Knife trigger for vessel sealer

Information

  • Patent Grant
  • 10426543
  • Patent Number
    10,426,543
  • Date Filed
    Saturday, January 23, 2016
    9 years ago
  • Date Issued
    Tuesday, October 1, 2019
    5 years ago
Abstract
A forceps includes at least one shaft and a housing defining a cavity. An end effector assembly is attached to the shaft(s) and includes first and second jaw members movable relative to one another from a spaced apart position to a closer position. A knife channel defined within the jaw members is configured to receive a knife. A trigger assembly is disposed within the cavity and includes a trigger having a first link pivotably coupled at one end to the trigger and slidingly engaged to a second link at the other end. The second link includes a first end telescopically slideable relative to the first link upon actuation of the trigger through a range of motion and a second end pivotably coupled to a third link which, in turn, couples to the knife. Actuation of the trigger translates the knife through the knife channel.
Description
BACKGROUND

1. Background of Related Art


The present disclosure relates to forceps used for open surgical procedures. More particularly, the present disclosure relates to an open bipolar forceps that is capable of sealing and cutting tissue.


2. Technical Field


A hemostat or forceps is a simple plier-like tool which uses mechanical action between its jaws to constrict vessels and is commonly used in open surgical procedures to grasp, dissect and/or clamp tissue. Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue.


Certain surgical procedures require sealing and cutting blood vessels or vascular tissue. Several journal articles have disclosed methods for sealing small blood vessels using electrosurgery. An article entitled Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator, J. Neurosurg., Volume 75, July 1991, describes a bipolar coagulator which is used to seal small blood vessels. The article states that it is not possible to safely coagulate arteries with a diameter larger than 2 to 2.5 mm. A second article is entitled Automatically Controlled Bipolar Electrocoagulation—“COA-COMP”, Neurosurg. Rev. (1984), pp. 187-190, describes a method for terminating electrosurgical power to the vessel so that charring of the vessel walls can be avoided.


By utilizing an electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate, reduce or slow bleeding and/or seal vessels by controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue. Generally, the electrical configuration of electrosurgical forceps can be categorized in two classifications: 1) monopolar electrosurgical forceps; and 2) bipolar electrosurgical forceps.


Monopolar forceps utilize one active electrode associated with the clamping end effector and a remote patient return electrode or pad which is typically attached externally to the patient. When the electrosurgical energy is applied, the energy travels from the active electrode, to the surgical site, through the patient and to the return electrode.


Bipolar electrosurgical forceps utilize two generally opposing electrodes which are disposed on the inner opposing surfaces of the end effectors and which are both electrically coupled to an electrosurgical generator. Each electrode is charged to a different electric potential. Since tissue is a conductor of electrical energy, when the effectors are utilized to grasp tissue therebetween, the electrical energy can be selectively transferred through the tissue to create a tissue seal. Once sealed, a knife may be advanced through the tissue seal to cut the tissue using a knife trigger.


SUMMARY

The present disclosure relates to forceps used for surgical procedures. More particularly, the present disclosure relates to a bipolar forceps for treating tissue that is capable of sealing and cutting tissue.


As is traditional, the term “distal” refers herein to an end of the apparatus that is farther from an operator, and the term “proximal” refers herein to the end of the electrosurgical forceps that is closer to the operator.


Aspects of the present disclosure include a bipolar forceps having one or more members and a housing defining a cavity disposed on the one or more shaft members. An end effector assembly is attached the shaft member(s) and includes first and second jaw members that are movable relative to one another a pivot from a spaced apart position to a position closer to one another. A knife channel is defined within the jaw members and is configured to receive a knife therethrough. A trigger assembly is disposed within the cavity and includes a trigger having a first link pivotably coupled at one end to the trigger and slidingly engaged to a second link at the other end. A second link includes a first end that is slidingly receivable within the first link upon actuation of the trigger through a range of motion and a second end pivotably coupled to a third link which, in turn, couples to the knife. Actuation of the trigger translates the knife through the knife channel through the range of motion.


In one aspect, the first and second links are transitionable through the range of motion of the trigger from an extended configuration wherein the length of the first and second links combines to a first length to a compressed configuration wherein the length of the first and second links combines to a second length. The second length is shorter than the first length. The second link may be telescopically received within the first link or voce versa.


In other aspects, a biasing member is disposed within one or both of the first and second links and is configured to bias the links in the extended configuration. In yet other aspects, the first and second links transition between the extended and compressed configurations through the range of motion of the trigger during actuation and release. In still other aspects, the first and second links are normal to one another when disposed in the compressed configuration.


In aspects, the transitioning of the first and second links through the range of motion of the trigger from the extended configuration to the compressed configuration reduces an arc of rotation of the trigger, which, in turn, reduces the necessary size of the cavity.


In aspects, the pivot defines a longitudinal slot therethrough and the knife is configured to move within the longitudinal slot upon translation thereof.


