This application is a U.S. national stage application of International Application No. PCT/JP2008/066282 filed Sep. 10, 2008, claiming a priority date of Oct. 2, 2007, and published in a non-English language.
The present invention relates to a kneading apparatus for kneading an object to be kneaded, and more specifically to a kneading apparatus in which two rotary shafts each having a plurality of paddles as stirring members provided on the external periphery thereof are disposed parallel to each other and caused to rotate in opposite directions to knead an object to be kneaded with the paddles.
Conventionally, such a kneading apparatus (mixer) has been used, for example, in mixing dehydrated sludge, incinerated or collected dust, cement and other types of dust mixed with a solidifier, or fertilizer and other types of powdery or granular material, and also in kneading powdery or granular material with liquids added thereto.
This type of kneading apparatus is disclosed in Patent Document 1, in which a plurality of paddles is erected and arranged spirally. First and second rotary shafts are caused to rotate in opposite directions to convey an object to be kneaded in a direction along the two rotary shafts while being stirred and kneaded by the paddles. The two rotary shafts are rotated such that the distal ends of the paddles come in proximity to the external peripheral surface of the facing rotary shaft. Causing the two rotary shafts to rotate at unequal speeds causes the paddles of the two rotary shafts to scrape off the kneaded object that has adhered to the external peripheral surface of the other rotary shaft, thus performing self-cleaning. The paddles of the two rotary shafts are all attached at a specified incline of about 45°, for example, relative to the center axes of the rotary shafts so that the kneaded object is pushed in the conveying direction in accordance with the rotation of the rotary shafts during kneading.
Patent Document 1: Japanese Laid-open Patent Application No. 1987-157113
However, the configuration of the conventional kneading apparatus has the following problems.
Although not a problem in the case of mixing powdery or granular materials, “lumping” sometimes occurs in cases of kneading a powdery or granular material with a liquid. The liquid aggregates and forms clumps in part of the powdery or granular material depending on the blend ratio or at times such as when the liquid is highly viscous. When lumping occurs, it is not easily resolved, and in some cases uniform kneading of the entire material will be impeded.
In an arrangement in which self-cleaning is performed, as is described in Patent Document 1, the facing paddles of the two rotary shafts repeatedly move toward and away from each other with every rotation of the rotary shafts. When the facing paddles are nearest to each other, the kneaded object can be squeezed therebetween and the lumps in the kneaded object can be crushed to a certain extent.
However, this action of crushing lumps has not proved sufficient. Specifically, when the facing paddles of the two rotary shafts are nearest to each other, the object kneaded therebetween receives a pressing force, which causes the kneaded object between the paddles to escapes in the conveying direction along the incline of the paddles, depending on the nature of the material, thereby reducing the lump-crushing effect by half. In this case, sufficiently uniform kneading is no longer possible.
In the case of a batch-type kneading apparatus in which the materials to be kneaded are supplied all at once, kneaded, and discharged all at once, it is somewhat possible to adjust the degree of kneading by adjusting the operation time. In the case of a continuous-type kneading apparatus in which the materials to be kneaded are mixed while being sequentially and continuously supplied and then continuously discharged, there are limits to adjust the degree of kneading because the amount of the material supplied per unit time determines the time for which the kneaded object should remain in the apparatus (stirring time of the kneaded object). Therefore, it has been difficult to adjust the degree of kneading and perform kneading efficiently depending upon the application of the kneading apparatus.
Furthermore, a continuous-type kneading apparatus has the advantages of being small in size and capable of handling large amounts. However, in cases in which the material to be kneaded is highly fluid or cases in which the amount of the material to be kneaded is greater than the handling capacity of the apparatus, the so-called short pass phenomenon sometimes occurs in which the supplied material to be kneaded passes through the apparatus without being kneaded. This results in entirely insufficient kneading.
An object the present invention, which was devised in order to overcome such problems, is to provide a small-sized kneading apparatus being capable of efficiently performing sufficient and uniform kneading.
