one detonator for each explosive segment. A target locator system is configured to locate a target relative to the explosive segments and a controller is responsive to the target locator system. The controller is configured to selectively detonate specified explosive segments at different times dependent on the desired deployment direction of the rods to improve aiming resolution of the warhead. The selective detonation of specified explosive segments generates deployment vectors. The sum of the deployment vectors is a resolved deployment vector in the desired deployment direction. The warhead system may include eight explosive segments and there may be one detonator for each explosive segment. The warhead system may include sympathetic shields between each explosive segment, and the shields may be made of a composite material, which may be steel sandwiched between polycarbonate resin sheet layers. The rods may be lengthy metallic members and may be made of tungsten, and the rods may have a cylindrical cross-section. The explosive segments may be wedge-shaped and the explosive segments may surround the plurality of rods.


The desired deployment direction may be aligned with the center of a first explosive segment. The controller may be configured to detonate an explosive segment opposite the first explosive segment. The controller may be configured to simultaneously detonate an explosive segment opposite the first explosive segment and two explosive segments adjacent the explosive segment opposite the first explosive segment.


The desired deployment direction may be aligned with a first sympathetic shield. The controller may be configured to simultaneously detonate two explosive segments adjacent a sympathetic shield opposite the first sympathetic shield. The controller may be configured to simultaneously detonate four adjacent explosive segments including two explosive segments adjacent a sympathetic shield opposite the first sympathetic shield.


The desired deployment direction may be aligned between a first sympathetic shield and the center of a first explosive segment. The controller may be configured to simultaneously detonate an explosive segment opposite the first explosive segment and an explosive segment adjacent thereto which is closest to the desired deployment direction, and thereafter simultaneously detonate an explosive segment adjacent the explosive segment opposite the first explosive segment which is farthest from the desired deployment direction, and a next adjacent explosive segment. The controller may be configured to detonate an explosive segment closest to the desired deployment direction which is adjacent an explosive segment opposite the first explosive segment, then detonate the explosive segment opposite the first explosive segment, then detonate the explosive segment farthest from the desired deployment direction which is adjacent the explosive segment opposite the first explosive segment, and thereafter detonate a next adjacent explosive segment.


This invention also features a method of improving the aiming resolution of a kinetic energy rod warhead, the method including disposing explosive segments about a plurality of rods, locating a target relative to the explosive segments, and selectively detonating specified explosive segments at different times dependent on the desired deployment direction of the rods to improve aiming resolution. The method may further include disposing one detonator in each explosive segment. There may be eight explosive segments, and the method may further include disposing a sympathetic shield between the explosive segments. The shields may be made of a composite material which may be steel sandwiched between polycarbonate resin sheet layers. The rods may be lengthy metallic members and may be made of tungsten. The rods may have a cylindrical cross-section. The explosive segments may be wedge-shaped.


The method may include detonating an explosive segment opposite a first explosive segment when the desired deployment direction is aligned with the center of the first explosive segment, and the method may include simultaneously detonating an explosive segment opposite a first explosive segment and two explosive segments adjacent the explosive segment opposite the first explosive segment, when the desired deployment direction is aligned with the center of the first explosive segment. The method may include simultaneously detonating two explosive segments adjacent a sympathetic shield opposite a first sympathetic shield when the desired deployment direction is aligned with the first sympathetic shield.


The method may include simultaneously detonating four adjacent explosive segments including two explosive segments adjacent a sympathetic shield opposite a first sympathetic shield, when the desired deployment direction is aligned with the first sympathetic shield.


The method may include detonating an explosive segment closest to the desired deployment direction which is adjacent an explosive segment opposite a first explosive segment, then detonating the explosive segment opposite the first explosive segment, then detonating the explosive segment farthest from desired deployment direction which is adjacent the explosive segment opposite the first explosive segment, and thereafter detonating a next adjacent explosive segment, when the desired deployment direction is aligned between a first sympathetic shield and the center of the first explosive segment.