The present disclosure also relates to a bipolar forceps including first and second shaft members. One (or both) of the first and second shaft members is configured to support a housing defining a cavity therein. A first jaw member is attached to the first shaft member and a second jaw member attached to the second shaft member. The jaw members are movable relative to one another about a pivot from a spaced apart position to a position closer to one another. One (or both) of the jaw members includes a knife channel defined therein which is configured to receive a knife therethrough. A trigger assembly is disposed within (or partially disposed within) the cavity and includes a trigger having a first link pivotably coupled at one end thereto and slidingly engaged to a second link at the other end thereof. The second link includes a first end that is slidingly receivable within (or at least partially within) the first link (or vice versa) upon actuation of the trigger through a range of motion and a second end that is pivotably coupled to a third link which, in turn, couples to the knife such that actuation of the trigger translates the knife through the knife channel through the range of motion.


In aspects, the links are transitionable through the range of motion of the trigger from an extended configuration wherein the length of the first and second links combines to a first length to a compressed configuration wherein the length of the first and second links combines to a second length, the second length being shorter than the first length. A biasing member is disposed within at least one of the first and second links and is configured to bias the links in the extended configuration. In aspects, the second link is telescopically received within the first link (or vice versa).


In other aspects, the first and second links transition between the extended and compressed configurations through the range of motion of the trigger during actuation and release. In yet other aspects, the first and second links are normal to the third link when disposed in the compressed configuration or fully compressed configuration. The transitioning of the first and second links through the range of motion of the trigger from the extended configuration to the compressed configuration reduces an arc of rotation of the trigger, which, in turn, reduces the necessary size of the cavity.


In still other aspects, the pivot defines a longitudinal slot therethrough and the knife is configured to advance through the longitudinal slot upon translation thereof.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the bipolar forceps are described herein with reference to the drawings wherein:



FIG. 1 is a perspective view of an open electrosurgical forceps according to an embodiment of the present disclosure including a disposable housing, a disposable electrode assembly and a trigger assembly;



FIG. 2 is internal side view of the forceps of FIG. 1 with a trigger of the trigger assembly shown in an unactuated position;



FIG. 3 is internal side view of the forceps of FIG. 1 with the trigger shown in an actuated position;



FIG. 4A is an enlarged, side view of various linkages of the trigger assembly shown in the unactuated position;



FIG. 4B is as internal, schematic view of a compression spring of the trigger assembly shown in an extended orientation;



FIG. 5A is an enlarged, side view of the various linkages of the trigger assembly shown in a compressed orientation;



FIG. 5B is as internal, schematic view of the compression spring of the trigger assembly shown in the compressed orientation;



FIG. 6A is an enlarged, side view of the various linkages of the trigger assembly shown in a second extended orientation;



FIG. 6B is as internal, schematic view of the compression spring the trigger assembly shown in the second extended orientation; and



FIG. 7 is a schematic illustration of a robotic surgical system configured for use in conjunction with aspects and features of the present disclosure.





DETAILED DESCRIPTION

Referring initially to FIGS. 1-3, a bipolar forceps 10 for use with open surgical procedures includes a mechanical forceps 20 having an end effector 24 and a disposable electrode assembly 21. The various mechanisms and features described herein may equally relate to an endoscopic forceps (not shown). Bipolar forceps 20 includes first and second elongated shaft members 12 and 14. Elongated shaft member 12 includes proximal and distal end portions 13 and 17, respectively, and elongated shaft member 14 includes proximal and distal end portions 15 and 19, respectively. Handle members 16 and 18 are disposed at proximal end portions 13, 15 of shaft members 12, 14, respectively, and are configured to allow a user to effect movement of at least one of the shaft members 12 and 14 relative to the other. The end effector 24 includes opposing jaw members 42, 44 that extend from the distal end portions 17 and 19 of shaft members 12 and 14, respectively. The jaw members 42, 44 are movable relative to each other in response to movement of shaft members 12, 14.


Shaft members 12 and 14 are affixed to one another about a pivot 25 (FIG. 2) such that movement of shaft members 12, 14, imparts movement of the jaw members 42, 44 from an open configuration (FIG. 2) wherein the jaw members 44, 42 are disposed in spaced relation relative to one another to a clamping or closed configuration (FIG. 3) wherein the jaw members 42, 44 cooperate to grasp tissue therebetween. In embodiments, the forceps 10 may be configured such that movement of one or both of the shaft members 12, 14 causes only one of the jaw members to move with respect to the other jaw member. This is particularly noted with respect to endoscopic forceps (not shown) which may include jaw members that move in a unilateral fashion.