According to the present invention, there is provided a kneading apparatus in which a first rotary shaft having a plurality of paddles as stirring members provided on the external periphery thereof so as to be arranged helically at a predetermined helical pitch and at intervals of a predetermined angular pitch, and a second rotary shaft having a plurality of paddles as stirring members provided on the external periphery thereof so as to be arranged helically with the inverse helix from the first rotary shaft at a predetermined helical pitch and at intervals of a predetermined angular pitch are disposed in parallel and rotated in opposite directions at unequal speeds to each other to knead an object with the paddles, the helical pitch ratio of the first and second rotary shafts being the inverse of the rotational speed ratio of the first and second rotary shafts, and the angular pitch ratio of the paddles of the first and second rotary shafts being the same as the rotational speed ratio of the first and second rotary shafts, wherein
the paddles of the first and second rotary shafts are arranged so that the paddle surfaces assume either a normal phase to advance the kneaded object in a feed direction, or a reverse phase symmetrical to the normal phase relative to a center axis of the rotary shaft, and the paddles of the rotary shafts that are positioned equidistant from the ends thereof as viewed in the axial direction of the rotary shafts face to each other with the surfaces thereof assuming the same phase; and
the paddles of the first and second rotary shafts are arranged so that the normal phases and reverse phases cyclically repeat in a predetermined sequence as seen in the axial direction of the rotary shafts.
According to the present invention, the kneaded object in the conveying direction stays during kneading in multiple locations where the paddles helically arranged on the external peripheries of the two rotary shafts are adjacent in the sequence of normal phase and reverse phase. This prevents the kneaded object from escaping from between paddles coming in closest possible proximity during lump-crushing action, thereby increasing the lump-crushing effect. Additionally, the time of the material to be kneaded staying from supply to discharge is made greater, allowing the stirring action including the lump-crushing action to be sufficiently performed multiple times and allowing the lumps to be dissolved and sufficient and uniform kneading to be performed. Even with a small-sized continuous-type apparatus, the staying time of the kneaded object can be increased, and sufficient and uniform kneading can be performed.
According to the present invention, since the paddles are attached to the rotary shafts so, that the angles of the paddle surfaces relative to the direction along the helices can be adjusted, the kneading degree can be adjusted according to the application of the kneading apparatus and more efficient kneading is made possible.
a is a cross-sectional view orthogonal to the rotary shafts, showing the paddles of the rotary shafts that are provided in the kneading apparatus;
b is a cross-sectional view showing the rods of the rotary shafts that are provided in the kneading apparatus;
1 Housing
1
a Supply opening
1
b Discharge opening
2 Frame
3, 4 Rotary shafts
7, 8 Rods
9, 10 Bearings
11 Gear box
12, 13 Gears
14, 16 Sprockets
15 Chain
17 Motor
Pn, Pn′, Qn, Qn′ Paddles
The present invention will now be described with reference to preferred embodiments shown in the attached drawings. The kneading apparatus will be described via embodiments in which a powdery or granular material is kneaded with a liquid, but the kneading apparatus can also be applied to cases of mixing only a powdery or granular material or cases of mixing a powdery or granular material with an extremely small amount of liquid added thereto.
