The field of invention relates to artificial joints, and more particularly to knee prostheses.
As is the case with many joint prostheses or replacements, replicating natural anatomical movement through artificial mechanical devices proves challenging. This is true especially with the knee, which allows for relative complex movement and kinematics between the femoral condyles and the tibia. This relative motion is complex in that it accounts for both rolling and sliding between the contact surfaces at varying rates throughout the flexion arc. Along with such movement during knee bending is a rotational movement between the tibia and femur. As such, knee prostheses have historically tried to replicate the full range of knee movement, throughout and between full flexion and extension in all planes (coronal-varus/valgus, sagittal-flexion, transverse-rotation). True anatomical movement would allow rollback and translation of the femoral condyles on the tibia, all while also allowing rotational movement during flexion/extension.
Prior art designs have included femoral components with cams and tibial components with posts. It has been disclosed that an asymmetrical cam can be utilized to cause rotation between the two components. These designs, however, have taught architectures that require relatively high posts to support upward movement of the cam during flexion.
The drawbacks of known femoral and tibial components are resolved in many respects by knee prostheses in accordance with the invention. In one embodiment, a knee prosthesis includes a femoral component having two condyles with an opening disposed between the two condyles, and an asymmetrical cam extending between the condyles. The cam includes a medial end generally conforming to a medial plane, a lateral end generally conforming to a lateral plane that extends generally parallel to the medial plane, a longitudinal axis extending from the medial end to the lateral end generally perpendicularly to the medial and lateral planes, and a central plane that extends generally parallel to and equidistant from the medial plane and lateral plane. The knee prosthesis also includes a tibial component having bearing surfaces to support each of the femoral component condyles, and a post disposed between the bearing surfaces and extending superiorly from the tibial component.
The femoral component and tibial component may be engageable by contact between the femoral condyles and tibial bearing surfaces, and by contact between the cam and post, during at least a portion of flexion between the femoral and tibial components. The cam may include a first curvature defined by a first plane passing through the cam, and a second curvature defined by a second plane passing through the cam, the first and second planes each extending generally parallel to the longitudinal axis and perpendicular to the central plane.
The cam and post may be configured so that the first curvature on the cam contacts the post at a lower degree of flexion, and the second curvature on the cam contacts the post at a higher degree of flexion. The lower degree of flexion may be a flexion of about 45° and the higher degree of flexion may be a flexion of about 145°. The first curvature may include a concave curve having a first vertex, and the second curvature may include a concave curve having a second vertex. The distance between the medial plane and the first vertex may be greater than the distance between the medial plane and the second vertex, such that moving the femoral and tibial components in flexion from the lower degree of flexion to the higher degree of flexion causes the femoral component to rotate about the post.
The concave curve of the first curvature may be substantially symmetrical with respect to the central plane, and the concave curve of the second curvature may be asymmetrical with respect to the central plane. The cam may be comprised of a plurality of curvatures between the first and second curvatures. Each of the plurality of curvatures may include a concave curve with a vertex. The distance between the medial plane and the vertex of each curve may gradually decrease from the first curvature toward the second curvature.
The cam may form a posterior boundary of the opening between the condyles. The posterior boundary may form a U-shaped curve that is symmetrical with respect to the central plane. The post may include an inclined contact surface having a U-shaped curvature that mates with the U-shaped curve of the posterior boundary of the opening during at least a portion of flexion between the femoral and tibial components.
The lateral end of the cam may have a larger cross-sectional area than the medial end of the cam. In addition, the lateral end may include a lobe region having a convex curvature. The cam may include a first surface between the medial and lateral ends having a uniform contour and a second surface between the medial and lateral ends having a non-uniform contour. The first and second surfaces may border one another along a ridgeline that extends between the first and second surfaces. The ridgeline may extend from the medial end to the lateral end. The ridgeline may follow a U-shaped curve between the medial end and the lateral end. The U-shaped curve may have a vertex. The distance between the vertex of the ridgeline and the lateral plane may be greater than the distance between the vertex of the ridgeline and the medial plane.
