The invention relates to a kneader, especially, a kneader which increases a kneading effect.
Conventionally, kneaders, such as those shown in
In the above-mentioned kneader, used paper is kneaded at the portion wherein the blades which are respectively provided in the two shafts intersect. In order to increase the kneading effect of the used paper by the kneader, the two shafts are respectively required to be made longer in a longitudinal direction. However, with the increase of the length of the shafts in a longitudinal direction, a size of the bottom portion of the kneader increases, and a space for the installation of the bottom portion of the kneader also increases.
An object of this invention is to provide a kneader which solves the above-mentioned problem.
Further objects and advantages of the invention will be apparent from the following description of the invention.
The present invention is a kneader comprising a casing with a papermaking material supply opening and a papermaking material outlet which is located below the papermaking material supply opening; at least first, second, third and fourth rotational shafts provided inside the casing; a first blade attached to the first rotational shaft; a second blade attached to the second rotational shaft; a third blade attached to the third rotational shaft; and a fourth blade attached to the fourth rotational shaft. The first rotational shaft and the second rotational shaft are the same height and in parallel with each other. The third rotational shaft and the fourth rotational shaft are the same height and in parallel with each other. The third rotational shaft is located under the first rotational shaft, and the fourth rotational shaft is located under the second rotational shaft, respectively.
In the kneader according to the first aspect of the invention, the kneader according to a second aspect of the invention includes the first blade comprising a first feed blade and a first return blade which are alternately attached to the first rotational shaft; the second blade comprising a second feed blade and a second return blade which are alternately attached to the second rotational shaft; the third blade comprising a third feed blade and a third return blade which are alternately attached to the third rotational shaft; and the fourth blade comprising a fourth feed blade and a fourth return blade which are alternately attached to the fourth rotational shaft. The first feed blade and the second return blade; and the first return blade and the second feed blade are arranged to face each other, respectively. The third feed blade and the fourth return blade; and the third return blade and the fourth feed blade are arranged to face each other, respectively. The first feed blade and the third return blade; and the first return blade and the third feed blade are arranged to face each other, respectively. The second feed blade and the fourth return blade; and the second return blade and the fourth feed blade are arranged to face each other, respectively.
In the kneader according to the second aspect of the invention, the kneader according to a third aspect of the invention includes the first feed blade and the first return blade including a tube member attached to the first rotational shaft; and a blade attached to the tube member. The blade has a tapered shape from the back end portion to the front end portion, and a flat surface which is parallel to the end surface of the tube member is formed along the blade. The first feed blade is attached to the first rotational shaft in such a way that the flat surface faces the upstream side of the papermaking materials, and the first return blade is attached to the first rotational shaft in such a way that the flat surface faces the downstream side of the papermaking materials, respectively. The second feed blade and the second return blade include a tube member attached to the second rotational shaft; and a blade attached to the tube member.
The blade has a tapered shape from the back end portion to the front end portion, and a flat surface which is parallel to the end surface of the tube member is formed along the blade. The second feed blade is attached to the second rotational shaft in such a way that the flat surface faces the upstream side of the papermaking materials, and the second return blade is attached to the second rotational shaft in such a way that the flat surface faces the downstream side of the papermaking materials, respectively. The third feed blade and the third return blade include a tube member attached to the third rotational shaft; and a blade attached to the tube member. The blade has a tapered shape from the back end portion to the front end portion, and a flat surface which is parallel to the end surface of the tube member is formed along the blade. The third feed blade is attached to the third rotational shaft in such a way that the flat surface faces the upstream side of the papermaking materials, and the third return blade is attached to the third rotational shaft in such a way that the flat surface faces the downstream side of the papermaking materials, respectively.
The fourth feed blade and the fourth return blade include a tube member attached to the fourth rotational shaft; and a blade attached to the tube member. The blade has a tapered shape from the back end portion to the front end portion, and a flat surface which is parallel to the end surface of the tube member is formed along the blade. The fourth feed blade is attached to the fourth rotational shaft in such a way that the flat surface faces the upstream side of the papermaking materials, and the fourth return blade is attached to the fourth rotational shaft in such a way that the flat surface faces the downstream side of the papermaking materials, respectively.