Embodiment 1
In
Inside the housing 1, two rotary shafts 3, 4 of the same diameter are provided in parallel to each other in the longitudinal direction. The rotary shafts are rotatably supported by a bearing 9 provided on the external side at the right end of the housing 1 in
Gears 12, 13 are fixed to the portions of the rotary shafts 3, 4 that are inserted through a gear box 11 at the left end of
Furthermore, the left end of the rotary shaft 3 in
A unidirectional rotational drive force from the motor 17 is transmitted to the rotary shaft 3 via the chain 15 and the sprocket 14, causing the rotary shaft 3 to rotate in one direction, and the rotational drive force is also transmitted to the rotary shaft 4 via the gears 12, 13, causing the rotary shaft 4 to rotate in the opposite direction. The rotary shafts 3, 4 are caused to rotate via the gears 12, 13 at an unequal rate with a rotational speed ratio of N:N−1, e.g., 5:4. The rotating directions of the rotary shafts 3, 4 during kneading are such that the shafts rotate inward towards each other when viewed from above, as seen in
Paddles P1 to P17 and Q1 to Q17, serving as stirring members, are provided on the external peripheries of the rotary shafts 3, 4. In
The paddles P1 to P17 are arranged helically at a predetermined helical pitch on the external periphery of the rotary shaft 3 with an offset at predetermined angular pitches in the rotational direction of the rotary shaft 3, while the paddles Q1 to Q17 are arranged helically, with the inverse helix from the paddles P1 to P17, at a predetermined helical pitch on the external periphery of the rotary shaft 4 with an offset at predetermined angular pitches in the rotational direction of the rotary shaft 4. The helical pitch ratio of the paddles P1 to P17 and the paddles Q1 to Q17 is set so as to be the inverse of the rotational speed ratio of the rotary shafts 3 and 4, e.g., when the rotational speed ratio of the rotary shafts 3 and 4 is 5:4 as described above, the ratio of the pitches is inverse, such as 1 L:1.25 L. The angular pitch ratio of the paddles P1 to P17 and the paddles Q1 to Q17 is set so as to be the same as the rotational speed ratio of the rotary shafts 3 and 4, e.g., when the rotational speed ratio of the rotary shafts 3 and 4 is 5:4 as described above, the ratio of angular pitches is the same as the rotational speed ratio of the rotary shafts 3 and 4, i.e., the angular pitch of the paddles P1 to P17 is 90°, and angular pitch of the paddles Q1 to Q17 is 72°.
The paddles P1 to P17 and Q1 to Q17 are arranged so that the paddle surfaces are in a normal phase on the helix (feed helix) to advance the kneaded object in the feed direction, or the paddle surfaces are in a reverse phase symmetrical to the normal phase relative to the rotational center axes of the rotary shafts. In addition, the paddles are arranged so that the surfaces of the paddles that are in facing positions on the rotary shafts 3, 4 have the same phase. The paddles P1 to P17 and Q1 to Q17 are also arranged so that the normal phases and reverse phases cyclically repeat in a predetermined sequence in the axial directions of the rotary shafts.
As can be seen from
The kneading apparatus 1 is also provided with blocking plates 18, 19 for blocking the kneaded object up to a predetermined height, and a plurality of side blocking plates 20 is provided between these blocking plates. The side blocking plates 20 are provided at a plurality of locations in the area between the blocking plates 18 and 19 inside the housing 1 so as to protrude on the sides of the rotary shafts 3, 4 a predetermined amount inside from the left and right surfaces of the housing 1. The side blocking plates 20 partially block the kneaded object on the sides of the rotary shafts 3, 4.
At the ends of the rotary shafts 3, 4 above the discharge opening 1b, a plurality of rods 7, 8 is provided at predetermined angular intervals on the peripheries of the rotary shafts 3, 4. The ratio of these angles is the same as the rotational speed ratio of N:N−1, e.g., 5:4. For example, four rods 7 are provided at 90° intervals, and five rods 8 are provided at 72° intervals. The rods 7, 8 serve to self-clean the ends of the rotary shafts 3, 4 on the side of the discharge opening 1b.
Inside the housing 1 in proximity to the blocking plate 18 on the far side in the kneaded object conveying direction, a feed pipe (nozzle) 21 is provided for pouring into the housing 1 a liquid that is added to the material to be kneaded.
Next, the kneading action of the kneading apparatus of the present embodiment will be described.