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.
The present invention provides a knee prosthesis which allows for anatomically correct knee movement. It does so by providing an upper, or femoral, component which is designed to mechanically interact with a lower, or tibial, component to achieve kinematic movement consistent with a natural knee joint. Generally, the two pieces interact by providing several different contact surfaces, not all of which are engaged between the two components of the knee throughout the range of motion.
Two such contact surfaces are the load bearing condylar surfaces between the femoral component and the tibial component. These surfaces are defined by medial and lateral condylar surfaces which are referred to as the load bearing surfaces for a given knee joint. Specifically, a medial load bearing surface is defined between the medial femoral condyle and its counterpart on the tibial component, namely a medial tibial accommodating surface. Likewise, a lateral load bearing surface is defined between the lateral femoral condyle and its counterpart on the tibial component, namely a lateral tibial accommodating surface.
A different contact surface also exists, however, to cause rotational movement between the femoral and tibial components, during certain degrees of knee extension/flexion which will allow for a kinematic pattern that more closely resembles that of the natural knee. This contact surface is defined by interaction between a post on the tibial component (preferably polyethylene) and a cam surface on the femoral component (preferably metallic). Because the point of contact between the femoral condyles and their corresponding tibial load-receiving components changes in an anterior/posterior direction (that is to say there is front/back translation of the point of contact) during knee movement, the post and cam do not interact during all degrees of knee flexion. Instead, the post and cam only interact during those points of knee movement for which they are designed to cause a replicated natural knee kinematic envelop. This interaction occurs when the anterior/posterior movement of the femoral/tibial contact causes the post and cam to engage, or when flexion of the knee causes enough rollback of the femoral component to engage the tibial post against the cam of the femoral component.
It should be noted, however, that once flexion typically reaches about 45°, anterior/posterior translation does not stop but occurs at different rates in the medial and lateral compartments of the knee. Moreover, as the knee bends, the lateral condyle rolls back to a position of about 10-15 mm posterior at about 120° flexion, but the medial condyle rolls back only about 4-5 mm to a final position of about 1-3 mm posterior. This difference in posterior movement in the two compartments of the knee is seen as rotation of the femoral component on the tibial component, and occurs with continued rollback of the femoral condyles. This interaction of the post and cam, as well as the movement of the femoral condyles with respect to the tibial bearing surfaces will be addressed below.
The movement described is achieved through the present invention's architecture of the both the femoral component, the tibial component, and in particular the cam and post dimensions. All of these aspects are integrated into a system which provides for sophisticated, anatomical movement within the prosthetic knee of the present invention.
For an example of an implant having both anterior and posterior cams, see U.S. Pat. No. 6,325,828, which illustrates a femoral component having a blind hole or slot/recess (as opposed to an opening) bordered by cams on both sides (anterior and posterior). As such, and as explicitly disclosed, the anterior cam engages the post at full extension (or 0° flexion).
As the knee bends toward a flexion of about 45°, cam 210 moves toward post 110 as anterior translation occurs between the contact region of the femoral condyles and their respective load bearing surfaces on tibial component 100. The orientation of the two components, and in particular the cam and post, at 45° flexion, is illustrated in
Further defining this aspect of the invention is
This later point is important to achieve natural knee movement with respect to a patellar implant.
The relative shortness of the post is important because it allows for clearance of the patellar implant as shown in
By way of further illustration,
It is also noteworthy that the design of the present invention provides for lift-off of the lateral condyle from the tibial load bearing surface at high flexion. See, for example,
One advantage to the prosthesis of the present invention is that it allows for less soft tissue strain by allowing for more anatomical movement instead of equal rollback in both compartments of the tibial insert. This design gives three advantages over previous designs: 1) less soft tissue strain due to more anatomical movement, 2) better natural motion replication in the medial compartment without increasing constraint, and 3) decreased tibial strain with no edge loading in the medial compartment. Although the above illustrations show knee flexion at 0°, 90°, and 145°, the range of motion allowed for in the design would be at least −10° (hyperextension) to about 160° (high flexion) with supported articulation in the medial and lateral compartments of the knee.