The method may include simultaneously detonating an explosive segment opposite a first explosive segment and an explosive segment adjacent thereto which is closest to the desired deployment direction, and thereafter simultaneously detonating an explosive segment adjacent the explosive segment opposite the first explosive segment which is farthest from the desired deployment direction and a next adjacent explosive segment, when the desired deployment direction is aligned between a first sympathetic shield and the center of the first explosive segment.





BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:



FIG. 1 is a schematic cross-sectional view of one example of a kinetic energy rod warhead in accordance with the present invention;



FIG. 2 is a schematic partial three-dimensional detailed view of the kinetic energy rod warhead of FIG. 1;



FIG. 3 is a schematic view of a controller and target locator system in accordance with the present invention;



FIG. 4 is a cross-sectional schematic view of an eight segment kinetic energy rod warhead in accordance with the present invention;



FIG. 5 is a schematic view of a particular kinetic energy rod warhead spray pattern; and



FIGS. 6-7 are cross-sectional schematic views of an eight segment kinetic energy rod warhead in accordance with the present invention.





DISCLOSURE OF THE PREFERRED EMBODIMENT

Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.


Current kinetic energy rod warhead designs allow a plurality of rods to be aimed, but the hardware can impose some constraints on the aiming accuracy. The present invention provides improved aiming resolution and better aiming accuracy despite such physical constraints.


The aimable kinetic energy rod warhead system and method of the present invention includes kinetic energy rod warhead 1500, FIG. 1, including plurality of rods or projectiles 1510, explosive 1520 for deploying rods 1510, and at least one detonator 1540 for detonating explosive 1520. Detonation of explosive 1520 deploys projectiles 1500. Notably, the shape and configuration of kinetic energy rod warhead 1500 is not limited to any particular configuration and may include but is not limited to features disclosed in prior U.S. patent application Ser. No. 11/059,891.


Although the exact configuration of the kinetic energy rod warhead may vary depending on a particular desired application or result to be achieved, in one embodiment kinetic rod warhead 1500 typically includes projectile core 1580, thin plates 1600, 1610 and thin aluminum absorbing layers 1612, 1614 about projectiles 1510.


Preferably, explosive charge 1520, FIG. 2, is divided into segments 1630, 1632, 1634 and 1636 disposed about plurality of rods or projectiles 1510. In one example, sympathetic shields 1631, 1633, 1635 separate explosive segments 1630, 1632, 1634 and 1636, and projectile rods 1510 are lengthy metallic cylindrical members. In one embodiment, the rods are made of tungsten, and the sympathetic shields are made of composite material such as steel sandwiched between polycarbonate resin sheet layers, although the rods and sympathetic shields are not necessarily limited to these shapes or materials, and may be of various shapes or materials depending on a desired application. There is at least one detonator 1540 for each explosive segment (shown for segments 1632 and 1634) and there may be multiple detonators 1540a, 1540b which may be placed as shown or at 1540′, 1540a′, and 1540b′, FIG. 1. Additional explosive segments 1638, 1640, 1642 and 1644, FIG. 2 are also disposed about projectile rods 1510 with their associated detonators (not shown) and are separated by sympathetic shields 1637, 1639, 1641, 1643 and 1645. In one variation, each explosive segment is wedge-shaped with proximal surface 1650 of explosive segment 1632 abutting projectile core 1580 and distal surface 1652 which is tapered as shown at 1654 and 1656 to reduce weight. The explosive segments may each include a wave shaper 1658 as shown in explosive segment 1632. In a manner similar to kinetic energy rod warheads generally, missile or other type of carrier 1660, FIG. 3 transports the kinetic energy rod warhead 1500 to the vicinity of a target.


Target locator system 1680 is configured to locate a target relative to explosive segments 1630, 1632, 1634, 1636, 1638, 1640, 1642, 1644, FIG. 2. Target locator systems are known in the art, and typically are part of a guidance subsystem such as guidance subsystem 1670, FIG. 3 which includes, for example, fusing technology and is also within carrier or missile 1660, also as known in the art.