During kneading, the motor 17 is driven to rotate the rotary shafts 3, 4 inward at unequal speeds in opposite directions at a rotational speed ratio of 5:4 as shown in
The helix of the rotary shaft 3 has a helical shape for feeding and conveying the kneaded object to the right in
In this embodiment, since the paddles Pn and Qn are arranged in a cyclically repeating phase sequence of “normal, normal, reverse,” the kneaded object undergoes the actions “feed, feed, return;” and since the normal phase paddles are altogether more numerous than the reverse phase paddles, the kneaded object is conveyed to the right toward the discharge opening 1b while being stirred by the paddles. Since the ratio of the helical pitches of the rotary shafts 3, 4 is the inverse of the rotational speed ratio of the rotary shafts 3, 4, the conveying speeds by the rotary shafts 3, 4 in the axial direction are in theory the same.
Since the angular pitch ratio of the paddles Pn and Qn is the same as the rotational speed ratio of the rotary shafts 3, 4, paddles Pn and Qn in the same position as viewed in the axial direction (paddles of the same number n) do not collide with each other when the rotary shafts 3, 4 rotate. Since the distal ends of the paddles come in proximity to the external periphery of the facing rotary shaft in accordance with the rotation of the rotary shafts 3, 4, the kneaded object adhering to the external peripheral surface of the facing rotary shaft is scraped off, and the rotary shafts are self-cleaned. Furthermore, two facing paddles repeatedly move toward and away from each other at predetermined rotational speed cycles, and the kneaded object is ground up between the paddles.
The kneaded object is caught and pressed between the two paddles when a pair of two facing paddles Pn, Qn is most close together. This allows the lumps to be crushed in cases where they are formed in the kneaded object. The kneaded object between the paddles acts against the pressing force and attempts to escape either in the conveying direction of the kneaded object or in the opposite direction along the incline of the paddles, depending on the nature of the material. The arrangement sequence of repeating phases “normal, normal, reverse” of the paddles Pn, Qn causes the kneaded object to stagnate in the conveying direction in multiple locations where normal phase paddles and reverse phase paddles are adjacent. This hinders the kneaded object caught and pressed between paddles from escaping in the conveying direction or in the opposite direction, thereby increasing the effect of crushing the lumps. Since the flow in the conveying direction stagnates, the staying time from the supply of the object to be kneaded until the discharge thereof becomes longer, and the stirring action including the lump-crushing action can be sufficiently performed multiple times, allowing the lumps to be eliminated and sufficient and uniform kneading to be performed. Even with a small-sized continuous-type apparatus, the time duration for which the kneaded object stays can be increased, and sufficient and uniform kneading can be performed.
The greater the number of normal phase paddles, the greater the conveying force for conveying the kneaded object, as well as the shorter the staying time from the supply of the object to be kneaded to the discharge thereof, and the lower the kneading degree of the object. Also, the greater the number of reverse phase paddles, the greater the returning force that attempts to return the kneaded object in the direction opposite the conveying direction, as well as the longer the staying time of the kneaded object and the higher the kneading degree of the object.
Since through-holes are formed in the centers of the paddles Pn, Qn, it is possible to reduce the reaction force acting on the rotary shafts 3, 4 when the kneaded object is caught and pressed between the paddles. Furthermore, when the kneaded object between the paddles passes through the through-holes, a shearing force acts thereon and the kneading can be accelerated.
If the side blocking plates 20 are not provided, the kneaded object moving in the conveying direction along the rotary shafts during kneading passes unhindered along the external sides of the rotary shafts 3, 4 between the blocking plates 18, 19 in the housing 1. Therefore, this object is not stirred as well or kneaded as well as compared with the kneaded object moving between the rotary shafts 3, 4. However, since the side blocking plates 20 are provided, the kneaded object moving over the external sides is hindered by the side blocking plates 20 and guided so as to move to the internal sides, i.e. between the rotary shafts 3, 4, assuring well kneading this object. In other words, the staying time of the kneaded object altogether can be increased, and the kneading degree can be increased.