Disposable electrode assembly 21 is configured to releasably couple to mechanical forceps 20 and is operably coupled to a housing 70 having a pair of housing halves configured to matingly engage and releasably encompass at least a portion of shaft member 14. Disposable electrode assembly 21 includes opposing electrodes 110 and 120 that are configured to releasably couple to respective corresponding jaw members 24 and 21. Housing 70 also serves to at least partially house a knife 85 having a sharpened distal cutting edge and a knife actuation mechanism or trigger assembly 90 configured to effect advancement of the knife 85 through a knife channel 58 (FIG. 1) defined in one or both electrodes 110, 120 to transect tissue, as further detailed below. One or more push buttons 75 is disposed on housing 70 and is accessible to allow a user to actuate the button 75 to release the mechanical coupling of housing 70 and shaft member 14.


As shown in FIGS. 2 and 3, a pair of wires 61 and 62 are electrically connected to the electrodes 120 and 110, respectively, and are bundled to form a cable 28 that extends through housing 70 and terminates at a terminal connector 30 configured to mechanically and electrically couple to a suitable energy source, such as an electrosurgical generator (not shown). In embodiments, wire 61 may be configured to extend through an activation switch 50 that, upon actuation thereof, energy is supplied to the electrodes 110 and 120. Other types of activation switches 50 are also contemplated which, upon actuation thereof, send an electrical signal to the generator to supply energy to the opposing electrodes 110 and 120. Examples of electrosurgical generators include the LIGASURE® Vessel Sealing Generator and the ForceTriad® Generator sold by Covidien. In some embodiments, a suitable energy source may be a battery (not shown) supported by the housing 70 and electrically connected to the electrodes 110 and 120.


As shown in FIG. 2, electrode 120 includes an electrically conductive sealing surface 126 configured to conduct electrosurgical energy therethrough and an electrically insulative substrate 121 that serves to electrically insulate sealing surface 126 from jaw member 44. Electrode 110 includes an electrically conductive sealing surface 116 configured to conduct electrosurgical energy therethrough and an electrically insulative substrate 111 attached thereto.


While jaw members 42, 44 are in an open configuration, the electrodes 120 and 110 may be slid between opposing jaw members 44 and 42 to couple electrodes 120 and 110 with jaw member 44 and 42, respectively. Housing 70 may then be coupled about at least a portion of shaft member 14.


To electrically control the end effector 24, activation button 50 is operable by a user to initiate and terminate the delivery of electrosurgical energy to end effector 24. During use, depressing activation button 50 initiates the delivery of electrosurgical energy to the opposing electrodes 110, 120 of the end effector 24 to effect a tissue seal. In some embodiments, delivery of electrosurgical energy to end effector 24 may also be terminated by the electrosurgical generator based on any suitable parameters, e.g., sensed tissue properties, time parameters, sensed energy properties, etc.


Once a tissue seal is established, the knife 85 may be advanced through the knife channel 58 to transect the sealed tissue, as detailed below. However, in some embodiments, knife 85 may be advanced through the knife channel 58 before, during, or after tissue sealing. In some embodiments, a knife lockout mechanism (not shown) is provided to prevent extension of the knife 85 into the knife channel 58 when the jaw members 42, 44 are in the open configuration, thus preventing accidental or premature transection of tissue, as described below.


With reference to FIGS. 3-6B, the knife actuation mechanism or trigger assembly 90 is operably associated with a trigger 45 (FIG. 1) having opposing trigger handles 45a, 45b extending from opposing sides of housing 70. Upon actuation of trigger handles 45a, 45b, the trigger assembly 90 responds utilizing a series of inter-cooperating elements to actuate the knife 85 through the knife channel 58 to sever tissue grasped between jaw members 42, 44. The trigger assembly 90 includes a first link 92 that couples to the trigger handles 45a and 45b via pivot 92a. A second link 93 is slidingly or telescopically received within link 92 (or vice versa) and is movable from a compressed configuration to an extended configuration. A biasing member or spring 97 biases the two links 92 and 93 in the extended configuration. A third link 94 is coupled to an opposite end of link 93 via pivot 93a, which, in turn, couples to a fourth link 95 via pivot 94a that ultimately connects to the knife 85 via link 96. Link 96 connects to the knife 85 via pivot 95a.


As best shown in FIGS. 4A, 5A and 6A which depict the sequential movement of the various links of the trigger assembly 90 upon movement of the trigger 45 to deploy the knife 85 to cut tissue, links 92 and 93 allow the trigger assembly 90 to rotate around a reduced arc while advancing the knife 85. More particularly, as mentioned above, link 92 is dimensioned to slidingly receive link 93 (or vice versa). In a first unactuated position, links 92 and 93 are extended to a length X1 due to the bias of the spring 97 between links 92 and 93 and a minimum angle is disposed between links 92, 93 (in combination) and link 94. A compression rail 91 serves to reduce movement of the inter-cooperating links 92, 93 during actuation. Upon rotation of the trigger 45 towards a 90 degree angle, link 93 slides within link 92 against the bias of spring 97 to a compressed configuration having a length X2. This reduces the arc of rotation of the two links 92 and 93 which allows for the design of a smaller housing 70, i.e., the length X2 is also the maximum allowable distance between pivot 92a and compression rail 91. The two links 92 and 93 are normal to the fourth link 94 when disposed in a fully compressed configuration. Continued rotation of the trigger 45 towards a greater than 90 degrees angle works to advance the knife 85 while the two links 92 and 93 are urged back towards an extended configuration having a length X1 under the bias of spring 97.


