The present disclosure relates generally to king pin assemblies for securing trailers to vehicle fifth wheels.
King pin assemblies are used to secure a trailer to a fifth wheel of a tractor or other vehicle. A king pin assembly has a king pin which is received by the fifth wheel to connect the trailer and the vehicle
According to one aspect of the present disclosure, a king pin assembly for coupling a trailer to a fifth wheel comprises a king pin adapted to be secured to the fifth wheel. The king pin mount is secured to the king pin and adapted to mount the king pin to the trailer. The king pin mount comprises at least one component comprising a fiber-reinforced composite material. Use of such a fiber-reinforced composite component prolongs the useful life of the king pin mount.
The king pin assembly may be used with a variety of trailers. For example, it may be used with platform trailers and box trailers.
The detailed description particularly refers to the accompanying figures in which:
While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
Referring to
Referring to
Referring to
The cross members 28 are secured to an upper surface 34 of the composite fifth wheel plate 24 and extend between the side walls 26. The fifth wheel plate 24 is adapted to contact the fifth wheel 16 when the king pin 20 is secured thereto. Illustratively, the cross members 28 and the cup-mounting plate 30 are bonded to the composite fifth wheel plate 24 by use of an adhesive.
Referring to
Referring to
Referring to
Referring to
The king pin mount 122 includes a frame 123 including the first set of cross tubes 128, the second set of cross tubes 129 positioned between and secured to the pair of side walls 126, and a U-shaped frame member 150 secured to one of the cross tubes of the first set of cross tubes 128, as shown in
Illustratively, the first set of cross tubes 128 are made of metal and the second set of cross tubes 129 are made of a composite material. Frame 123 further includes a number of pipes 152 extending longitudinally through apertures 154 defined in the cross tubes of the first and second set of cross tubes 128, 129. Pipes 152 are configured to act as conduits for pressurized air lines and electrical wiring for various trailer systems.
The cross tubes 128, 129 are secured to an upper surface 134 of the composite fifth wheel plate 124 and extend between the side walls 126. The fifth wheel plate 124 is adapted to contact the fifth wheel 16 when the king pin 20 is secured thereto. Illustratively, the cross tubes 128, 129, side walls 126, and composite shim 131 are bonded to the composite fifth wheel plate 124 by use of an adhesive material.
The trailer 114 includes a pair of parallel bottom rails 137 extending longitudinally along the length of the trailer 114. Rails 137 are arranged in spaced-apart relation to receive decking 140, structural cross members 142, and an enclosure portion 146 therebetween. The king pin assembly 110 is secured to a lower surface of the decking 140 of the trailer 114 between bottom rails 137 at a leading end of box trailer 114 to secure box trailer 114 to vehicle fifth wheel 16. Illustratively, mounting plates 126 are secured to rails 137 by use of a number of fasteners.
The king pin mount 122 includes a number of access apertures 144 defined in the mount 122. The apertures 144 provide access for servicing systems of the trailer 114 concealed above the king pin mount 122.
Referring to
Each king pin assembly 10, 110 weighs less than or equal to 850 pounds. For example, each king pin assembly 10, 110 weighs between about 700 pounds and about 850 pounds. In one example, each assembly 10, 110 may weigh about 700 pounds and in another example, each assembly 10, 110 may weigh about 850 pounds.
It is within the scope of this disclosure for each of the composite components disclosed herein to be constructed as any suitable fiber-reinforced composite structure. An example of such a structure is a fiber-reinforced polymer (FRP) composite structure. Such an FRP structure may include a polymer matrix having a reinforcing element and a polymer resin. The FRP structure may be embodied as any type of FRP structure. Examples of such structures include, but are not limited to, a solid laminate, a pultruded or vacuum-infused sandwich panel (e.g., a panel having a pair of skins with a core therebetween), pultruded panel (e.g., a panel having a pair of layers with vertical or diagonal webs therebetween), or TRANSONITE® available from Martin Marietta Materials, Inc. of Raleigh, N.C. In the case where the FRP structure is embodied as a sandwich panel, the core type may include, but is not limited to, wood, foam and various types of honeycomb.
The matrix includes, for example, a thermosetting resin, although thermoplastic resins are also contemplated for use. Examples of thermosetting resins which may be used include, but are not limited to, unsaturated polyesters, vinyl esters, polyurethanes, epoxies, phenolics, and mixtures and blends thereof.
The reinforcing element may include E-glass fibers, although other reinforcements such as S-glass, carbon, KEVLAR®, metal, high modulus organic fibers (e.g. aromatic polyamides, polybenzamidazoles, and aromatic polyimides), and other organic fibers (e.g. polyethylene and nylon) may be used. Blends and hybrids of such materials may be used for the reinforcing element. Other suitable composite materials may be used for the reinforcing element including whiskers and fibers such as boron, aluminum silicate, basalt, carbon nano-fibers, and other nano-fibers.
The FRP structure may be embodied as any of the structures disclosed in U.S. Pat. Nos. 5,794,402; 6,023,806; 6,044,607; 6,070,378; 6,081,955; 6,108,998; 6,467,118 B2; 6,645,333; 6,676,785, the entirety of each of which is hereby incorporated by reference. It should be appreciated that the structures disclosed in the above-identified patents may be sized, scaled, dimensioned, orientated, or otherwise configured in any desired manner to fit the needs of a given design of the FRP structure.
While the disclosure is susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and have herein been described in detail. It should be understood, however, that there is no intent to limit the disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
There are a plurality of advantages of the present disclosure arising from the various features of the apparatus and methods described herein. It will be noted that alternative embodiments of the apparatus and methods of the present disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of an apparatus and method that incorporate one or more of the features of the present disclosure and fall within the spirit and scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3337277 | Arnold | Aug 1967 | A |
4394030 | Inque | Jul 1983 | A |
4457531 | Hunger | Jul 1984 | A |
5794402 | Dumlao et al. | Aug 1998 | A |
6023806 | Dumlao et al. | Feb 2000 | A |
6044607 | Dumlao et al. | Apr 2000 | A |
6070378 | Dumlao et al. | Jun 2000 | A |
6073952 | Schulz | Jun 2000 | A |
6081955 | Dumlao et al. | Jul 2000 | A |
6108998 | Dumlao | Aug 2000 | A |
6158773 | Verhaeghe | Dec 2000 | A |
6467118 | Dumlao et al. | Oct 2002 | B2 |
6565109 | Kloepfer | May 2003 | B1 |
6645333 | Johnson et al. | Nov 2003 | B2 |
6676785 | Johnson et al. | Jan 2004 | B2 |
6773023 | Athans et al. | Aug 2004 | B2 |
7073272 | Lefebvre | Jul 2006 | B1 |
Number | Date | Country |
---|---|---|
29821604 | Feb 1999 | DE |
Number | Date | Country | |
---|---|---|---|
20070069500 A1 | Mar 2007 | US |