In cases in which the material to be kneaded is highly jetting, the material to be kneaded is hindered in multiple locations by the side blocking plates 20 from directly flowing in the conveying direction over the external sides of the rotary shafts 3, 4 along the rotary shafts 3, 4. The material to be kneaded is caused to move inward and is then kneaded. Therefore, the occurrence of short passes can be prevented, and kneading can be performed sufficiently.
The conveying force or the returning force during kneading can be varied by adjusting the direction along which the paddles Pn (Qn) are attached. For example, it is possible to adjust the inclination θ of the paddle surface of a normal phase paddle 3a or a reverse phase paddle 3b relative to the rotational center axis. The conveying force or returning force during kneading can be maximized by adjusting the paddle surfaces in the direction of the helix or in a direction orthogonal thereto, and the conveying force or returning force can be reduced by offsetting the paddle surfaces from the direction of the helix or the direction orthogonal thereto. The arrow in
With this type of arrangement, if the helix formed by the arrangement of the paddles Pn is a first helix, another helix is formed by the arrangement of the paddles Pn′, and this second helix formed has a phase offset by a predetermined angle (180°) in the rotational direction of the rotary shaft 3 and has the same helical pitch and helical direction.
Similarly, paddles Qn′ (n=1 to 17) having the same phase as the paddles Qn (n=1 to 17) arranged on the rotary shaft 4 are located the same distance from the end of the shaft as the paddles Qn along the axial direction, while being provided in angular positions offset in the same direction that the rotary shaft 4 rotates, the offset being an angle that is N times the angular pitch of the paddles Qn (e.g. if N=2 then 72°×2=144°). In the illustrated embodiment, paddles Q1 and Q1′, Q2 and Q2′, Q17 and Q17′, etc., which are in the same positions in the axial direction, are all arranged in a normal phase while being offset by 144°, while paddles Q3, Q3′ in the same position in the axial direction are arranged in a reverse phase while being offset by 144°.
With this type of arrangement, one helix is formed by the arrangement of the paddles Qn and the other helix is formed by the arrangement of the paddles Qn′, wherein the two helices have a phase different by a predetermined angle) (144°) in the rotational direction of the rotary shaft 4 and have the same helical pitch and helical direction.
In order to avoid complexity in
According to the present embodiment, kneading and conveying of the kneaded object by the additional paddles Pn′, Qn′ are the same as kneading and conveying of the kneaded object by the paddles Pn, Qn. Therefore, the frequency of the lump-crushing action can be increased by twice or more and the lump-crushing effect can also be increased. The frequency of stirring by the paddles is thus increased, and kneading degree is increased with more uniform kneading.
The effects of kneading by the paddles of the two helices are shown in
The rotary shaft 4 is one-fifth of a rotation behind while the rotary shaft 3 completes a full rotation, and the two shafts are different in speed. The paddles arranged on one rotary shaft therefore clean the paddles arranged on the other rotary shaft. This state in which the paddles clean each other is shown by single-dotted line ellipses in
It is also understood that the double helix is superior in terms of the rotary shaft self-cleaning action in which the distal ends of the paddles come in proximity to the external periphery of the facing rotary shaft in accordance with the rotation of the rotary shafts and the distal ends scrape off the kneaded object that has adhered to the rotary shafts.
In the embodiments described above, the paddles are arranged in two helices on the rotary shafts, but the paddles may also be provided so as to be arranged along three or more helices. In this case, the helices have the same helical pitch and the same helical direction, and paddles of the helices the same distance in the axial direction have the same phase, while the paddles have phases made different by predetermined angles in the rotational direction of the rotary shafts.