A biasing member (e.g., a torsion spring not shown) may be disposed between the first link 92 and the handle member 45 which is operably coupled at one end to a portion of the first link 92 and at the other end to a suitable mechanical interface within the housing 70 that stabilizes the biasing member during use of the knife trigger assembly 90. The biasing member serves to bias the trigger 45 such that subsequent to actuation of the knife 85 through the knife channel 58, handle member 45 is biased to return to an unactuated position thereby retracting the knife 85 proximally.


With reference to FIG. 2, pivot 25 defines a longitudinal passageway 27 therebetween to allow the knife 85 to reciprocate therethrough. Movement of shaft members 12, 14 relative to each other causes rotational movement of pivot 25 and the passageway 27 from a first position wherein the jaw members 42 and 44 are spaced relative to one another and knife 85 is prevented from passing therethrough to a second position wherein the jaw members 42 and 44 are closer to one another and the knife 85 is free to pass therethrough.


A knife guide (not shown) may be supported within the housing 70 between the end effector 24 and the trigger assembly 90 and extends through passageway 27. Knife guide may include one or more suitable mechanical features (e.g., protrusions) that interface with corresponding suitable mechanical features disposed on shaft member 14 to provide location control, e.g., lateral support, to the knife 85 during translation thereof thereby ensuring proper alignment of the knife 85 as the knife 85 enters the knife channel 58 defined in electrodes 110, 120.


The tissue seal thickness and tissue seal effectiveness may be influenced by the pressure applied to tissue between jaw members 44, 42 and the gap distance between the opposing electrodes 110 and 120 (FIG. 5) during tissue sealing. In the second, closed position, a separation or gap distance “G” may be maintained between the sealing surfaces 116, 126 by one or more stop members 56 disposed on one or both of sealing surfaces 116, 126. The stop members 56 contact the sealing surface on the opposing jaw member and prohibit further approximation of the sealing surfaces 116, 126. In some embodiments, to provide an effective tissue seal, an appropriate gap distance of about 0.001 inches to about 0.010 inches and, desirably, between about 0.002 and about 0.006 inches may be provided. In some embodiments, the stop members 56 are constructed of an electrically non-conductive plastic or other material molded onto the sealing surfaces 116, 126, e.g., by a process such as overmolding or injection molding. In other embodiments, the stop members 56 are constructed of a heat-resistant ceramic deposited onto sealing surfaces 116, 126.


As mentioned above, the jaw members 42, 44 may be moved from the open configuration of FIGS. 1 and 2 to the closed configuration depicted in FIG. 3. As the shaft members 12, 14 pivot about pivot 25, shaft member 12 engages activation button 50 to initiate delivery of electrosurgical energy to end effector 24 to seal tissue between the jaw members 42 and 44. Once tissue is sealed, handle 45 may be selectively actuated to advance the knife 85 distally through knife channel 58. More specifically, as handle 45 rotates in the general proximal direction, the first and second links 92, 93 impart a rotational force on third link 94, thereby causing third link 94 to rotate about pivot pin 93a causing fourth link 95 to translate distally to advance knife 85 into the knife channel 58.


As indicated above, the initial position of the handle 45 is actively maintained by the influence of a biasing member (not shown) on the trigger 45. Moreover, the rotational arc of the combination of links 92, 93 and 94 is reduced by virtue of the sliding relationship of links 92 and 93 during actuation. This reduces the size of the housing 70 need to support the actuation mechanism 90.


The above-detailed aspects and features of the present disclosure may be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the surgeon and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the surgeon during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.


The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another surgeon (or group of surgeons) remotely control the instruments via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.


The robotic arms of the surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, etc.) which may complement the use of one or more of the embodiments described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).


The master handles may include various sensors to provide feedback to the surgeon relating to various tissue parameters or conditions, e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc. As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions. The master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon's ability to mimic actual operating conditions.


Turning to FIG. 7, a medical work station is shown generally as work station 1000 and generally may include a plurality of robot arms 1002, 1003; a control device 1004; and an operating console 1005 coupled with control device 1004. Operating console 1005 may include a display device 1006, which may be set up in particular to display three-dimensional images; and manual input devices 1007, 1008, by means of which a surgeon may be able to telemanipulate robot arms 1002, 1003 in a first operating mode.


Each of the robot arms 1002, 1003 may include a plurality of members, which are connected through joints, and an attaching device 1009, 1011, to which may be attached, for example, a surgical tool “ST” supporting an end effector 1100, in accordance with any one of several embodiments disclosed herein, as will be described in greater detail below.


