The present invention relates to cleaning and suppressing fires in kitchen hood assemblies.
A kitchen hood assembly is provided and includes a combination cleaning and fire suppression system. That is, the hood assembly is operative in one mode to inject water or an aqueous solution into the hood structure to clean the same. In a second mode of operation, in response to a fire being detected in or adjacent to the hood, the same system injects water or an aqueous solution into the hood to suppress a fire.
In one embodiment, the kitchen hood assembly comprises a combination hood cleaning and fire suppression system. This hood assembly includes a hood structure and a riser connected to the hood structure and extending therefrom. An exhaust blower is provided for forcing an exhaust stream of air into and through the riser. The combination hood cleaning and fire suppression system incorporated into the hood structure is adapted in a cleaning mode to spray water and a surfactant within the kitchen hood to clean the same, and in a fire suppression mode in response to a signal from a fire sensor, spray water and a surfactant into the kitchen hood to know down and suppress the fire.
Other objects and advantages of the present invention will become apparent and obvious from a study of the following description and the accompanying drawings which are merely illustrative of such invention
With further reference to the drawings, the kitchen hood assembly of the present invention is shown therein and indicated generally by the numeral 10. As illustrated in
Turning now to a more detailed description of kitchen hood assembly 10, housing 12 encloses a vapor entrainment area 14 comprising a portion of the interior of the housing as illustrated in
Disposed within grease confinement area 16 is a portion of the combination cleaning and fire suppression system 20. Spray bar 22 extends generally transversely across an upper portion of the grease confinement area 16. See
In one embodiment, spray bar 22 includes a series of pipe segments 23 connected together by a series of tees 22E as illustrated particularly in
Turning now to control system 26 (
As noted above, each leg 21A, 21B includes a manual shutoff valve 21G and an electric solenoid valve 21H. Leg 21C includes a temperature sensor 21K. Control system 26 may include the capacity to respond to a desired temperature set point and adjust the flow of heated and unheated water to obtain and maintain the temperature of the water flowing in leg 21C at a certain temperature or within a temperature range.
Control system 26 also includes a surfactant injection apparatus to inject surfactant into the water directed to spray bar 22. In one embodiment, the apparatus includes a surfactant pump system 26B and a surfactant reservoir 26C. The pump inlet is fluidly connected to reservoir 26C by tube 29A, and the pump outlet is connected to connector 21M by tube 29B. It is appreciated that a check valve may be interposed between the connection of tube 29B to connector 21M and surfactant pump system 26B to prevent backflow through the surfactant pump system.
Control system 26 further includes commonly known circuitry and logic for activating system 20 by admitting supply water into the system for a set or desired time period. During the time period that water is being injected into cleaning and fire suppression system 20, control system 26 controls the amount of surfactant injected by surfactant pump 26B.
The cleaning and fire suppression system 20 further includes a fire sensor 30 that is mounted on riser 18, or in an area in the hood, such that the sensor is operative to be activated by a fire in interior 18A of the riser 18 or grease confinement area 16. In one embodiment, fire sensor 30 includes an active sensing element extending at least partially into interior 18A. Fire sensor 30 may be of various extant designs that provide an electrical signal that may be used to initiate operation of combination cleaning and fire suppression system 20 in the event of a fire being detected as will be discussed here below.
A control schematic for control system 26 that enables both hood cleaning and fire suppression is illustrated in
Fire sensor 30 is coupled to a fire switch 13, the coupling symbolically indicated in
It is appreciated that cleaning and fire suppression system 20 functions similarly during cleaning and fire suppression. Once energized, whether by manual shut-off of hood assembly 10 or by a fire being sensed by fire sensor 30, system 20 functions the same way using the same aqueous liquid.
To be effective in cleaning hood assembly 10, cleaning and fire suppression system 20 may be supplied with water having a temperature between about 140° F. and about 170° F. To be effective in cleaning and fire suppression, water pressure may be maintained at about 30 psi. Nozzles 22A can provide a flow of about 0.7 gpm at 30 psi. Riser nozzle 22B may be rated to provide 2.4 gpm at 30 psi. In a typical application, nozzles 22A are equivalent to Macola Model No. 2591 or 2592 and nozzles 22B are equivalent to Macola Model No. 2593. All plumbing is brass pipe or tube. Spray bar 22 comprises ¾″ pipe nipples 23 and 24, tees 22E, and elbows. Riser nipple 27 comprises ¼″ tubing or pipe and commonly available fittings to connect to spray bar 22. In a typical application, pipe nipples 23 are about 12″ long and provide for nozzles 22A to be spaced apart about 13″ and preferably spaced at between 12½″ and 13½″. It is appreciated that all of these sizes discussed above can vary and will probably vary depending upon application. Fire suppression sensor 30 should be of a design capable of sensing the presence of fire typical of range hood systems. Fire sensors are well known in the art and are commercially available. Hood drain 28 is typically formed of brass pipe and fittings. In one embodiment, 1½″ pipe is used in forming hood drain 28, and the hood drain extends at least 72″ away from hood assembly 10.
Commonly available surfactants may be used and function also as detergents. Generally, during cleaning or fire suppression, control system 26 provides for surfactant to be injected for 1 second for every minute of operation. The surfactant is effective in the fire suppression mode to knockdown the fire. The amount of surfactant administered during a fire and the time period for injecting a surfactant can vary. However, in a preferred design and process, surfactant is continuously injected into the water stream in a fire situation.
There are many advantages to the new kitchen hood assembly of the present invention. One principal advantage is that the kitchen hood assembly utilizes substantially the same structure and system for both cleaning the hood assembly and for fire prevention. Also, it should be pointed out that the kitchen hood assembly disclosed herein and the fire proof prevention system is fully certified to Standard UL300.
The present invention may, of course, be carried out in other specific ways than those herein set forth without departing from the scope and the essential characteristics of the invention. The present embodiments are therefore to be construed in all aspects as illustrative and not restrictive and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
3055285 | Gaylord | Sep 1962 | A |
3207058 | Gaylord | Sep 1965 | A |
3490206 | Doane | Jan 1970 | A |
3494108 | Moragne | Feb 1970 | A |
3564989 | Williams et al. | Feb 1971 | A |
3805685 | Carns | Apr 1974 | A |
3815625 | Weise | Jun 1974 | A |
4050446 | Giuffre | Sep 1977 | A |
4066064 | Vandas | Jan 1978 | A |
4085735 | Kaufman et al. | Apr 1978 | A |
4231769 | Ahlrich | Nov 1980 | A |
4363642 | Stahl | Dec 1982 | A |
4784114 | Muckler et al. | Nov 1988 | A |
5042457 | Gallagher | Aug 1991 | A |
5642784 | Guay et al. | Jul 1997 | A |
5662097 | Panos | Sep 1997 | A |
6079502 | Davis et al. | Jun 2000 | A |
6125841 | Boudreault | Oct 2000 | A |
6162286 | Hasama et al. | Dec 2000 | A |
6170480 | Melink et al. | Jan 2001 | B1 |
6817356 | Gallagher | Nov 2004 | B2 |
20020028501 | McMinn, Jr. | Mar 2002 | A1 |
20050178378 | Marshall et al. | Aug 2005 | A1 |
20080135041 | Robison | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
2865419 | Jul 2005 | FR |
2008035064 | Mar 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20090272372 A1 | Nov 2009 | US |