In accordance with the present invention, however, controller 1690 is responsive to target locator system 1680 and is configured to selectively detonate specified explosive segments 1630, 1632, 1634, 1636, 1638, 1640, 1642, 1644, FIG. 2 at different times depending on the desired deployment direction of plurality of rods 1510 to improve the aiming resolution of kinetic energy rod warhead 1500. In the embodiments described herein, there are eight explosive segments in kinetic energy rod warhead 1500, but although this is a preferred embodiment, the invention is not limited to eight explosive segments. Also, with each of the examples and embodiments herein, and with the present invention generally, thin frangible hull 1800, FIG. 4 typically surrounds explosive segments 1630-1642.


For aiming purposes, any target location such as target locations T1, T2, T3, and TY, FIG. 4 could be relative to a particular explosive segment. In FIG. 4, target locations T1-T3 are in positions relative to explosive segment 1642. The desired deployment direction of rods 1510 is the direction of the target, such as along vector 1700 for target T1. For each example herein, target locator system 1680, FIG. 3 is configured to locate a target such as T1, T2, T3, or other target, and controller 1690 is configured to selectively detonate selected or specified explosive segments at different times depending on the desired deployment direction. As discussed more fully below, for some target locations the physical constraints of the warhead hardware configuration cause no aiming difficulty. For certain target locations, however, the warhead hardware configuration introduces aiming errors, but these errors are decreased significantly by the present invention.


In one example, target locator system 1680 locates target at position T1, FIG. 4 which is aligned with sympathetic shield 1641. Thus, the desired deployment direction 1700 of rods 1510 is aligned with sympathetic shield 1641. There are at least two ways to aim and deploy projectiles 1510 in a desired deployment direction along vector 1700 towards target T1.


The first way is to simultaneously detonate explosive segments 1632 and 1634, which are adjacent sympathetic shield 1633 opposite sympathetic shield 1641. The primary firing direction of penetrators 1510 would be in the desired deployment direction 1700 toward target T1, and thus rod projectiles 1510 would be deployed from kinetic energy rod warhead 1500 in the direction as shown.


A second way to deploy rod projectiles 1510 towards T1 is to simultaneously deploy four adjacent explosive segments 1630, 1632, 1634 and 1636, which includes explosive segments 1632 and 1634 adjacent sympathetic shield 1633.


Thus, when target T1 is aligned with a sympathetic shield, there is little if any aiming error even given the physical constraints of the kinetic energy rod warhead.


For a target such as target T2 aligned proximate the center 1710 of explosive segment 1642, the desired deployment vector 1720 is aligned with the center 1710 of explosive segment 1642. In this case, there are also at least two ways to aim projectiles 1510 in desired deployment direction 1720. A first way is to detonate explosive segment 1634 which is opposite explosive segment 1642. A second way is to simultaneously detonate explosive segments 1634, and explosive segments 1632 and 1636 which are adjacent segment 1634. Detonating the explosive segments in either manner will result in little if any aiming errors, again despite the physical constraints of the kinetic energy rod warhead.


For target TY aligned between sympathetic shield 1641 and center 1710 of explosive segment 1640, however, the warhead hardware restricts the most accurate firing options to a) detonating one explosive segment, i.e. explosive segment 1632, or b) detonating three explosive segments, i.e. explosive segments 1630, 1632, and 1634 simultaneously. Either of these firing options could result in an aiming error of φE, namely 11.125°. With such an error, for a spray angle of 35° at a miss distance of 5 feet, there would not be complete overlap of the plurality of rods 1510 with target TY after detonation, as shown in FIG. 5A.