Robot arms 1002, 1003 may be driven by electric drives (not shown) that are connected to control device 1004. Control device 1004 (e.g., a computer) may be set up to activate the drives, in particular by means of a computer program, in such a way that robot arms 1002, 1003, their attaching devices 1009, 1011 and thus the surgical tool (including end effector 1100) execute a desired movement according to a movement defined by means of manual input devices 1007, 1008. Control device 1004 may also be set up in such a way that it regulates the movement of robot arms 1002, 1003 and/or of the drives.


Medical work station 1000 may be configured for use on a patient 1013 lying on a patient table 1012 to be treated in a minimally invasive manner by means of end effector 1100. Medical work station 1000 may also include more than two robot arms 1002, 1003, the additional robot arms likewise being connected to control device 1004 and being telemanipulatable by means of operating console 1005. A medical instrument or surgical tool (including an end effector 1100) may also be attached to the additional robot arm. Medical work station 1000 may include a database 1014, in particular coupled to with control device 1004, in which are stored, for example, pre-operative data from patient/living being 1013 and/or anatomical atlases.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as examples of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.


Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Claims
  • 1. A bipolar forceps, comprising: at least one shaft member including a housing disposed thereon, the housing defining a cavity therein;an end effector assembly attached at a distal end of the at least one shaft, the end effector assembly including first and second jaw members, at least one of the first and second jaw members movable relative to the other of the first and second jaw members about a pivot from a spaced apart position to a position closer to the other of the first and second jaw members, at least one of the first and second jaw members including a knife channel defined therein configured to receive a knife therethrough;a trigger assembly at least partially disposed within the cavity including a trigger and a first link disposed within the housing and pivotably coupled at one end to the trigger and slidingly engaged to a second link at a second end, the second link disposed within the housing and including a first end at least partially telescopically slidable relative to the first link upon actuation of the trigger through a range of motion and a second end pivotably coupled to a third link, the third link disposed within the housing and coupled to the knife such that the actuation of the trigger translates the knife through the knife channel through the range of motion of the trigger.
  • 2. The bipolar forceps according to claim 1, wherein the first and second links are transitionable through the range of motion of the trigger from an extended configuration wherein the first and second links combine to define a first length to a compressed configuration wherein the first and second links combine to define a second length, the second length being shorter than the first length.
  • 3. The bipolar forceps according to claim 2, further comprising a biasing member disposed within at least one of the first and second links and configured to bias the first and second links in the extended configuration.
  • 4. The bipolar forceps according to claim 1, wherein the second link is telescopically received within the first link.
  • 5. The bipolar forceps according to claim 2, wherein the first and second links transition between the extended and compressed configurations through the range of motion of the trigger during the actuation of the trigger and a release of the trigger.
  • 6. The bipolar forceps according to claim 2, wherein the first and second links are normal to the third link when disposed in the compressed configuration.
  • 7. The bipolar forceps according to claim 1, wherein the pivot defines a longitudinal slot therethrough and the knife is configured to move within the longitudinal slot upon translation thereof.