Moreover, as flexion continues beyond 45°, anterior/posterior translation continues to occur, but is guided by the post/asymmetric-cam interaction. Because of the relative dimensions of the post, and in particular the type of asymmetrical cam on the femoral component, proper rotational movement between the femoral component and tibial component is achieved.
Consistent with that described above, the interaction between the tibial component post and the femoral component tapered asymmetric cam, is designed to preferably begin at 45° flexion. It should be noted that the interaction can be controlled through manipulation of the dimensions of the post and cam. This is accomplished through varying the cross-sectional dimensions of the cam from a medial to lateral direction, with the lateral portion of the cam being generally larger than the medial portion. More specifically, the largest cross-sectional area of the cam occurs where the cam meets the lateral condyle. Moving in a medial direction, the cam tapers in a manner consistent with that which causes kinematic rotation as the knee bends past 45° flexion.
It is also noteworthy that there is no interaction between the post and cam at full extension. This prevents unnecessary wear on the tibial post which would otherwise weaken it over time and could even result in failure (i.e., it could shear off).
Cam 210 has a specially contoured architecture that causes medial rotation of the femoral component when the femoral and tibial components move together through a certain range of flexion. This contour can be seen best in FIGS. 2 and 15-21. Referring to
Cam 210 is asymmetrical with respect to central plane 234. Lateral end 214 has a larger cross-sectional area than medial end 212 of the cam. In addition, cam 210 features a lobe region 215 in proximity to lateral end 214. Lobe region 215 has a convex curvature 217. Cam 210 also features a first surface 230 having a uniform surface contour—that is, a uniform curvature on its surface between medial plane 222 and lateral plane 224—and a second surface 232 having a non-uniform surface contour. The first surface 230 and second surface 232 border one another along a ridgeline 236 that extends between the first and second surfaces. Ridgeline 236 extends from the medial end 212 to the lateral end 214, and follows a U-shaped curve. Second surface 232 includes an irregularly shaped bearing surface 250. As will be described, irregularly shaped bearing surface 250 forms a U-shaped channel that winds around cam 210 from a centered position to a position that is offset toward the medial end of the cam. This shift toward the medial end of the cam causes the medial pivot motion.
Referring to
A first curvature 260 is defined by plane P1, a second curvature 270 is defined by plane P2, a third curvature 280 is defined by plane P3, a fourth curvature 290 is defined by plane P4, and a fifth curvature 300 is defined by plane P5. Each of the curvatures has a vertex. The term “vertex”, as used herein, refers to the point on the curve where the first derivative of curvature is zero, as for example, the vertex on a parabola. First curvature 260 is a concave curve with a vertex 261, second curvature 270 is a concave curve with a vertex 271, third curvature 280 is a concave curve with a vertex 281, fourth curvature 290 is a concave curve with a vertex 291 and fifth curvature 300 is a concave curve with a vertex 301.
Proceeding from plane P1 to plane P5, the shape of bearing surface 250 gradually transitions from a curve with a vertex that is centered between the medial plane 222 and lateral plane 224, to a curve with a vertex that is off-centered with respect to the medial and lateral planes. In addition, the curvature of bearing surface 250 transitions from a curve that is symmetrical with respect to the central plane 234, to a curve that is asymmetrical with respect to the central plane. The distance between the medial plane 222 and the vertex of each curvature gradually decreases from plane P1 to plane P5. That is, the distance D2 between medial plane 222 and vertex 271 in plane P2 is less than the distance D1 between the medial plane and vertex 261 in plane P1. Similarly, the distance D3 between medial plane 222 and vertex 281 in plane P3 is less than the distance D2 between the medial plane and vertex 271 in plane P2, and so forth. In plane P1, the distance D1 between vertex 261 and medial plane 222 is equal to the distance between vertex 261 and lateral plane 224. In plane P5, however, the distance D5 between vertex 301 and medial plane 222 is significantly less than the distance between vertex 301 and lateral plane 224. The vertices defined in planes P1 and P5, and every plane in between, gradually shift from a position that is centered between the medial plane 222 and lateral plane 224, to a position that is more and more offset toward the medial plane.