In accordance with the present invention, however, such aiming errors introduced by the warhead hardware configuration are greatly reduced by selectively detonating specified explosive segments at different times. The invention utilizes a time delay between deployment of explosive segments to bias the deployment vectors. For target TY, FIG. 6 located by target locator system 1680, the desired deployment direction 1730 of rods 1510 is aligned between sympathetic shield 1641 and center 1740 of explosive segment 1640. Controller 1690 is configured to selectively detonate specified explosive segments to decrease aiming errors significantly and improve aiming resolution. In one embodiment, controller 1690 is configured to first simultaneously detonate explosive segment 1632 which is opposite explosive segment 1640, and explosive segment 1630 which is adjacent explosive segment 1632 and closest to desired deployment direction 1730. Controller 1690 is further configured to thereafter simultaneously detonate explosive segment 1634 which is adjacent explosive segment 1632 and farthest from desired deployment direction 1730, and next adjacent explosive segment 1636. The time delay between the simultaneous detonation of segments 1630 and 1632 and the subsequent simultaneous detonation of segments 1634 and 1636 may be between 8.0 microseconds and 9.0 microseconds, preferably about 8.33 microseconds.


By detonating specified explosive segments at different times in accordance with the present invention, the rods can be aimed in any desired deployment direction. This high resolution aiming is caused by differential shock waves in the explosive segments and how their vectors combine. In this latter example, explosive segments 1630 and 1632 are detonated first, causing shock wave 1770 and generating a deployment vector V12 which signifies the simultaneous detonation of the first two explosive segments 1630 and 1632. After the detonation of explosive segments 1630 and 1632, explosive segments 1634 and 1636 are detonated. The simultaneous detonation of explosive segments 1634 and 1636 causes another shock wave 1771 and generates deployment vector V34. The sum of deployment vectors V12 and V34 is resolved vector Vd which is the direction in which plurality of rods 1510 travel. More particularly, center 1775 of plurality of rods 1510 travels in direction Vd, which is the same direction as desired deployment direction 1730. Thus aiming resolution is greatly improved. The angle θY is the difference between the direction of resolved vector Vd and the direction of travel 1700 of plurality of rods 1510 if, for example, explosive segments 1630, 1632, 1634 and 1636 were all detonated simultaneously rather than at different times.


In another example shown in FIG. 7, target TZ located by target locator system 1680 is also aligned between sympathetic shield 1641 and center 1710 of explosive segment 1642. However, target TZ is aligned closer to sympathetic shield 1641 than target TY, FIG. 5 and the angle θY is greater than angle θZ, FIG. 7. Again the invention utilizes time difference to bias the deployment vectors and improve aiming resolution.


In this example, controller 1680 is configured to sequentially detonate explosive segments 1630, 1632, 1634 and 1636. Controller 1680 is configured to first detonate explosive segment 1630 closest to desired deployment direction 1780 and adjacent explosive segment 1632 which is opposite explosive segment 1640. Then explosive segment 1632 opposite segment 1640 is detonated. Explosive segment 1634 farthest from desired deployment direction 1780 and adjacent explosive segment 1632 is then detonated. The next adjacent explosive segment 1636 is detonated last. The time period between the detonations may be adjusted according to the exact location of a specific target. In one example, the time between the sequential detonation of each explosive segment 1630, 1632, 1634 and 1636 is approximately four (4) microseconds.


In summary, explosive segment 1630 is detonated first, causing shock wave 1779 and generating deployment vector V1. Then explosive segment 1632 is detonated, causing shock wave 1781 and generating deployment vector V2. Thereafter explosive segment 1634 is detonated, causing shock wave 1783 and generating deployment vector V3. Explosive segment 1636 is detonated last, causing shock wave 1785 and generating deployment vector V4. The sum of deployment vectors V1, V2, V3 and V4 is resolved vector VR which is the direction plurality of rods 1510—specifically the center 1775 of plurality of rods 1510—travel. The direction of resolved vector VR is the same as desired deployment direction 1780. Again there is a great reduction in aiming error. The angle θZ is the difference between the direction of resolved vector VR and the direction of travel 1700 of plurality of rods 1510 if, for example, explosive segments 1630, 1632, 1634 and 1636 were detonated simultaneously rather than each at different times. Also, the difference between θY, FIG. 5 and θZ, FIG. 6 is the difference between a) simultaneous detonation of segments 1630 and 1632 first followed by simultaneous detonation of segments 1634 and 1636, and b) the sequential detonation of segments 1630, 1632, 1634 and 1636.