  • 8. A bipolar forceps, comprising: first and second shaft members, at least one of the first and second shaft members configured to support a housing defining a cavity therein;a first jaw member attached to the first shaft member and a second jaw member attached to the second shaft member, the first and second jaw members movable relative to one another about a pivot from a spaced apart position to a position closer to one another, at least one of the first and second jaw members including a knife channel defined therein configured to receive a knife therethrough;a trigger assembly at least partially disposed within the cavity including a trigger and a first link disposed within the housing and pivotably coupled at one end to the trigger and slidingly engaged to a second link at a second end, the second link disposed within the housing and including a first end at least partially telescopically slidable relative to the first link upon actuation of the trigger through a range of motion and a second end pivotably coupled to a third link, the third link disposed within the housing and coupled to the knife such that the actuation of the trigger translates the knife through the knife channel through the range of motion of the trigger.
  • 9. The bipolar forceps according to claim 8, wherein the first and second links are transitionable through the range of motion of the trigger from an extended configuration wherein the first and second links combine to define a first length to a compressed configuration wherein the first and second links combine to define a second length, the second length being shorter than the first length.
  • 10. The bipolar forceps according to claim 9, further comprising a biasing member disposed within at least one of the first and second links and configured to bias the first and second links in the extended configuration.
  • 11. The bipolar forceps according to claim 8, wherein the second link is telescopically received within the first link.
  • 12. The bipolar forceps according to claim 9, wherein the first and second links transition between the extended and compressed configurations through the range of motion of the trigger during the actuation of the trigger and a release of the trigger.
  • 13. The bipolar forceps according to claim 9, wherein the first and second links are normal to the third link when disposed in the compressed configuration.
  • 14. The bipolar forceps according to claim 8, wherein the pivot defines a longitudinal slot therethrough and the knife is configured to advance through the longitudinal slot upon translation thereof.
US Referenced Citations (252)
Number Name Date Kind
D249549 Pike Sep 1978 S
D263020 Rau, III Feb 1982 S
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
D298353 Manno Nov 1988 S
D299413 DeCarolis Jan 1989 S
5100420 Green et al. Mar 1992 A
D343453 Noda Jan 1994 S
5304203 El-Mallawany et al. Apr 1994 A
D348930 Olson Jul 1994 S
D349341 Lichtman et al. Aug 1994 S
D354564 Medema Jan 1995 S
D358887 Feinberg May 1995 S
5578052 Koros et al. Nov 1996 A
5618294 Aust et al. Apr 1997 A
D384413 Zlock et al. Sep 1997 S
5665100 Yoon Sep 1997 A
H1745 Paraschac Aug 1998 H
5814043 Shapeton Sep 1998 A
5827279 Hughett et al. Oct 1998 A
D402028 Grimm et al. Dec 1998 S
D408018 McNaughton Apr 1999 S
D416089 Barton et al. Nov 1999 S
6050996 Schmaltz et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
H1904 Yates et al. Oct 2000 H
6293954 Fogarty et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6329778 Culp et al. Dec 2001 B1
6334861 Chandler et al. Jan 2002 B1
D453923 Olson Feb 2002 S
D454951 Bon Mar 2002 S
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6406485 Hossein et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6464704 Schmaltz et al. Oct 2002 B2
D465281 Lang Nov 2002 S
D466209 Bon Nov 2002 S
6511480 Tetzlaff et al. Jan 2003 B1
6673092 Becher Jan 2004 B1
D493888 Reschke Aug 2004 S
D496997 Dycus et al. Oct 2004 S
D499181 Dycus et al. Nov 2004 S
D502994 Blake, III Mar 2005 S
D509297 Wells Sep 2005 S
D525361 Hushka Jul 2006 S
7083618 Couture et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7118570 Tetzlaff et al. Oct 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
D533274 Visconti et al. Dec 2006 S
D533942 Kerr et al. Dec 2006 S
D535027 James et al. Jan 2007 S
D538932 Malik Mar 2007 S
D541418 Schechter et al. Apr 2007 S
D541611 Aglassinger May 2007 S
D541938 Kerr et al. May 2007 S
D545432 Watanabe Jun 2007 S
D547154 Lee Jul 2007 S
7252667 Moses et al. Aug 2007 B2
7329257 Kanehira et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
D567943 Moses et al. Apr 2008 S
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
7431730 Viola Oct 2008 B2
D582038 Swoyer et al. Dec 2008 S
7641653 Dalla Betta et al. Jan 2010 B2
D617900 Kingsley et al. Jun 2010 S
D617901 Unger et al. Jun 2010 S
D617902 Twomey et al. Jun 2010 S
D617903 Unger et al. Jun 2010 S
D618798 Olson et al. Jun 2010 S
D621503 Otten et al. Aug 2010 S
7766910 Hixson et al. Aug 2010 B2
D627462 Kingsley Nov 2010 S
D628289 Romero Nov 2010 S
D628290 Romero Nov 2010 S
7854185 Zhang et al. Dec 2010 B2
D630324 Reschke Jan 2011 S
7896878 Johnson et al. Mar 2011 B2
7922718 Moses et al. Apr 2011 B2
8070748 Hixson et al. Dec 2011 B2
