This invention relates to methods of making loop fastener products, particularly circular knit loop fabrics, and the products made by such methods.
Some knit materials are formed as circular knit materials, meaning that they are initially knit as a tube on a machine in which the knitting needles are organized into a circular knitting bed. The needles are sequentially activated about the circular bed, such as by a cam surface acting against butt ends of the rotating set of needles, to lift and accept a yarn fed from a spool into a yarn carrier plate, to form a spiral row of stitches about the end of the tube. Such a process is also referred to as circular weft knitting. Circular-knit fabrics are known to generally be rather stretchable as knitted, and are often stabilized with coatings or other binders. Warp-knit fabrics typically have less longitudinal stretch than circular knits, and are often stabilized with binders.
Reducing stretch and improving fabric stability are desirable with hook and loop fasteners, as are reductions in the cost of such fasteners.
One aspect of the invention features a method of making a loop fastener product, by a process involving knitting a pile yarn and one or more ground yarns to form a stretchable knit fabric having loops of the pile yarn extending from a knit ground. At least one of the ground yarns is a bicomponent yarn with a filament comprising a first portion of a first polymer and a second portion of a second polymer, the first and second portions bonded together along a length of the filament and defining a boundary between the first and second polymers. While the fabric is subsequently held in a flat state, it is set by first applying sufficient heat to cause resin of the sheath of the bicomponent yarn filament to flow into interstices of the fabric ground, and then allowing the fabric to cool, such that the cooled fabric ground is less stretchable in two orthogonal directions after setting than before setting. The cooled fabric has a greater air permeability after setting than before setting, and has hook-engageable pile loops extending from interstices bound by the first polymer.
In some cases, knitting the pile yarn and one or more ground yarns involves circular knitting, producing a circular-knit fabric.
The first portion of the filament of the bicomponent yarn may form a sheath about a filament core of the second polymer, or be of a different bicomponent structure. The first and second portions of the filament of the bicomponent yarn are preferably both longitudinally continuous.
The bicomponent yarn can be a yarn of multiple bicomponent filaments.
In some examples, the bicomponent yarn is a first yarn of the one or more ground yarns, the one or more ground yarns also including a second yarn of a third polymer. The third polymer may be of a lower melting point than the second polymer. For example, the second polymer may be a polyester and the third polymer a nylon. In some cases, the knitting includes feeding the first and second yarns together through a common hole to a needle rack of a circular knitting machine.
The third polymer may be advantageously more susceptible to radio-frequency energy absorption than the second polymer.
In some cases, the method also includes texturizing the first and second yarns together prior to knitting.
In some embodiments, the pile yarn is a multi-filament yarn, and/or texturized yarn. Preferably, the pile yarn is or includes an extruded monofilament having a tenacity of at least 4 grams per denier.
The fabric may be held in a flat state on a tenter frame, for example.
In some cases, the heat is applied only in selected areas of the fabric, thereby causing a variation in setting across the fabric. For example, the heat may be applied by controlled jets of hot air, such as discontinuous jets. Alternatively, the heat may be applied by an embossed heater roll having a patterned surface over which the fabric is trained, such that the pattern of the surface determines a pattern of the selected areas. The variation in setting may advantageously cause the fabric to pucker out of its plane.
The cooled fabric preferably has an air permeability, through the fabric as tested according to ASTM D737, of at least 325 CFM. The cooled fabric preferably has an in-plane stiffness, as tested according to ASTM D1388 in each of two orthogonal directions, of at least 4 mm.
In some cases, the pile yarn is of a different color than the bicomponent yarn, and setting the fabric changes a perceptible color of a side of the fabric opposite the pile loops.
Heat setting the fabric preferably involves subjecting the fabric to an environmental temperature greater than a softening temperature of the first polymer. The heat setting may cause resin of the sheath of the bicomponent yarn filament to also flow into a pile of the fabric, such as into a base of the pile, while leaving the pile hook-engageable.
Another aspect of the invention features a method of making a loop fastener product, including circular knitting a pile yarn and one or more ground yarns to form a stretchable circular-knit fabric having loops of the pile yarn extending from a knit ground, holding the circular-knit fabric in a desired state, and while the fabric is held, setting the fabric. At least one of the ground yarns is a yarn with a filament containing a first polymer and a filament containing a second polymer. The fabric is set by first applying sufficient heat to cause resin of the first polymer to flow into interstices of the fabric ground without melting the second polymer, and then allowing the fabric to cool, such that: the cooled fabric ground is less stretchable in two orthogonal directions after setting than before setting, the cooled fabric has a greater air permeability after setting than before setting, and the cooled fabric has hook-engageable pile loops extending from interstices bound by the first polymer.