In a similar manner, a target located between any sympathetic shield center and any of an explosive segment may be more accurately targeted. For example, if the target is at TA, FIG. 7, between sympathetic shield 1641, FIG. 7, and center 1711 of explosive segment 1642, explosive segments 1634 and 1636 may be simultaneously detonated, followed by the simultaneous detonation of segments 1632 and 1630. Alternatively, explosive segments 1636 may be detonated first, followed by the detonation of explosive segment 1634, then 1632, then 1630 in order.


With the present invention the amount of time between detonation of any of the explosive segments is not limited, and may be adjusted according to the location of a particular target and desired deployment direction. By using various time differences the directions of the deployment vectors, and consequently the resolved deployment vector, can be adjusted to any desired deployment direction and/or any target location.


Thus, with specified explosive charge segments detonated in timed combination in accordance with the present invention, aiming resolution is improved and rod penetrators of the aimable kinetic energy rod warhead of the present invention are more accurately propelled in the direction of a target to increase overall kill probability and lethality.


Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments. Other embodiments will occur to those skilled in the art and are within the following claims.


In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.

Claims
  • 1. An aimable kinetic energy rod warhead system comprising: a plurality of rods in a projectile core;explosive segments surrounding the plurality of rods;at least one detonator for each explosive segment;sympathetic shields between the explosive segments;a target locator system configured to locate a target aligned with a location between a sympathetic shield and the center of an explosive segment; anda controller, responsive to the target locator system, configured to sequentially selectively detonate specified individual explosive segments at different times to cause individual explosive segment shock waves which generate individual deployment vectors, the sum of which is a resolved deployment vector to deploy said plurality of rods from the projectile core at said target as aligned and thereby improve aiming resolution of the warhead.
  • 2. The aimable kinetic energy rod warhead system of claim 1 in which there are eight explosive segments.
  • 3. The aimable kinetic energy rod warhead system of claim 1 in which there is one detonator for each explosive segment.
  • 4. The aimable kinetic energy rod warhead system of claim 1 in which the shields are made of a composite material.
  • 5. The aimable kinetic energy rod warhead system of claim 4 in which the composite material is steel sandwiched between polycarbonate resin sheet layers.
  • 6. The aimable kinetic energy rod warhead system of claim 1 in which the rods are lengthy metallic members.
  • 7. The aimable kinetic energy rod warhead system of claim 6 in which the rods are made of tungsten.
  • 8. The aimable kinetic energy rod warhead system of claim 1 in which the rods have a cylindrical cross-section.
  • 9. The aimable kinetic energy rod warhead system of claim 1 in which the explosive segments are wedge-shaped.
  • 10. The aimable kinetic energy rod warhead system of claim 1 in which the controller is configured to simultaneously detonate an explosive segment opposite said explosive segment and an explosive segment adjacent thereto which is closest to the desired deployment direction, and thereafter simultaneously detonate an explosive segment adjacent the explosive segment opposite said explosive segment which is farthest from the desired deployment direction and a next adjacent explosive segment.
  • 11. The aimable kinetic energy rod warhead system of claim 1 in which the controller is configured to detonate an explosive segment closest to the desired deployment direction which is adjacent an explosive segment opposite said explosive segment, then detonate the explosive segment opposite said explosive segment, then detonate the explosive segment farthest from the desired deployment direction which is adjacent the explosive segment opposite said explosive segment, and thereafter detonate a next adjacent explosive segment.
RELATED APPLICATIONS