When the femoral and tibial components move through certain angles of flexion, post 110 engages each curvature on the cam 210 in close proximity to the vertex of each curvature. As the femoral and tibial components move from a lower angle of flexion to a higher angle of flexion, the contact area between the post 110 and cam 210 gradually shifts toward the medial end 212 of the cam in response to the gradual change in position of the vertices toward the medial end. This causes the femoral component to pivot relative to the post, resulting in a medial pivot motion.
The U-shaped curve of ridgeline 236 also has a vertex 237. The distance between vertex 237 of ridgeline 236 and lateral plane 224 is greater than the distance between the vertex of the ridgeline and medial plane 222.
While preferred embodiments of the invention have been shown and described herein, it will be understood that such embodiments are provided by way of example only. Numerous variations, changes and substitutions will occur to those skilled in the art without departing from the spirit of the invention. Accordingly, it is intended that the appended claims cover all such variations as fall within the scope of the invention.
This application is a continuation-in-part of U.S. application Ser. No. 12/484,594, filed Jun. 15, 2009, which claims the benefit of U.S. Provisional Application Ser. No. 61/140,183, filed Dec. 23, 2008. The contents of both applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4209861 | Walker et al. | Jul 1980 | A |
4213209 | Insall et al. | Jul 1980 | A |
4298992 | Burstein et al. | Nov 1981 | A |
5007933 | Sidebotham et al. | Apr 1991 | A |
5147405 | Van Zile et al. | Sep 1992 | A |
5236461 | Forte | Aug 1993 | A |
5549686 | Johnson et al. | Aug 1996 | A |
5702458 | Burstein et al. | Dec 1997 | A |
5906643 | Walker | May 1999 | A |
5964808 | Blaha et al. | Oct 1999 | A |
6013103 | Kaufman et al. | Jan 2000 | A |
6080195 | Colleran et al. | Jun 2000 | A |
6206926 | Pappas | Mar 2001 | B1 |
6325828 | Dennis et al. | Dec 2001 | B1 |
6443991 | Running | Sep 2002 | B1 |
6558426 | Masini | May 2003 | B1 |
6726723 | Running | Apr 2004 | B2 |
7160330 | Axelson, Jr. et al. | Jan 2007 | B2 |
7326252 | Otto et al. | Feb 2008 | B2 |
7413577 | Servidio | Aug 2008 | B1 |
7678152 | Suguro et al. | Mar 2010 | B2 |
7981159 | Williams et al. | Jul 2011 | B2 |
20040243244 | Otto | Dec 2004 | A1 |
20040243245 | Plumet et al. | Dec 2004 | A1 |
20050192672 | Wyss et al. | Sep 2005 | A1 |
20060136066 | Plumet et al. | Jun 2006 | A1 |
20070135925 | Walker | Jun 2007 | A1 |
20080097615 | Lipman et al. | Apr 2008 | A1 |
20080119940 | Otto et al. | May 2008 | A1 |
20090306785 | Farrar et al. | Dec 2009 | A1 |
20090319048 | Shah et al. | Dec 2009 | A1 |
20100016979 | Wyss | Jan 2010 | A1 |
20100161067 | Saleh | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
31 01 789 | Jan 1991 | DE |
690 09 509 | Sep 1994 | DE |
692 04 201 | Jan 1996 | DE |
699 06 035 | Jan 2004 | DE |
695 32 047 | Jun 2004 | DE |
602 16 157 | Sep 2007 | DE |
20 2009 012 704 | Dec 2009 | DE |
