The invention relates to a kite having a main body provided with at least a first and a second connection cable and at least one main pulling cable, the at least first and second connection cables each having a first and a second end, the first ends of the at least first and second connection cables being connected to the main body of the kite at different positions of the main body, the second ends of the at least first and second connection cables being connected to the main pulling cable.
Kites are known and can, for example, be used to convert wind energy into mechanical energy that can be used for a variety of applications, like generation of electricity, pulling vessels, various sports like kite surfing, etc. To use known kites for the mentioned applications, the control of the kite is of importance. The common way of controlling a kite is manually controlling by pulling the at least one pulling cable.
It is an object of the invention to provide a kite with an improved way of controlling. In order to achieve this object the kite according to the invention is provided with at least one regulator between the first ends of the connecting cables and the main body and/or between the second ends of the connecting cables and the at least one main pulling cable, a control being provided for controlling the at least one regulator so that the kite is steereable.
By using at least one regulator and a control for controlling said regulator, the movements of the kite can be arranged automatically without manual pulling of the cables. The combination of at least one regulator and a control provides full automatic control of the kite. Said combination can be used to steer regular kites, for instance surf kites of the Naish or Lynn type, or other known kites.
According to a further embodiment of the invention, the at least one regulator is arranged for displacing the first end of one of said connecting cables relative to the first end of another one of said connecting cables. It is also possible, in a further embodiment of the invention, that the at least one regulator is arranged for displacing the second end of one of said connecting cables relative to the second end of another one of said connecting cables. By displacing one of the ends of the first or the second connection cable with respect to the similar end of the other connection cable, the attachment point of said cable is shifted with respect to the points where the external forces, the aero-dynamical and gravitational forces, apply to the kite. That shift causes the shape of the kite to change which enables movement of the kite. For instance, to enable the kite to get in a roll yaw motion or in a pitch, or any other common movement of a kite.
According to a further embodiment of the invention, the at least one regulator is arranged for decreasing and increasing the length of a connection cable relative to the length of another one of said connecting cables. By increasing and/or decreasing the length of a connection cable, the kite will change its position relative to the applied forces to the kite, resulting in controlled movement of the kite.
According to another aspect of the invention, the control is a wireless remote control, wherein the at least one regulator has its own power supply and a receiver and optionally a transmitter for wireless communication with the remote control. Such a wireless remote control enables control of the kite at different altitudes, also at high altitudes. A further advantage is that when using such a control, only one relatively long cable is needed, just the one connecting the kite to the ground. The connection cables can be relatively short. Furthermore, such a control can control a plurality of kites at the same time, for instance each kite individually or all kites as a whole, the kites being interconnected.
In a further embodiment of the invention, the regulator comprises a sliding mechanism that provides sliding of the end of the connection cable relative to the regulator. The sliding mechanism can be arranged at both lower ends of the kite. The displacement of at least one of the ends of the connection cables is arranged by sliding a small carriage over the sliding mechanism. The small carriage may be moved along the sliding mechanism in both directions. Also the small carriages of both sliding mechanisms can be moved relative to the respective sliding mechanisms at the same time.
According to another aspect of the invention, in use a direction of displacement of the at least one end of the cable relative to another similar end of another cable, that are displaceable connected to the regulator, and/or a direction of displacement of the at least one end of the cable, that is displaceable connected to the regulator, relative to said regulator is substantially perpendicular to a direction of tensile force in said cable being displaced. Due to the perpendicular displacement of the end of the cable with respect to the tensile force in said cable to be displaced, the force needed to enable said displacement can be relatively small. It is clear that with the end of the cable is meant the first end of the first or second connecting cable, the second end of the first or second connecting cable, the first end of the main pulling cable etc., depending on the location and the way of functioning of the regulator and the cables that are displaceable connected to said regulator.
According to a further embodiment of the invention, the kite is provided with at least one sensor that is adapted to measure at least one parameter of the following: position of the kite, altitude of the kite, wind conditions. Such parameters can be of influence for the behaviour of the kite and consequently for the needed steering movements, thus the needed control operations. In order to take account of such parameters it is possible, according to another aspect of the invention, that the control is adapted to control the at least one regulator in dependence of a measurement of the at least one sensor. It is also possible that the control is adapted to control the at least one regulator in dependence of controlling software. Due to such controlling software stability and steering of the kite are provided automatically. According to the values of the parameters the software generates controlling operations that are transmitted to a receiver on the regulator.