This application is a Continuation-in-Part of prior U.S. patent application Ser. No. 11/059,891 filed Feb. 17, 2005 now U.S. Pat. No. 7,621,222 and this application is a Continuation-in-Part of prior U.S. patent application Ser. No. 11/060,179 filed Feb. 17, 2005 now U.S. Pat. No. 7,624,682, and the latter applications are each a Continuation-in-Part application of prior U.S. patent application Ser. No. 10/924,104 filed Aug. 23, 2004 now abandoned and a Continuation-in-Part application of prior U.S. patent application Ser. No. 10/938,355 filed Sep. 10, 2004 now abandoned, and each of these latter two applications are a Continuation-in-Part of prior U.S. patent application Ser. No. 10/456,777, filed Jun. 6, 2003 now U.S. Pat. No. 6,910,423 which is a Continuation-in-Part of prior U.S. patent application Ser. No. 09/938,022 filed Aug. 23, 2001, issued on Jul. 29, 2003 as U.S. Pat. No. 6,598,534B2. All of these patent applications and patents are incorporated herein by reference.

US Referenced Citations (119)
Number Name Date Kind
1198035 Huntington Sep 1916 A
1229421 Downs Jun 1917 A
1235076 Stanton Jul 1917 A
1244046 Ffrench Oct 1917 A
1300333 Berry Apr 1919 A
1305967 Hawks Jun 1919 A
2296980 Carmichael Sep 1942 A
2308683 Forbes Jan 1943 A
2322624 Forbes Jun 1943 A
2337765 Nahirney Dec 1943 A
2925965 Pierce Feb 1960 A
2988994 Fleischer, Jr. et al. Jun 1961 A
3153367 Ross et al. Oct 1964 A
3332348 Myers et al. Jul 1967 A
3464356 Wasserman et al. Sep 1969 A
3565009 Allred et al. Feb 1971 A
3598051 Avery Aug 1971 A
3656433 Thrailkill et al. Apr 1972 A
3665009 Dickinson, Jr. May 1972 A
3703865 Gilbertson et al. Nov 1972 A
3757694 Talley et al. Sep 1973 A
3771455 Haas Nov 1973 A
3796158 Conger Mar 1974 A
3796159 Conger Mar 1974 A
3797359 Mawhinney et al. Mar 1974 A
3818833 Throner, Jr. Jun 1974 A
3846878 Monson et al. Nov 1974 A
3851590 LaCosta Dec 1974 A
3861314 Barr Jan 1975 A
3877376 Kupelian Apr 1975 A
3902424 Dietsch et al. Sep 1975 A
3903804 Luttrell et al. Sep 1975 A
3915092 Monson et al. Oct 1975 A
3941059 Cobb Mar 1976 A
3949674 Talley Apr 1976 A
3954060 Haag et al. May 1976 A
3960085 Abernathy et al. Jun 1976 A
3977330 Held Aug 1976 A
4015527 Evans Apr 1977 A
4026213 Kempton May 1977 A
4036140 Korr et al. Jul 1977 A
4089267 Mescall et al. May 1978 A
4106410 Borcher et al. Aug 1978 A
4106411 Borcher et al. Aug 1978 A
4147108 Gore et al. Apr 1979 A
4172407 Wentink Oct 1979 A
4210082 Brothers Jul 1980 A
4211169 Brothers Jul 1980 A
4216720 Kempton Aug 1980 A
4231293 Dahn et al. Nov 1980 A
4289073 Romer et al. Sep 1981 A
4353305 Moreau et al. Oct 1982 A
4376901 Pettibone et al. Mar 1983 A
4430941 Raech, Jr. et al. Feb 1984 A
4455943 Pinson Jun 1984 A
4516501 Held et al. May 1985 A
4538519 Witt et al. Sep 1985 A
4638737 McIngvale Jan 1987 A
4655139 Wilhelm Apr 1987 A
4658727 Wilhelm et al. Apr 1987 A