Embodiment 3
The normal phase paddles P2, P5, P8, P11, P14, P17 on the rotary shaft 3 and the normal phase paddles Q2, Q5, Q8, Q11, Q14, Q17 on the rotary shaft 4 in Embodiment 1 are made to have flat phases. In this embodiment, the kneaded object conveying force is reduced because the kneaded object fed by the normal phase paddles passes by the next flat phase paddles and is pushed back by the next reverse phase paddles. The stirring time increases in proportion to the reduction in conveying force, and the kneading degree is significantly improved. To increase the conveying force, the normal phase paddles are attached so that the paddle surfaces align along the helix, the reverse phase paddles are attached in a direction of reducing the return force, and the flat phase paddles are attached so as to be slightly oriented towards being in line with the normal phase paddle surfaces.
In Embodiment 3, the flat phase paddles can be removed so that the cyclically repeating sequence as viewed in the axial direction is normal, reverse.
The cyclically repeating sequence as viewed in the axial direction can also be normal, flat, flat; or normal, reverse, reverse.
All of the paddles of the first and second rotary shafts can also be made to have a reverse phase.
In the embodiments of Embodiment 3, the paddles can have a double helical arrangement as shown in Embodiment 2, or even an arrangement of a greater number of helices.
In the embodiments described above, the rotary shafts 3, 4 were made to rotate in mutually opposite directions of rotating inward as seen from above, but can also be made to rotate in mutually opposite directions of rotating outward. In this case, since the conveying direction is reversed, the normal phase paddles and the reverse phase paddles of the rotary shafts are exchanged, and the paddles are attached so as to form reverse helices to make the conveying direction to the same.
In all the embodiments, the paddles may not be in a cyclical arrangement, but in an unusual arrangement in the area provided with the discharge opening 1b of the kneading apparatus and/or the feed pipe (nozzle) 21 for pouring in a liquid (chemical solution). For example, in Embodiment 1, in cases in which, assuming the cyclical arrangement of “normal, normal, reverse”, the phase is not normal (or reverse) in the area provided with the discharge opening 1b and the feed pipe 21, the cyclical arrangement can be disrupted to make the phase normal (or reverse).
Number | Date | Country | Kind |
---|---|---|---|
2007-258231 | Oct 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/066282 | 9/10/2008 | WO | 00 | 7/15/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/044608 | 4/9/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2029688 | Wilson | Feb 1936 | A |
4155657 | King et al. | May 1979 | A |
4278355 | Forberg | Jul 1981 | A |
4281934 | Krause et al. | Aug 1981 | A |
4364667 | Reiner | Dec 1982 | A |
4438634 | Merle et al. | Mar 1984 | A |
4838704 | Carver | Jun 1989 | A |
5151288 | Curry et al. | Sep 1992 | A |
5403087 | Irie et al. | Apr 1995 | A |
5460448 | Woolsey | Oct 1995 | A |
20030161215 | Hinken et al. | Aug 2003 | A1 |
20100284237 | Takemoto et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
55011459 | Jan 1980 | JP |
62157113 | Jul 1987 | JP |
63-151341 | Jun 1988 | JP |
11-104477 | Apr 1999 | JP |
11221818 | Aug 1999 | JP |
11221819 | Aug 1999 | JP |
2000-204164 | Jul 2000 | JP |
2000226864 | Aug 2000 | JP |
2000-317289 | Nov 2000 | JP |
2000342949 | Dec 2000 | JP |
2001-140208 | May 2001 | JP |
2001300483 | Oct 2001 | JP |
2001300484 | Oct 2001 | JP |
2002070064 | Mar 2002 | JP |
2003019425 | Jan 2003 | JP |
2004-113878 | Apr 2004 | JP |
2004-315259 | Nov 2004 | JP |
2004-344710 | Dec 2004 | JP |
2005-246214 | Sep 2005 | JP |
2005313097 | Nov 2005 | JP |
2006-75807 | Mar 2006 | JP |
2006239554 | Sep 2006 | JP |
2007196178 | Aug 2007 | JP |
2012250236 | Dec 2012 | JP |
550285 | Mar 1977 | SU |
2009044608 | Apr 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20100284237 A1 | Nov 2010 | US |