According to the kneader in the first aspect of the invention, the first, second, third and fourth rotational shafts are provided inside the casing. The first rotational shaft and the second rotational shaft are the same height and in parallel with each other. The third rotational shaft and the fourth rotational shaft are the same heights and in parallel with each other. The third rotational shaft is located under the first rotational shaft and the fourth rotational shaft is located under the second rotational shaft, respectively. Therefore, the volume of the space where the papermaking material is processed can be increased without increasing the space for installation of the bottom portion of the kneader. In addition, the papermaking materials which are processed are also kneaded by the first blade and the third blade; and the second blade and the fourth blade in addition to by the first blade and the second blade; and the third blade and the fourth blade while the papermaking materials which are processed reach the papermaking material outlet. As a result, the kneading effect also can be increased.
According to the kneader in the second aspect of the invention, in addition to the effect of the first aspect of the invention, the first feed blade and the second return blade; and the first return blade and the second feed blade are arranged to face each other, respectively. The third feed blade and the fourth return blade; and the third return blade and the fourth feed blade are arranged to face each other, respectively. The first feed blade and the third return blade; and the first return blade and the third feed blade are arranged to face each other, respectively. The second feed blade and the fourth return blade; and the second return blade and the fourth feed blade are arranged to face each other, respectively. Accordingly, the papermaking materials do not pass through smoothly, so that the papermaking materials stay longer inside the casing and are kneaded more by the blades. As a result, the papermaking materials can be kneaded more effectively.
According to the kneader in the third aspect of the invention, in addition to the effect of the second aspect of the invention, the blade includes the tube member attached to the rotational shaft; and the blade attached to the tube member. The blade has a tapered shape from the back end portion to the front end portion, and the flat surface which is parallel to the end surface of the tube member is formed along the blade. By turning the direction of the blade alternately, the feed blade and the return blade can be easily attached to the rotational shaft alternately.
Hereunder, embodiments of a kneader of the invention will be explained with reference to the accompanying drawings.
In
The casing 3 includes a papermaking material supply opening 3a and a papermaking material outlet 3b which is located lower than the papermaking material supply opening 3a. Inside the casing 3, as shown in
Incidentally, in the embodiments, although a pair of rotational shafts (4 and 5, or 6 and 7) are arranged in two levels, the invention is not limited to the embodiments described hereinabove, and can have more than two levels as long as at least the first, second, third and fourth rotational shafts 4, 5, 6, 7 are provided within the casing 3. Also, overheated steam is supplied to the casing 3 through an overheated steam supply channel which is not shown in the figures.
Each first blade 8 is configured by, for example, first feed blades (feed arbitrary or feed guide blades) 81 and first return blades (return arbitrary or return guide blades) 82 which are alternately attached to the first rotational shaft 4 (refer to
More specifically, the first feed blades 81 and the first return blades 82 have tube members X attached to the first rotational shaft 4; and blades Y made of a bar-like member with a wing-shaped cross section which are attached to the tube members X. The wing-shaped blades Y have a tapered shape from back end portions b to front end portions a, and flat surfaces c which are parallel to end surfaces X1 of the tube members X are formed along the blades Y. The first feed blades 81 are attached to the first rotational shaft 4 in such a way that the flat surfaces c face the upstream side of the papermaking materials, and the first return blades 82 are attached to the first rotational shaft 4 in such a way that the flat surfaces c face the downstream side of the papermaking materials, respectively. In addition, the front end portions a are located in front of the back end portions b relative to a rotational direction of the blades Y.