The invention further relates to a method of generating power, wherein the method comprises providing a kite of the above-mentioned type connecting the main pulling cable of the kite to a power generator, controlling the kite so that a desired path of movement of the kite is obtained. Using an above-mentioned kite to generate power is advantageous, because said kite can be used to exploit wind energy at high altitudes without needing any tall structure, as does a wind turbine, to bring the kite to that altitude. In general, the wind is stronger at the power generating heights of a kite than, for example, at the effective power generating height of a fixed wind turbine. Therefore, generating power with a kite is very efficient.
In a further embodiment of the invention, the controlling of the kite is such that during a first part of the desired path a high pulling force is exerted on the main pulling cable and that during a second part of the desired path a smaller pulling force is exerted on the main pulling cable, wherein during the first part the kite moves away from the power generator and wherein during the second part the kite moves towards the power generator. Due to a higher force created during the first part of the path than during the second part of the path, a net energy is transferred during the first part of the path.
The invention also relates to a method of providing driving force to a vehicle, the method comprising providing a kite of the above-mentioned type connecting the pulling cable of the kite to the vehicle and operating the control of the kite such that the vehicle is pulled by the pulling cable along a desired path with a desired speed.
In further embodiment of the invention, the vehicle is chosen from the group consisting of a car, a bike, a buggy, a boat, and an aircraft.
Furthermore, the invention relates to a vehicle provided with at least one kite of the above-mentioned type for driving the vehicle.
The invention also relates to a power generation assembly comprising a power generator and at least one kite of the above-mentioned type driveably connected to the power generator.
Such methods, vehicles and power generation assembly provide similar advantages as mentioned at the description of the kite according to the invention.
Other objects, features, and advantages of one or more embodiments of the present invention will seem apparent from the following detailed description, and accompanying drawings, and the appended claims.
Embodiments of the present invention will now be disclosed, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, in which:
The regulators 2, 3 are arranged as a sliding mechanism 2, 3, wherein the first ends 4a, 5a of the respective connection cables 4, 5 are slidably received in said sliding mechanism 2, 3. The sliding mechanism 2, 3 will be further explained at the description of
The kite 1 can be controlled by a remote control 7, possibly operated by a user. The remote control 7 can be a computer, a joystick or any other kind of known controls. The remote control 7 can also be operated automatically based on controlling software and in dependence of continuously measured parameters of the kite 1. Therefore, at least one sensor 8 can be provided on said kite 1, or on another location, for instance on the regulators 2, 3. The sensor 8 is adapted to measure parameters like altitude of the kite 1, position of the kite 1, or wind conditions around the kite 1 or other parameters that are of importance to the behaviour of the kite 1.
When the user operates the control 7, for instance, for steering the kite to the right, the position of the end 4a of the first connecting cable 4 relative to the position of the end 5a of the second connecting cable 5 is changed by sliding said end 4a along the sliding mechanism 2. Consequently, the attachment points of the ends 4a, 5a of the connection cables 4, 5 change with respect to the application point of the external forces to the kite 1, i.e. aero-dynamical and gravitational forces, so as to enable the desired movement of the kite 1.
It is also possible that the sliding mechanism 2, 3 comprises a transmitter (not shown) for returning a signal to the control 7. Naturally, it is possible to move the sliding carriage 12 relative to the sliding rail 9 with another kind of moving element known to the skilled person. Also, it will be appreciated that other mechanisms may be used to move the ends 4a, 5a of the connection cables 4, 5 with respect to the application point of forces to the kite.
Although illustrative embodiments of the present invention have been described in greater detail with reference to the accompanying drawings, it is to be understood that the invention is not limited to these embodiments. Various changes or modifications may be effected by one skilled in the art without departing from the scope or the spirit of the invention as defined in the claims.
For example, it is possible that the first connection cable 4 is connected with one of its ends, being the second end 4b to a first regulator, and the second connection cable 5 is connected with one of its ends, being the second end 5b to a second regulator, which regulator then are provided between the main pulling cable 6 and the connection cables. Also a single regulator can be used, wherein the second ends of the two connection cables are slidably arranged in the sliding mechanism. Also, the kite may be provided with different numbers of connecting cables or main pulling cables, for instance dual line kites or quad line kites. Furthermore, it is possible to vary in the location and number of the regulators, still providing an automatically steereable kite. It is also possible to design the regulator differently while maintaining its function.
This application claims priority to U.S. Provisional Application No. 60/847,371, filed Sep. 27, 2006, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60847371 | Sep 2006 | US |