8092451 Schechter et al. Jan 2012 B2
8112871 Brandt et al. Feb 2012 B2
8133254 Dumbauld et al. Mar 2012 B2
8147489 Moses et al. Apr 2012 B2
8162965 Reschke et al. Apr 2012 B2
8187273 Kerr et al. May 2012 B2
8215182 Artale et al. Jul 2012 B2
8257352 Lawes et al. Sep 2012 B2
8266783 Brandt et al. Sep 2012 B2
8277446 Heard Oct 2012 B2
8287536 Mueller et al. Oct 2012 B2
8292067 Chowaniec et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8298233 Mueller Oct 2012 B2
8323310 Kingsley Dec 2012 B2
8343150 Artale Jan 2013 B2
8343151 Siebrecht et al. Jan 2013 B2
8348948 Bahney Jan 2013 B2
8357159 Romero Jan 2013 B2
8388647 Nau, Jr. et al. Mar 2013 B2
8394096 Moses et al. Mar 2013 B2
8409246 Kerr et al. Apr 2013 B2
8409247 Garrison et al. Apr 2013 B2
8425511 Olson Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430877 Kerr et al. Apr 2013 B2
8439911 Mueller May 2013 B2
8439913 Horner et al. May 2013 B2
8469716 Fedotov et al. Jun 2013 B2
8469991 Kerr Jun 2013 B2
8469992 Roy et al. Jun 2013 B2
8480671 Mueller Jul 2013 B2
8491624 Kerr et al. Jul 2013 B2
8491625 Horner Jul 2013 B2
8491626 Roy et al. Jul 2013 B2
8512336 Couture Aug 2013 B2
8512371 Kerr et al. Aug 2013 B2
8540749 Garrison et al. Sep 2013 B2
8551091 Couture et al. Oct 2013 B2
8556929 Harper et al. Oct 2013 B2
8568397 Horner et al. Oct 2013 B2
8568408 Townsend et al. Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8585736 Horner et al. Nov 2013 B2
8597295 Kerr Dec 2013 B2
8623018 Horner et al. Jan 2014 B2
8628557 Collings et al. Jan 2014 B2
8641712 Couture Feb 2014 B2
8641713 Johnson et al. Feb 2014 B2
8647343 Chojin et al. Feb 2014 B2
8652135 Nau, Jr. Feb 2014 B2
8663222 Anderson et al. Mar 2014 B2
8672939 Garrison Mar 2014 B2
8679115 Reschke Mar 2014 B2
8685009 Chernov et al. Apr 2014 B2
8685021 Chernov et al. Apr 2014 B2
8702749 Twomey Apr 2014 B2
8734445 Johnson et al. May 2014 B2
8740898 Chojin et al. Jun 2014 B2
8745840 Hempstead et al. Jun 2014 B2
8784418 Romero Jul 2014 B2
8795269 Garrison Aug 2014 B2
8808288 Reschke Aug 2014 B2
8814864 Gilbert Aug 2014 B2
8840639 Gerhardt, Jr. et al. Sep 2014 B2
8852185 Twomey Oct 2014 B2
8858553 Chojin Oct 2014 B2
8888771 Twomey Nov 2014 B2
8888775 Nau, Jr. et al. Nov 2014 B2
8900232 Ourada Dec 2014 B2
8906018 Rooks et al. Dec 2014 B2
8920421 Rupp Dec 2014 B2
8932293 Chernov et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939972 Twomey Jan 2015 B2
8945125 Schechter et al. Feb 2015 B2
8945175 Twomey Feb 2015 B2
8961504 Hoarau et al. Feb 2015 B2
8968283 Kharin Mar 2015 B2
8968305 Dumbauld et al. Mar 2015 B2
8968316 Roy et al. Mar 2015 B2
8968357 Mueller Mar 2015 B2
8968358 Reschke Mar 2015 B2
8968359 Kerr et al. Mar 2015 B2
9005200 Roy et al. Apr 2015 B2
9017372 Artale et al. Apr 2015 B2
9024237 Bonn May 2015 B2
9028492 Kerr et al. May 2015 B2
9028495 Mueller et al. May 2015 B2
9039704 Joseph May 2015 B2
9039732 Sims et al. May 2015 B2
9060798 Harper et al. Jun 2015 B2
9113933 Chernova et al. Aug 2015 B2
9113934 Chernov et al. Aug 2015 B2
9161807 Garrison Oct 2015 B2
9192430 Rachlin et al. Nov 2015 B2
9265568 Chernov et al. Feb 2016 B2
20030018332 Schmaltz et al. Jan 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040092927 Podhajsky et al. May 2004 A1
20050107784 Moses et al. May 2005 A1
20050113826 Johnson et al. May 2005 A1
20050113828 Shields et al. May 2005 A1
20060074417 Cunningham et al. Apr 2006 A1
20060253126 Bjerken et al. Nov 2006 A1
20070062017 Dycus et al. Mar 2007 A1
20070088356 Moses et al. Apr 2007 A1
20070260241 Dalla Betta et al. Nov 2007 A1
20080215048 Hafner et al. Sep 2008 A1
20080300613 Shelton, IV et al. Dec 2008 A1
20090012520 Hixson et al. Jan 2009 A1
20090131934 Odom et al. May 2009 A1
20090171353 Johnson et al. Jul 2009 A1
20090182327 Unger Jul 2009 A1
20090240246 Deville et al. Sep 2009 A1
20100016857 McKenna et al. Jan 2010 A1
20100130977 Garrison et al. May 2010 A1
20100204697 Dumbauld et al. Aug 2010 A1
20100204698 Chapman et al. Aug 2010 A1
20100217258 Floume et al. Aug 2010 A1
20100228250 Brogna Sep 2010 A1
20100249769 Nau, Jr. et al. Sep 2010 A1
20100249776 Kerr Sep 2010 A1
20100274244 Heard Oct 2010 A1
20100292691 Brogna Nov 2010 A1
20100305567 Swanson Dec 2010 A1
20110054468 Dycus Mar 2011 A1
20110054471 Gerhardt et al. Mar 2011 A1
20110060335 Harper et al. Mar 2011 A1
20110060356 Reschke et al. Mar 2011 A1
20110071523 Dickhans Mar 2011 A1
20110072638 Brandt et al. Mar 2011 A1
20110077648 Lee et al. Mar 2011 A1
20110087218 Boudreaux et al. Apr 2011 A1
20110193608 Krapohl Aug 2011 A1
20110218530 Reschke Sep 2011 A1
20110238067 Moses et al. Sep 2011 A1
20110257680 Reschke et al. Oct 2011 A1
20110270245 Horner et al. Nov 2011 A1
20110270251 Horner et al. Nov 2011 A1
20110276049 Gerhardt Nov 2011 A1