In some examples, the desired state is planar and taut, and the fabric may be held, for example, on a tenter frame.
In some cases, at least one of the ground yarns is a first yarn with a bicomponent filament in which the first polymer forms a sheath about a filament core of the second polymer. The ground yarn may have multiple bicomponent filaments. The ground yarns may also include a second yarn of a third polymer, such as a polymer of a lower melting point than the second polymer. For example, the second polymer may be a polyester and the third polymer a nylon. The method may include feeding the first and second yarns together through a common hole to a needle rack of a circular knitting machine. The third polymer may be more susceptible to radio-frequency energy absorption than the second polymer.
In some cases, the method includes texturizing the first and second ground yarns together prior to knitting.
In some embodiments, the pile yarn is a multi-filament yarn, and/or texturized yarn. Preferably, the pile yarn is or includes an extruded monofilament having a tenacity of at least 4 grams per denier.
The fabric may be held in a flat state on a tenter frame, for example.
In some cases, the heat is applied only in selected areas of the fabric, thereby causing a variation in setting across the fabric. For example, he heat may be applied by controlled jets of hot air, such as discontinuous jets. Alternatively, the heat may be applied by an embossed heater roll having a patterned surface over which the fabric is trained, such that the pattern of the surface determines a pattern of the selected areas. The variation in setting may advantageously cause the fabric to pucker out of its plane.
The cooled fabric preferably has an air permeability, through the fabric as tested according to ASTM D737, of at least 325 CFM. The cooled fabric preferably has an in-plane stiffness, as tested according to ASTM D1388 in each of two orthogonal directions, of at least 4 mm.
In some cases, the pile yarn is of a different color than the bicomponent yarn, and setting the fabric changes a perceptible color of a side of the fabric opposite the pile loops.
Heat setting the fabric preferably involves subjecting the fabric to an environmental temperature greater than a softening temperature of the first polymer. The heat setting may cause resin of the sheath of the bicomponent yarn filament to also flow into a pile of the fabric, such as into a base of the pile, while leaving the pile hook-engageable.
Other aspects of the invention include new loop fastener products made by the above methods.
The invention can produce a functional fastener loop product relatively quickly and at low cost, for the most part using readily available equipment. The invention can also provide good RF welding characteristics in the final product, and in the case of circular knits can produce a product with good dimensional stability without the need of subsequent binder coating, resulting in good permeability.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring first to
Referring also to
The bicomponent ground yarns may be of a polyester, for example, with both a relatively high melt polyester portion and a relatively low melt polyester portion. These yarns are typically multifilament yarns of varying yarn denier and filament counts, and selected to develop a specific fabric weight or stability. A secondary multifilament ground yarn may be a Nylon or a polyolefin yarn, for example, added to increase RF weldability. In some cases, the secondary multifilament ground yarns are of a resin with a lower melting temperature than either portion of the bicomponent ground yarns. The pile yarn is preferably an extruded multifilament having a tenacity of at least about 4 grams per denier, but could for some applications have a tenacity as low as 1 or as high as 10 grams per denier. Each filament in the multifilament yarn may have a denier less than 1.0 or as high as 30. Increasing the denier per filament can increase the cycle life of the fastener.
In one example, a 100% PET polyester bicomponent fiber, supplied by Hyosung Corporation, was co-extruded as a sheath-core yarn (as in
In one example, a lightweight circular knit jersey fabric was knit on a 28-gauge machine with 140/48 natural color bicomponent polyester yarn in the ground, and a 200-denier, 10 filament (200/10) flat untexturized yarn for the pile. Both natural and pre-dyed yarns were used for the pile surface. The fabrics were knit with a 1.0 mm sinker to make a low pile loop, although sinker heights as high as 3.8 mm or higher may be employed. The number of stitches per inch was varied to produce the desired fabric weight, with examples run at 42, 33, 28, and 25 stitches/inch. One example was knit at 25 stitches/inch, using a 140/48 polyester bicomponent yarn and a 200/10 pile yarn. This combination resulted in a large amount of meltable fiber on the technical face and a high cyclability. Examples were finished differently depending on whether they were natural or dope-dyed. Dope-dyed fabrics can be napped directly after knitting. Low cost natural white fabrics can also be napped after knitting. The fabric may be dyed in jet dyeing equipment, then napped. Prior to napping the 25 stitch-per-inch fabric, the greige fabric width was approximately 200 mm wide, and the fabric width after napping was approximately 190 mm. Napper wire size and napping settings were selected to maintain an unbroken loop.