0381352 | Aug 1990 | EP |
0510299 | Oct 1992 | EP |
0941719 | Sep 1999 | EP |
1050283 | Nov 2000 | EP |
1591082 | Nov 2005 | EP |
2067412 | Jul 1981 | GB |
2253147 | Sep 1992 | GB |
WO 2004 058108 | Jul 2004 | WO |
WO 2007 119173 | Oct 2007 | WO |
WO-2009-105495 | Aug 2009 | WO |
WO-2009105495 | Aug 2009 | WO |
WO 2010075365 | Dec 2009 | WO |
WO-2010108550 | Sep 2010 | WO |
Entry |
---|
Blaha, J. David, M.D., The Rationale for a Total Knee Implant That Confers Anteroposterior Stability Throughout Range of Motion, The Journal of Arthroplasty, vol. 19, No. 4, Suppl. 1 2004, Elsevier, Inc. 2004, USA. |
Chandran, Nagarajan, et al., Optimisation of the Posterior Stabilised Tibial Post for Greater Femoral Rollback After Total Knee Arthroplasty—A Finite Element Analysis, International Oprthopedics (SICOT) (2009); vol. 33; pp. 687-693; Springer-Verlag 2008. |
Churchill, D. L., Ph.D., et al.; The Influence of Femoral Rollback on Patellofemoral Contact Loads in Total Knee Arthroplasty; The Journal for Arthroplasty; vol. 16, No. 7, 2001; pp. 909-918. |
Kochmond, Jonathan H., M.S. et al.; Stability and Range of Motion of Insall-Burstein Condylar Protheses: A Computer Simulation Study; The Journal for Arthroplasty; vol. 10, No. 3, 1995; pp. 383-388. |
Suggs, Jeremy F. et al.; Patient Function After a Posterior Stabilizing Total Knee Arthroplasty: Cam-Post Engagement and Knee Kinematics; Knee Surg Sports Traumatol Arthrosc (2008); vol. 16; pp. 290-296; Springer-Verlag 2007. |
Tamaki, Masashi, M.D., et al.; In Vivo Kinematic Analysis of a High-Flexion Posterior Stabilized Fixed-Bearing Knee Prosthesis in Deep Knee-Bending Motion; The Journal of Arthroscopy; vol. 23, No. 6, 2008; pp. 879-885; Elsevier, Inc. 2008. |
Walker, Peter S., Ph.D.; Design Features of Total Knees for Achieving Normal Knee Motion Characteristics; The Journal of Arthroscopy; vol. 24, No. 3; 2009; pp. 475-483; Elsevier, Inc. 2009. |
Mihalko, William M., PhD. and Krackow, Kenneth A., M.D.; Posterior Cruciate Ligament Effects on the Flexion Space in total Knee Arthroplasty; Clinical Orthopaedics and Related Research; Jul. 30, 1997; pp. 243-250; No. 360; Lippencott Williams & Wilkins, Inc.; 1999. |
International Search Report for PCT/US2009/069163, mailed Jul. 5, 2010. |
U.S. Patent and Trademark Office Non-Final Office Action for U.S. Appl. No. 12/484,594 Dated Mar. 21, 2011. |
U.S. Appl. No. 13/141,569, filed Dec. 14, 2011, Khaled Saleh et al. (U.S. National Phase Application of PCT/US2009/069163 cited on PTO/SB08a form, p. 2). |
U.S. Patent and Trademark Office Non-Final Office Action for U.S. Appl. No. 12/484,594 Dated Dec. 22, 2010. |
U.S. Patent and Trademark Office Non-Final Office Action for U.S. Appl. No. 12/484,594 Dated Mar. 26, 2010. |
International Application Serial No. PCT/IB2012/002240, International Search Report and Written Opinion mailed Jan. 2, 2013, 6 pgs. |
Number | Date | Country | |
---|---|---|---|
20120143342 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61140183 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12484594 | Jun 2009 | US |
Child | 13291209 | US |