Each second blade 9 is configured by, for example, second feed blades (feed arbitrary or feed guide blades) 91 and second return blades (return arbitrary or return guide blades) 92 which are alternately attached to the second rotational shaft 5 (refer to
More specifically, the second feed blades 91 and the second return blades 92 have the tube members X attached to the second rotational shaft 5; the blades Y made of a bar-like member with a wing-shaped cross section which are attached to the tube members X. The wing-shaped blades Y have a tapered shape from back end portions b to front end portions a, and flat surfaces c which are parallel to the end surfaces X1 of the tube members X are formed along the blades Y. The second feed blades 91 are attached to the second rotational shaft 5 in such a way that the flat surfaces c face the upstream side of the papermaking materials, and the second return blades 92 are attached to the second rotational shaft 5 in such a way that the flat surfaces c face the downstream side of the papermaking materials, respectively. In addition, the front end portions a are located in front of the back end portions b relative to the rotational direction of the blades Y.
Each third blade 10 is configured by, for example, third feed blades (feed arbitrary or feed guide blades) 101 and third return blades (return arbitrary or return guide blades) 102 which are alternately attached to the third rotational shaft 6 (refer to
Each fourth blade 11 is configured by, for example, fourth feed blades (feed arbitrary or feed guide blades) 111 and fourth return blades (return arbitrary or return guide blades) 112 which are alternately attached to the fourth rotational shaft 7 (refer to
As mentioned above, the blades have the tube members X attached to the rotational shafts and the blades Y attached to the tube members X. The blades Y have a tapered shape from the back end portions b to the front end portions a, and the flat surfaces c which are parallel to the end surfaces X1 of the tube members X are formed along the blades Y. By turning directions of the blades Y alternately, the feed blades and the return blades can be shared and also easily configured. In addition, M1, M2, M3, M4 shown in
The first rotational shaft 4 and the second rotational shaft 5 rotate differently with each other through a first motor 12, a chain 13 and a gear which is not shown in the figure (refer to
Under the papermaking material supply opening 3a, screws 21, 22, 23, 24 sending the papermaking materials are respectively provided on the side of the first rotational shaft 4 and the second rotational shaft 5 and on the side of the third rotational shaft 6 and the fourth rotational shaft 7 (refer to
Therefore, if the papermaking materials such as the used paper and the waste sheet are supplied from the papermaking material supply opening 3a in a state where the papermaking material outlet 3b is closed by the opening-and-closing lid 30, the papermaking materials are guided to a first rotational shaft 4 and second rotational shaft 5 side by the screws 21, 22, and the papermaking materials which passed between the screws 21, 22 are guided to a first rotational shaft 6 and second rotational shaft 7 side by the screws 23, 24, respectively. The papermaking materials which were guided to the first rotational shaft 4 and second rotational shaft 5 side are kneaded by the first blade 8 and the second blade 9, and the papermaking materials which were guided to the third rotational shaft 6 and fourth rotational shaft 7 side are kneaded by the third blade 10 and the fourth blade 11, respectively (refer to
In addition, when the papermaking materials which passed between the pair of first rotational shaft 4 and second rotational shaft 5 move between the pair of third rotational shaft 6 and fourth rotational shaft 7, the papermaking materials are kneaded by the first blade 81, the third blade 101, the second blade 91 and the fourth blade 111. More specifically, the papermaking materials which are processed are also kneaded by the first blade 81 and the third blade 101; and the second blade 91 and the fourth blade 111 in addition to by the first blade 81 and the second blade 91; and the third blade 101 and the fourth blade 111 while the papermaking materials reach the papermaking material outlet 3b. As a result, the kneading effect can be also increased (refer to
The disclosure of Japanese Patent Application No. 2006-267501, filed on Sep. 29, 2006, is incorporated in the application.
While the invention has been explained with reference to the specific embodiments of the invention, the explanation is illustrative and the invention is limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-267501 | Sep 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2903192 | Clausen | Sep 1959 | A |
3454234 | Schoeppner | Jul 1969 | A |
3506066 | Nonnenmacher | Apr 1970 | A |
5402950 | Blair et al. | Apr 1995 | A |
Number | Date | Country |
---|---|---|
27 43 552 | Apr 1978 | DE |
20182 | May 1913 | GB |
262 270 | Dec 1926 | GB |
892506 | Mar 1962 | GB |
1 554 512 | Oct 1979 | GB |
WO 7900345 | Jun 1979 | WO |
Number | Date | Country | |
---|---|---|---|
20080078853 A1 | Apr 2008 | US |