In the example of
Referring next to
As the fabric comes out of the knitting machine, it is relatively stretchable in the machine direction, similar to a typical circular-knit fabric. Following knitting, the fabric tube may be slit longitudinally, washed, napped and spooled for later processing. Using texturized pile fibers may help to avoid any need to nap the pile, either before or after spooling. As shown in
Referring next to
Throughout heating, the fabric is held flat and under light transverse tension, typically just enough tension to keep the fabric on the tenter frame pins but not enough to actively stretch the fabric. In this example, using a low melt temperature polymer with a softening temperature of 375 degrees Fahrenheit, heater 78 was maintained at 390 degrees Fahrenheit during setting, and the fabric remained in the heater for a heating time of 60 seconds. For the dryer used, this equated to a speed of about 18 meters/min. In some cases, the ground of this fabric may grow slightly in width during treatment, such that the overall width increases even under very light tension. As the fabric grows, the tenter frame width adjusts to maintain the slight transverse tension on the fabric, to continue to hold the fabric in a flat state. The fabric can also be stretched a modest amount (e.g., 13 percent in width) and will still perform as a fastener product, but with slightly lower performance.
After setting, the finished fabric is a longitudinally continuous loop fastener product 10 that can be spooled, slit, cut or otherwise finished.
Rather than being heated uniformly in an oven, the fabric may be heated only in selected areas, causing a variation in setting across the fabric that can result in a puckering of the fabric out of its plane. This can further aid in ‘bulking’ the fabric, and/or can provide a desired texture or pattern. The heat may applied, for example, by controlled jets 82 of hot air (as in
Referring next to
Referring back to
In other cases, cut staple spun yarns can be created using special polymers that can be extruded into fiber but are not strong enough to be used as a continuous filament yarn. In this case these weak fibers and blended together with stronger fibers, and made into cut staple “spun” yarns. In one prototype, extruded vinyl cut staple vinyl fiber is blended with standard Nylon, polyester, or other polymer, and made into yarn. Such yarns are available from RHO VYL in France (www.rhovyl.fr). Spinning blends of this type from cut staple fibers can be done by many suppliers. When this spun yarn is put into the ground of the fabric, and a conventional flat or texturized yarn is used in the pile, the cut staple fibers in the spun yarn will melt and fuse when heated to further bind the fabric, and may make the fabric more receptive to RF welding.
In a similar manner, filaments of a relatively high melt temperature polymer can be joined with filaments of a relatively low temperature polymer to form a single combined yarn having filaments of different melting temperatures. Such a combined yarn can be used as a ground yarn in the above knitting and setting process. Filaments of polymers of different temperatures can also be fed together into a common ground yarn feed hole of the circular knitting machine from different spools, such that they run in parallel in the knit structure, to produce a knit fabric that is then heat set according to the above method.
In the example fabric shown in
Before setting, the fabric of
Referring next to
A third example of a fastener loop product (not shown) was prepared according to the above description, but using a 200/10 yarn (20 denier/filament) for the pile, using a 1.5 mm sinker. This example exhibited a higher cycle life as a fastener loop than was expected for such a lightweight fabric. Even lower profile loops are envisioned, formed over 1.0 mm sinkers. Such low profile loops are particularly advantageous for military uniforms, to help avoid sand fouling hook and loop closures.
Referring next to
A PVC-coated polyester yarn may also be a useful ground yarn for an RF-weldable product. RF-weldability has particular utility in medical applications.
An alternate process of heat setting any of the above fabrics involves a thermoforming process in which the knit fabric is placed in a mold to hold it in a non-planar form, and then heat set to mold the fabric into that form.
While a number of examples have been described for illustration purposes, the foregoing description is not intended to limit the scope of the invention, which is defined by the scope of the appended claims. There are and will be other examples and modifications within the scope of the following claims.