4662281 Wilhelm et al. May 1987 A
4676167 Huber, Jr. et al. Jun 1987 A
4729321 Stafford Mar 1988 A
4745864 Craddock May 1988 A
4770101 Robertson et al. Sep 1988 A
4777882 Dieval Oct 1988 A
4848239 Wilhelm Jul 1989 A
4872409 Becker et al. Oct 1989 A
4922826 Busch et al. May 1990 A
4957046 Puttock Sep 1990 A
4995573 Wallow Feb 1991 A
4996923 Theising Mar 1991 A
5050503 Menz et al. Sep 1991 A
H1047 Henderson et al. May 1992 H
H1048 Wilson et al. May 1992 H
5182418 Talley Jan 1993 A
5223667 Anderson Jun 1993 A
5229542 Bryan et al. Jul 1993 A
5313890 Cuadros May 1994 A
5359935 Willett Nov 1994 A
5370053 Williams et al. Dec 1994 A
5524524 Richards et al. Jun 1996 A
5535679 Craddock Jul 1996 A
5542354 Sigler Aug 1996 A
5544589 Held Aug 1996 A
5577431 Küsters Nov 1996 A
5578783 Brandeis Nov 1996 A
5583311 Rieger Dec 1996 A
5622335 Trouillot et al. Apr 1997 A
D380784 Smith Jul 1997 S
5670735 Ortmann et al. Sep 1997 A
5691502 Craddock et al. Nov 1997 A
5796031 Sigler Aug 1998 A
5823469 Arkhangelsky et al. Oct 1998 A
5929370 Brown et al. Jul 1999 A
5936191 Bisping et al. Aug 1999 A
6010580 Dandliker et al. Jan 2000 A
6035501 Bisping et al. Mar 2000 A
6044765 Regebro Apr 2000 A
6186070 Fong et al. Feb 2001 B1
6223658 Rosa et al. May 2001 B1
6276277 Schmacker Aug 2001 B1
6279478 Ringer et al. Aug 2001 B1
6279482 Smith et al. Aug 2001 B1
6598534 Lloyd et al. Jul 2003 B2
6622632 Spivak Sep 2003 B1
6666145 Nardone et al. Dec 2003 B1
20030019386 Lloyd et al. Jan 2003 A1
20030029347 Lloyd Feb 2003 A1
20040011238 Ronn et al. Jan 2004 A1
20040055498 Lloyd Mar 2004 A1
20040055500 Lloyd Mar 2004 A1
20040129162 Lloyd Jul 2004 A1
20040200380 Lloyd Oct 2004 A1
20050016372 Kilvert Jan 2005 A1
20050109234 Lloyd May 2005 A1
20050115450 Lloyd Jun 2005 A1
20050126421 Lloyd Jun 2005 A1
20050132923 Lloyd Jun 2005 A1
Foreign Referenced Citations (20)
Number Date Country
3327043 Feb 1985 DE
3722420 Jan 1989 DE
3735426 May 1989 DE
3830527 Mar 1990 DE
3834367 Apr 1990 DE
3934042 Apr 1991 DE
3934042 Apr 1991 DE
H08-005299 Jan 1996 DE
195 24 726 Feb 1996 DE
270 401 Jun 1988 EP
872705 Oct 1998 EP
902250 Mar 1999 EP
2678723 Jan 1993 FR
2695467 Mar 1994 FR
550001 Dec 1942 GB
2236581 Apr 1991 GB
1-296100 Nov 1989 JP
7 027500 Jan 1995 JP
WO 9727447 Jul 1997 WO
WO 9930966 Jun 1999 WO
Related Publications (1)
Number Date Country
20070084376 A1 Apr 2007 US
Continuation in Parts (10)
Number Date Country
Parent 11059891 Feb 2005 US
Child 11185555 US
Parent 11060179 Feb 2005 US
Child 11059891 US
Parent 10924104 Aug 2004 US
Child 11059891 US
Parent 10938355 Sep 2004 US
Child 10924104 US
Parent 10924104 US
Child 11060179 US
Parent 10938355 US
Child 10924104 US
Parent 10456777 Jun 2003 US
Child 10924104 US
Parent 09938022 Aug 2001 US
Child 10456777 US
Parent 10456777 US
Child 10938355 US
Parent 09938022 US
Child 10456777 US