20110295313 Kerr Dec 2011 A1
20120059372 Johnson Mar 2012 A1
20120059375 Couture et al. Mar 2012 A1
20120059409 Reschke et al. Mar 2012 A1
20120083786 Artale et al. Apr 2012 A1
20120083827 Artale et al. Apr 2012 A1
20120123404 Craig May 2012 A1
20120123410 Craig May 2012 A1
20120130367 Garrison May 2012 A1
20120172868 Twomey et al. Jul 2012 A1
20120172873 Artale et al. Jul 2012 A1
20120239034 Horner et al. Sep 2012 A1
20120259331 Garrison Oct 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296205 Chernov et al. Nov 2012 A1
20120296238 Chernov et al. Nov 2012 A1
20120296323 Chernov et al. Nov 2012 A1
20120316601 Twomey Dec 2012 A1
20120323238 Tyrrell et al. Dec 2012 A1
20120330308 Joseph Dec 2012 A1
20130018364 Chernov et al. Jan 2013 A1
20130022495 Allen, IV et al. Jan 2013 A1
20140135758 Mueller May 2014 A1
Foreign Referenced Citations (70)
Number Date Country
201299462 Sep 2009 CN
202086577 Dec 2011 CN
2415263 Oct 1975 DE
02514501 Oct 1976 DE
2627679 Jan 1977 DE
03423356 Jun 1986 DE
03612646 Apr 1987 DE
8712328 Feb 1988 DE
04303882 Feb 1995 DE
04403252 Aug 1995 DE
19515914 Jul 1996 DE
19506363 Aug 1996 DE
29616210 Nov 1996 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
10045375 Oct 2002 DE
202007009165 Aug 2007 DE
202007009317 Aug 2007 DE
202007016233 Jan 2008 DE
19738457 Jan 2009 DE
102004026179 Jan 2009 DE
102008018406 Jul 2009 DE
1159926 Mar 2003 EP
1532932 May 2005 EP
1609430 Dec 2005 EP
1810625 Jul 2007 EP
2353535 Aug 2011 EP
2436330 Apr 2012 EP
61-501068 Sep 1984 JP
10-24051 Jan 1989 JP
11-47150 Jun 1989 JP
6-502328 Mar 1992 JP
5-5106 Jan 1993 JP
05-40112 Feb 1993 JP
6-121797 May 1994 JP
6-285078 Oct 1994 JP
6-511401 Dec 1994 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
8-317934 Dec 1996 JP
09010223 Jan 1997 JP
9-122138 May 1997 JP
10-155798 Jun 1998 JP
11-070124 Mar 1999 JP
11-169381 Jun 1999 JP
11-192238 Jul 1999 JP
11244298 Sep 1999 JP
2000-102545 Apr 2000 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001-8944 Jan 2001 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001128990 May 2001 JP
2001-190564 Jul 2001 JP
2004-517668 Jun 2004 JP
2004-528869 Sep 2004 JP
401367 Oct 1973 SU
9400059 Jan 1994 WO
99-23933 May 1999 WO
0024330 May 2000 WO
0036986 Jun 2000 WO
0115614 Mar 2001 WO
0154604 Aug 2001 WO
02080793 Oct 2002 WO
2005110264 Nov 2005 WO
2015017994 Feb 2015 WO
Non-Patent Literature Citations (53)
Entry
Seyfan et al. “Sutureless Closed Hemontoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1, Jul. 2001 pp. 21-24.
Craig Johnson. “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” That Work, Mar. 2000.
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Perl-Hilar Vessels in Laparoscopic Nephrectomy” Sales Product Literature.
US. Appl. No. 09/387,883, filed Sep. 1, 1999.
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000.
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008.
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004.
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878.
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002.
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Benaron et al., “Optical Time-of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466.
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157.
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001.
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Nashington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003.
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000.
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005.
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999.
Int'l Search Report EP 06005185.1 dated May 10, 2006.
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler.
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier.
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz.
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich.
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” Innovations That Work, .quadrature.Jun. 2003.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
Tinkcler L.F., “Combined Diathermy and Suction Forceps” , Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447.
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center,Charlotte,NC; Date: Aug. 2003.
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000.
Muller et al., “Extended Left Hemicoletomy Using the LigaSure Vessel Sealing System” Innovations That Work,. quadrature.Sep. 1999.
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work,.quadrature.Jun. 2002.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery vol. 181, No. 3, Apr. 2001 pp. 236-237.
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3.
Related Publications (1)
Number Date Country
20170209205 A1 Jul 2017 US